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Method of Action

As the level of drug resistance increases, the need for antibiotics with novel
method of action (MOA) has also increased.

An important part of drug discovery is solidifying the MOA of promising
anti—infective compounds. This can increase the odds of the compound
becoming a successful drug.

Discovery scientists would like to use data on existing compounds with
known MOA to predict or rule out specific MOA for new compounds.
They would also like to know what predictors have an influence of method
of action.
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Gene Expression

Several publications have linked gene transcript profiles to method of
action and we assume that gene expression in bacteria contains relevant
information.

Gene expression profiles for a set of existing compounds/drugs with known
MOA were generated and used to develop a predictive model for defining
the MOA in new compounds. In some cases, it is enough to rule out
several mechanisms.

staph. aureus RN4220 samples were treated with 27 antibiotics and
noxious agents.

Their RNA was harvested, QC’ed and converted to cDNA. The cDNA was
assayed using a custom Affy gene chip with 7775 probes for staph. aureus
bacteria was developed to represent the genomes of several clinical isolates.
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Mechanism of Action for Common Antibiotics*

cell wall synthesis p-lactams (ampicillin)
glycopeptides (vancomycin)
I -\\ anti-metabolites
DNA repllcgtlon CD anti-fatty acid (Triclosan)
and repair anti-folate (Bactrim)
fluoroquinolones
(ciprofloxacin)

protein synthesis
macrolides (Zithromax)

oxazolidinones (Zyvox)
*adapted from aminoglycosides (kanamycin)
Walsh, C., Nature (2000) 406: 775. tetracyclines
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Sample Allocation

There were 114 staph samples across 9 MOAs. They were partitioned into

training sets and test sets using a roughly 80/20 split:

MOA Label Training Test
RNA synthesis inhibitors A 8 2
DNA synthesis inhibitors B 12 2
Protein Synthesis Inhibitors (30S) C 13 3
Protein Synthesis Inhibitors (50S) D 12 3
Cell Wall Synthesis Inhibitors E 22 5
Anti-metabolites F 9 2
Fatty Acid Biosynthesis Inhibitors G 6 1
PMF Uncouplers H 6 1
Noxious Agents | 6 1
Total 94 20
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Data Processing

Typically, we would run rma on samples. However, this is not a good
solution for this project since parts of rma are batch—oriented:

© Background correction happens within sample (i.e. batch
independent)

@ Normalization is batch dependent as it takes the “average”
distribution over samples and normalizes all samples to this average.
For example, the average quantiles are determined across samples and
this is the reference distribution that all samples are coerced to.

© Expression value calculation by default uses the median polish to fit
a model with effects for probes and samples and thus is batch
dependent.

(Given the number publications using Affy data to classify samples, it's surprising
that this issue is not discussed more)
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Data Processing

Another algorithm, mas5, is not batch oriented, but performance using this
technique was abysmal (shown later).

Instead, an rma—like technique was evaluated:

@ Same background correction

@ Same normalization procedure, but all samples are normalized to the
reference distribution of the training set

© Expression is calculated using a 10% trimmed mean instead of a
median polish.

Performance was evaluated for this method, rma and mas5 (results shown
later).
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Classification Model

Random forests was used to predict MOA, generate class probabilities and
calculate variable importance.

The tuning parameter, the random subset size, was determined by finding
the optimal bootstrap accuracy across a grid of 5 candidate values.

For calculating variable importance: “For each tree, the prediction
accuracy on the out-of-bag portion of the data is recorded. Then the same
is done after permuting each predictor variable. The difference between
the two accuracies are then averaged over all trees, and normalized by the
standard error. " (Andy Liaw in Rnews, 2002)

MOA-specific importance measures were calculated for each probe
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Selection Bias

Selecting features is tricky and can quickly lead to overfitting.

A common approach: measure “importance” for each predictor from the
training data. Remove the least important features and re-fit the model.
Measured performance usually improves.

This is a circular argument. Features are important for these training
samples and may not generalize well.

With p >>> n, the problem of finding a model that classifies perfectly is
not difficult. For example, the odds that a non—informative factor will
randomly show a group effect goes up as p — large.

Will resampling solve this problem?
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Selection Bias and Resampling

Resampling can solve this problem, but it must be done correctly.

We usually think of cross—validation or bootstrapping to select model
parameters (e.g. the number of PLS components etc)

It is important to realize that feature selection is part of the model
building process and must also be cross—validated.

“External” cross—validation encompasses feature selection and model
tuning.

Max Kuhn (Pfizer Global R&D) caret 10 / 18



Probe Selection Procedure

A recursive feature selection (RFE) routine was used to determine the optimal
number of probes while avoiding selection bias:

for Each 10 Fold Cross-Validation Iteration do
Separate data based on fold labels

Tune/train Random Forests model on 90% of data with all probes

Calculate MOA—specific variable importance for each probe
for Probe subset size: 900, 450, 225, 108, 54, 27, 18, 9 do
Retain most important probes

Tune/train Random Forests model on 90% of data

Predict the 10% cross—validation samples

end
end

Calculate cross—validation performance across subset sizes to choose the
optimal number of probes

See Ambroise and McLachlan (PNAS, 2002) for examples demonstrating why this
is important.
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Filtering Probes

Some MOA were very easy to predict and others were more difficult.

Basic sorting of probes by overall variable importance resulted in poor
overall performance since difficult MOAs were not well represented.

A stratified reduction procedure was used to filter probes.

For example, for a probe subset size of 900, the top 100 probes were
selected for each of the 9 MOA.
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Evaluating the Algorithm

To evaluate the data processing algorithm, the RFE procedure was applied
using rma, mas5 and our rma alternative.

In Affy experiments, low gene expression signals can also inject significant
noise into the results. For each data processing technique, we also dropped
the probes whose average expression value fell below the 25th percentile.

For each of these 6 combinations, the cross—validation procedure was
repeated 3 times.
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RFE Performance
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RFE Performance

The performance profiles of rma and our alternative are very similar.
There was negligible effect of probe filtering based on expression intensity.

Based on the alternative rma procedure, the final model was built using
the top 108 probes without the intensity filter. Based on the RFE results,
the overall accuracy is estimated to be 85%.

A random forest model was trained using the top 108 probes and the 20
samples in the test set were run using this model. The results are:
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Test Set Confusion Matrix

Predicted MOA

TrueMOA A B C D E F G H | Sens. Spec.
A 2 0 0 OO0 0O 0O 0 0 100 1.00
B 02 0 0 0 0O 0O 0 0 100 1.00
C 0 021 0 0 0O 0 0 o067 1.00
D 0 00 30 0 0O O 0 100 0094
E 0 0 o 05 0 0 0 0 100 1.00
F o 0o 0o 0 0 2 0 0 0 100 1.00
G 0 0o o 00 0 1 0 0 100 100
H 0o 0 0 0 0 0O O 1 0 100 1.00
I 0 0 o 00 0 0 01 100 100
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Test Set Probabilities
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Conclusions and Acknowledgements

o Affy gene expression data can be useful in predicting method of
action in antibacterials.

@ A modified version of the rma algorithm can be useful for sequentially
processing CEL files.

@ There is little effect of a signal intensity filter in this study

Thanks to Alison Jones, Shelley Des Etages, Alita Miller, David Potter ...

... and to Martin for the invitation.
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