Classification:
Alternative Techniques

The previous chapter described a simple, yet quite effective, classification tech-
nique known as decision tree induction. Issues such as model overfitting and
classifier evaluation were also discussed in great detail. This chapter presents
alternative techniques for building classification models—from simple tech-
niques such as rule-based and nearest-neighbor classifiers to more advanced
techniques such as support vector machines and ensemble methods. Other
key issues such as the class imbalance and multiclass problems are also dis-
cussed at the end of the chapter.

5.1 Rule-Based Classifier

A rule-based classifier is a technique for classifying records using a collection
of “if .. .then...” rules. Table 5.1 shows an example of a model generated by a
rule-based classifier for the vertebrate classification problem. The rules for the
model are represented in a disjunctive normal form, R = (r1VraV...rg), where
R is known as the rule set and r;’s are the classification rules or disjuncts.

Table 5.1. Example of a rule set for the vertebrate classification problem.

r1:  (Gives Birth = no) A (Aerial Creature = yes) — Birds

ro:  (Gives Birth = no) A (Aquatic Creature = yes) — Fishes

rs:  (Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals
ry:  (Gives Birth = no) A (Aerial Creature = no) — Reptiles

r5:  (Aquatic Creature = semi) — Amphibians
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Fach classification rule can be expressed in the following way:
r; + (Condition;) — y;. (5.1)

The left-hand side of the rule is called the rule antecedent or precondition.
It contains a conjunction of attribute tests:

Condition; = (A1 op v1) A (Ag op v2) A ... (A op vg), (5.2)

where (A;,v;) is an attribute-value pair and op is a logical operator chosen
from the set {=,#, <,>,<,>}. Each attribute test (4; op v;) is known as
a conjunct. The right-hand side of the rule is called the rule consequent,
which contains the predicted class y;.

A rule r covers a record x if the precondition of r matches the attributes
of x. r is also said to be fired or triggered whenever it covers a given record.
For an illustration, consider the rule r; given in Table 5.1 and the following
attributes for two vertebrates: hawk and grizzly bear.

Name Body Skin Gives | Aquatic Aerial Has | Hiber-
Temperature Cover | Birth | Creature | Creature | Legs | nates

hawk warm-blooded | feather no no yes yes no

grizzly bear | warm-blooded fur yes no no yes yes

r1 covers the first vertebrate because its precondition is satisfied by the hawk’s
attributes. The rule does not cover the second vertebrate because grizzly bears
give birth to their young and cannot fly, thus violating the precondition of r;.

The quality of a classification rule can be evaluated using measures such as
coverage and accuracy. Given a data set D and a classification rule r : A — y,
the coverage of the rule is defined as the fraction of records in D that trigger
the rule . On the other hand, its accuracy or confidence factor is defined as
the fraction of records triggered by r whose class labels are equal to y. The
formal definitions of these measures are

Coverage(r) %
Accuracy(r) ]A|2’y| , (5.3)

where |A| is the number of records that satisfy the rule antecedent, |A Ny| is
the number of records that satisfy both the antecedent and consequent, and
|D| is the total number of records.
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Table 5.2. The vertebrate data set.
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Name Body Skin Gives | Aquatic Aerial Has | Hiber- | Class Label
Temperature Cover Birth | Creature | Creature | Legs nates
human warm-blooded hair yes no no yes no Mammals
python cold-blooded scales no no no no yes Reptiles
salmon cold-blooded scales no yes no no no Fishes
whale warm-blooded hair yes yes no no no Mammals
frog cold-blooded none no semi no yes yes Amphibians
komodo cold-blooded scales no no no yes no Reptiles
dragon
bat warm-blooded hair yes no yes yes yes Mammals
pigeon warm-blooded | feathers no no yes yes no Birds
cat warm-blooded fur yes no no yes no Mammals
guppy cold-blooded scales yes yes no no no Fishes
alligator cold-blooded scales no semi no yes no Reptiles
penguin warm-blooded | feathers no semi no yes no Birds
porcupine warm-blooded quills yes no no yes yes Mammals
eel cold-blooded scales no yes no no no Fishes
salamander | cold-blooded none no semi no yes yes Amphibians

Example 5.1. Consider the data set shown in Table 5.2. The rule

(Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals

has a coverage of 33% since five of the fifteen records support the rule an-
tecedent. The rule accuracy is 100% because all five vertebrates covered by
the rule are mammals.

5.1.1 How a Rule-Based Classifier Works

A rule-based classifier classifies a test record based on the rule triggered by
the record. To illustrate how a rule-based classifier works, consider the rule
set shown in Table 5.1 and the following vertebrates:

Name Body Skin | Gives | Aquatic Aerial Has | Hiber-
Temperature | Cover | Birth | Creature | Creature | Legs | nates
lemur warm-blooded fur yes no no yes yes
turtle cold-blooded | scales no semi no yes no
dogfish shark | cold-blooded | scales yes yes no no no

e The first vertebrate, which is a lemur, is warm-blooded and gives birth
to its young. It triggers the rule r3, and thus, is classified as a mammal.
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e The second vertebrate, which is a turtle, triggers the rules r4 and 5.
Since the classes predicted by the rules are contradictory (reptiles versus
amphibians), their conflicting classes must be resolved.

e None of the rules are applicable to a dogfish shark. In this case, we
need to ensure that the classifier can still make a reliable prediction even
though a test record is not covered by any rule.

The previous example illustrates two important properties of the rule set gen-
erated by a rule-based classifier.

Mutually Exclusive Rules The rules in a rule set R are mutually exclusive
if no two rules in R are triggered by the same record. This property ensures
that every record is covered by at most one rule in R. An example of a
mutually exclusive rule set is shown in Table 5.3.

Exhaustive Rules A rule set R has exhaustive coverage if there is a rule
for each combination of attribute values. This property ensures that every
record is covered by at least one rule in R. Assuming that Body Temperature
and Gives Birth are binary variables, the rule set shown in Table 5.3 has
exhaustive coverage.

Table 5.3. Example of a mutually exclusive and exhaustive rule set.

r1: (Body Temperature = cold-blooded) — Non-mammals
ro: (Body Temperature = warm-blooded) A (Gives Birth = yes) — Mammals
r3: (Body Temperature = warm-blooded) A (Gives Birth = no) — Non-mammals

Together, these properties ensure that every record is covered by exactly
one rule. Unfortunately, many rule-based classifiers, including the one shown
in Table 5.1, do not have such properties. If the rule set is not exhaustive,
then a default rule, r4 : () — yq, must be added to cover the remaining
cases. A default rule has an empty antecedent and is triggered when all other
rules have failed. y4 is known as the default class and is typically assigned to
the majority class of training records not covered by the existing rules.

If the rule set is not mutually exclusive, then a record can be covered by
several rules, some of which may predict conflicting classes. There are two
ways to overcome this problem.
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Ordered Rules In this approach, the rules in a rule set are ordered in
decreasing order of their priority, which can be defined in many ways (e.g.,
based on accuracy, coverage, total description length, or the order in which
the rules are generated). An ordered rule set is also known as a decision
list. When a test record is presented, it is classified by the highest-ranked rule
that covers the record. This avoids the problem of having conflicting classes
predicted by multiple classification rules.

Unordered Rules This approach allows a test record to trigger multiple
classification rules and considers the consequent of each rule as a vote for
a particular class. The votes are then tallied to determine the class label
of the test record. The record is usually assigned to the class that receives
the highest number of votes. In some cases, the vote may be weighted by
the rule’s accuracy. Using unordered rules to build a rule-based classifier has
both advantages and disadvantages. Unordered rules are less susceptible to
errors caused by the wrong rule being selected to classify a test record (unlike
classifiers based on ordered rules, which are sensitive to the choice of rule-
ordering criteria). Model building is also less expensive because the rules do
not have to be kept in sorted order. Nevertheless, classifying a test record can
be quite an expensive task because the attributes of the test record must be
compared against the precondition of every rule in the rule set.

In the remainder of this section, we will focus on rule-based classifiers that
use ordered rules.

5.1.2 Rule-Ordering Schemes

Rule ordering can be implemented on a rule-by-rule basis or on a class-by-class
basis. The difference between these schemes is illustrated in Figure 5.1.

Rule-Based Ordering Scheme This approach orders the individual rules
by some rule quality measure. This ordering scheme ensures that every test
record is classified by the “best” rule covering it. A potential drawback of this
scheme is that lower-ranked rules are much harder to interpret because they
assume the negation of the rules preceding them. For example, the fourth rule
shown in Figure 5.1 for rule-based ordering,

Aquatic Creature = semi — Amphibians,

has the following interpretation: If the vertebrate does not have any feathers
or cannot fly, and is cold-blooded and semi-aquatic, then it is an amphibian.
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Rule-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no)

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

==> Reptiles
(Skin Cover=scales, Aquatic Creature=no)
(Skin Cover=scales, Aquatic Creature=yes) ==> Reptiles
==> Fishes
(Skin Cover=scales, Aquatic Creature=yes)

(Skin Cover=none) ==> Amphibians ==> Fishes

Figure 5.1. Comparison between rule-based and class-based ordering schemes.

The additional conditions (that the vertebrate does not have any feathers or
cannot fly, and is cold-blooded) are due to the fact that the vertebrate does
not satisfy the first three rules. If the number of rules is large, interpreting the
meaning of the rules residing near the bottom of the list can be a cumbersome
task.

Class-Based Ordering Scheme In this approach, rules that belong to the
same class appear together in the rule set R. The rules are then collectively
sorted on the basis of their class information. The relative ordering among the
rules from the same class is not important; as long as one of the rules fires,
the class will be assigned to the test record. This makes rule interpretation
slightly easier. However, it is possible for a high-quality rule to be overlooked
in favor of an inferior rule that happens to predict the higher-ranked class.

Since most of the well-known rule-based classifiers (such as C4.5rules and
RIPPER) employ the class-based ordering scheme, the discussion in the re-
mainder of this section focuses mainly on this type of ordering scheme.

5.1.3 How to Build a Rule-Based Classifier

To build a rule-based classifier, we need to extract a set of rules that identifies
key relationships between the attributes of a data set and the class label.
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There are two broad classes of methods for extracting classification rules: (1)
direct methods, which extract classification rules directly from data, and (2)
indirect methods, which extract classification rules from other classification
models, such as decision trees and neural networks.

Direct methods partition the attribute space into smaller subspaces so that
all the records that belong to a subspace can be classified using a single classi-
fication rule. Indirect methods use the classification rules to provide a succinct
description of more complex classification models. Detailed discussions of these
methods are presented in Sections 5.1.4 and 5.1.5, respectively.

5.1.4 Direct Methods for Rule Extraction

The sequential covering algorithm is often used to extract rules directly
from data. Rules are grown in a greedy fashion based on a certain evaluation
measure. The algorithm extracts the rules one class at a time for data sets
that contain more than two classes. For the vertebrate classification problem,
the sequential covering algorithm may generate rules for classifying birds first,
followed by rules for classifying mammals, amphibians, reptiles, and finally,
fishes (see Figure 5.1). The criterion for deciding which class should be gen-
erated first depends on a number of factors, such as the class prevalence (i.e.,
fraction of training records that belong to a particular class) or the cost of
misclassifying records from a given class.

A summary of the sequential covering algorithm is given in Algorithm
5.1. The algorithm starts with an empty decision list, R. The Learn-One-
Rule function is then used to extract the best rule for class y that covers the
current set of training records. During rule extraction, all training records
for class y are considered to be positive examples, while those that belong to

Algorithm 5.1 Sequential covering algorithm.

1: Let E be the training records and A be the set of attribute-value pairs, {(4;,v;)}.
2: Let Y, be an ordered set of classes {y1,y2,..., Yk}

3: Let R ={ } be the initial rule list.

4: for each class y € Y, — {yx} do

5:  while stopping condition is not met do

6: r < Learn-One-Rule (E, A, y).

7 Remove training records from FE that are covered by 7.

8: Add r to the bottom of the rule list: R — RV r.

9: end while
10: end for
11: Insert the default rule, {} — yi, to the bottom of the rule list R.




214 Chapter 5 Classification: Alternative Techniques

other classes are considered to be negative examples. A rule is desirable if it
covers most of the positive examples and none (or very few) of the negative
examples. Once such a rule is found, the training records covered by the rule
are eliminated. The new rule is added to the bottom of the decision list R.
This procedure is repeated until the stopping criterion is met. The algorithm
then proceeds to generate rules for the next class.

Figure 5.2 demonstrates how the sequential covering algorithm works for
a data set that contains a collection of positive and negative examples. The
rule R1, whose coverage is shown in Figure 5.2(b), is extracted first because
it covers the largest fraction of positive examples. All the training records
covered by R1 are subsequently removed and the algorithm proceeds to look
for the next best rule, which is R2.

iy + - - - - -
+ 4 — R1 _
— it +i_ . -
— . T =+ - —_ L T =+ -
+ — + + — +
et o o+ g Tt o+
(a) Original Data (b) Step 1
R1 — R1 —
— ., T g - [ B
+ — P+ + -
i R2
+ ++_ _ + + + ++_ _ :
(c) Step 2 (d) Step 3

Figure 5.2. An example of the sequential covering algorithm.
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Learn-One-Rule Function

The objective of the Learn-One-Rule function is to extract a classification
rule that covers many of the positive examples and none (or very few) of the
negative examples in the training set. However, finding an optimal rule is
computationally expensive given the exponential size of the search space. The
Learn-One-Rule function addresses the exponential search problem by growing
the rules in a greedy fashion. It generates an initial rule r and keeps refining
the rule until a certain stopping criterion is met. The rule is then pruned to
improve its generalization error.

Rule-Growing Strategy There are two common strategies for growing a
classification rule: general-to-specific or specific-to-general. Under the general-
to-specific strategy, an initial rule r : {} — y is created, where the left-hand
side is an empty set and the right-hand side contains the target class. The rule
has poor quality because it covers all the examples in the training set. New

Skin Cover = hair
=> Mammals

Body Temperature = warm-blooded
=> Mammals

Has Legs = No
=> Mammals

Body Temperature = warm-blooded,
Has Legs = yes => Mammals

Body Temperature = warm-blooded,
Gives Birth = yes => Mammals

(a) General-to-specific

Body Temperature=warm-blooded, Skin Cover=hair,
Gives Birth=yes, Aquatic creature=no, Aerial Creature=no
Has Legs=yes, Hibernates=no => Mammals

Body Temperature=warm-blooded,
Skin Cover=hair, Gives Birth=yes,
Aquatic creature=no, Aerial Creature=no
Has Legs=yes => Mammals

Skin Cover=hair, Gives Birth=yes
Aquatic Creature=no, Aerial Creature=no,
Has Legs=yes, Hibernates=no
=> Mammals

(b) Specific-to-general

Figure 5.3. General-to-specific and specific-to-general rule-growing strategies.
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conjuncts are subsequently added to improve the rule’s quality. Figure 5.3(a)
shows the general-to-specific rule-growing strategy for the vertebrate classifi-
cation problem. The conjunct Body Temperature=warm-blooded is initially
chosen to form the rule antecedent. The algorithm then explores all the possi-
ble candidates and greedily chooses the next conjunct, Gives Birth=yes, to
be added into the rule antecedent. This process continues until the stopping
criterion is met (e.g., when the added conjunct does not improve the quality
of the rule).

For the specific-to-general strategy, one of the positive examples is ran-
domly chosen as the initial seed for the rule-growing process. During the
refinement step, the rule is generalized by removing one of its conjuncts so
that it can cover more positive examples. Figure 5.3(b) shows the specific-to-
general approach for the vertebrate classification problem. Suppose a positive
example for mammals is chosen as the initial seed. The initial rule contains
the same conjuncts as the attribute values of the seed. To improve its cov-
erage, the rule is generalized by removing the conjunct Hibernate=no. The
refinement step is repeated until the stopping criterion is met, e.g., when the
rule starts covering negative examples.

The previous approaches may produce suboptimal rules because the rules
are grown in a greedy fashion. To avoid this problem, a beam search may be
used, where k of the best candidate rules are maintained by the algorithm.
Each candidate rule is then grown separately by adding (or removing) a con-
junct from its antecedent. The quality of the candidates are evaluated and the
k best candidates are chosen for the next iteration.

Rule Evaluation An evaluation metric is needed to determine which con-
junct should be added (or removed) during the rule-growing process. Accu-
racy is an obvious choice because it explicitly measures the fraction of training
examples classified correctly by the rule. However, a potential limitation of ac-
curacy is that it does not take into account the rule’s coverage. For example,
consider a training set that contains 60 positive examples and 100 negative
examples. Suppose we are given the following two candidate rules:

Rule r1: covers 50 positive examples and 5 negative examples,
Rule 79: covers 2 positive examples and no negative examples.

The accuracies for r; and ry are 90.9% and 100%, respectively. However,
ry is the better rule despite its lower accuracy. The high accuracy for 7o is
potentially spurious because the coverage of the rule is too low.



5.1 Rule-Based Classifier 217

The following approaches can be used to handle this problem.

1. A statistical test can be used to prune rules that have poor coverage.
For example, we may compute the following likelihood ratio statistic:

k
R=2 Z filog(fi/ei),

=1

where k is the number of classes, f; is the observed frequency of class i
examples that are covered by the rule, and e; is the expected frequency
of a rule that makes random predictions. Note that R has a chi-square
distribution with k& — 1 degrees of freedom. A large R value suggests
that the number of correct predictions made by the rule is significantly
larger than that expected by random guessing. For example, since 71
covers b5 examples, the expected frequency for the positive class is e, =
55x60/160 = 20.625, while the expected frequency for the negative class
is e = 55 x 100/160 = 34.375. Thus, the likelihood ratio for r; is

R(r1) = 2 x [50 x logy(50/20.625) + 5 x logy(5/34.375)] = 99.9.

Similarly, the expected frequencies for ry are ey = 2 x 60/160 = 0.75
and e =2 x 100/160 = 1.25. The likelihood ratio statistic for ry is

R(r3) = 2 x [2 x logy(2/0.75) + 0 x log,(0/1.25)] = 5.66.

This statistic therefore suggests that rq is a better rule than ro.

2. An evaluation metric that takes into account the rule coverage can be
used. Consider the following evaluation metrics:

Jr+1
Laplace — : 5.4
aplace — (5.4)
m-estimate = Ji ke , (5.5)
n+k

where n is the number of examples covered by the rule, f is the number
of positive examples covered by the rule, k is the total number of classes,
and p, is the prior probability for the positive class. Note that the m-
estimate is equivalent to the Laplace measure by choosing py = 1/k.
Depending on the rule coverage, these measures capture the trade-off
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between rule accuracy and the prior probability of the positive class. If
the rule does not cover any training example, then the Laplace mea-
sure reduces to 1/k, which is the prior probability of the positive class
assuming a uniform class distribution. The m-estimate also reduces to
the prior probability (p4) when n = 0. However, if the rule coverage
is large, then both measures asymptotically approach the rule accuracy,
f+/n. Going back to the previous example, the Laplace measure for
r1 is 51/57 = 89.47%, which is quite close to its accuracy. Conversely,
the Laplace measure for ro (75%) is significantly lower than its accuracy
because ro has a much lower coverage.

3. An evaluation metric that takes into account the support count of the
rule can be used. One such metric is the FOIL’s information gain.
The support count of a rule corresponds to the number of positive exam-
ples covered by the rule. Suppose the rule r : A — + covers pg positive
examples and ng negative examples. After adding a new conjunct B, the
extended rule ' : AA B — + covers p; positive examples and n; neg-
ative examples. Given this information, the FOIL’s information gain of
the extended rule is defined as follows:

1
—lo . (5.6
p1+n g2po+no> (5.6)

FOIL’s information gain = p; x (log2
Since the measure is proportional to p; and py/(p1 +n1), it prefers rules
that have high support count and accuracy. The FOIL’s information
gains for rules r; and ro given in the preceding example are 43.12 and 2,
respectively. Therefore, r is a better rule than rs.

Rule Pruning The rules generated by the Learn-One-Rule function can be
pruned to improve their generalization errors. To determine whether pruning
is necessary, we may apply the methods described in Section 4.4 on page
172 to estimate the generalization error of a rule. For example, if the error
on validation set decreases after pruning, we should keep the simplified rule.
Another approach is to compare the pessimistic error of the rule before and
after pruning (see Section 4.4.4 on page 179). The simplified rule is retained
in place of the original rule if the pessimistic error improves after pruning.
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Rationale for Sequential Covering

After a rule is extracted, the sequential covering algorithm must eliminate
all the positive and negative examples covered by the rule. The rationale for
doing this is given in the next example.

R3 R2
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| | |

R1 L+t L+
|
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+ 0+ |+ I+ |
class = + + i L+ + |
+ (4T + s I
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Figure 5.4. Elimination of training records by the sequential covering algorithm. R1, R2, and R3
represent regions covered by three different rules.

Figure 5.4 shows three possible rules, R1, R2, and R3, extracted from a
data set that contains 29 positive examples and 21 negative examples. The
accuracies of R1, R2, and R3 are 12/15 (80%), 7/10 (70%), and 8/12 (66.7%),
respectively. R1 is generated first because it has the highest accuracy. After
generating R1, it is clear that the positive examples covered by the rule must be
removed so that the next rule generated by the algorithm is different than R1.
Next, suppose the algorithm is given the choice of generating either R2 or R3.
Even though R2 has higher accuracy than R3, R1 and R3 together cover 18
positive examples and 5 negative examples (resulting in an overall accuracy of
78.3%), whereas R1 and R2 together cover 19 positive examples and 6 negative
examples (resulting in an overall accuracy of 76%). The incremental impact of
R2 or R3 on accuracy is more evident when the positive and negative examples
covered by R1 are removed before computing their accuracies. In particular, if
positive examples covered by R1 are not removed, then we may overestimate
the effective accuracy of R3, and if negative examples are not removed, then
we may underestimate the accuracy of R3. In the latter case, we might end up
preferring R2 over R3 even though half of the false positive errors committed
by R3 have already been accounted for by the preceding rule, R1.
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RIPPER Algorithm

To illustrate the direct method, we consider a widely used rule induction algo-
rithm called RIPPER. This algorithm scales almost linearly with the number
of training examples and is particularly suited for building models from data
sets with imbalanced class distributions. RIPPER also works well with noisy
data sets because it uses a validation set to prevent model overfitting.

For two-class problems, RIPPER chooses the majority class as its default
class and learns the rules for detecting the minority class. For multiclass prob-
lems, the classes are ordered according to their frequencies. Let (y1,y2, ..., )
be the ordered classes, where y; is the least frequent class and y. is the most
frequent class. During the first iteration, instances that belong to y; are la-
beled as positive examples, while those that belong to other classes are labeled
as negative examples. The sequential covering method is used to generate rules
that discriminate between the positive and negative examples. Next, RIPPER
extracts rules that distinguish yo from other remaining classes. This process
is repeated until we are left with y., which is designated as the default class.

Rule Growing RIPPER employs a general-to-specific strategy to grow a
rule and the FOIL’s information gain measure to choose the best conjunct
to be added into the rule antecedent. It stops adding conjuncts when the
rule starts covering negative examples. The new rule is then pruned based
on its performance on the validation set. The following metric is computed to
determine whether pruning is needed: (p—n)/(p+n), where p (n) is the number
of positive (negative) examples in the validation set covered by the rule. This
metric is monotonically related to the rule’s accuracy on the validation set. If
the metric improves after pruning, then the conjunct is removed. Pruning is
done starting from the last conjunct added to the rule. For example, given a
rule ABCD — y, RIPPER checks whether D should be pruned first, followed
by CD, BCD, etc. While the original rule covers only positive examples, the
pruned rule may cover some of the negative examples in the training set.

Building the Rule Set After generating a rule, all the positive and negative
examples covered by the rule are eliminated. The rule is then added into the
rule set as long as it does not violate the stopping condition, which is based
on the minimum description length principle. If the new rule increases the
total description length of the rule set by at least d bits, then RIPPER stops
adding rules into its rule set (by default, d is chosen to be 64 bits). Another
stopping condition used by RIPPER is that the error rate of the rule on the
validation set must not exceed 50%.
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RIPPER also performs additional optimization steps to determine whether
some of the existing rules in the rule set can be replaced by better alternative
rules. Readers who are interested in the details of the optimization method
may refer to the reference cited at the end of this chapter.

5.1.5 Indirect Methods for Rule Extraction

This section presents a method for generating a rule set from a decision tree.
In principle, every path from the root node to the leaf node of a decision tree
can be expressed as a classification rule. The test conditions encountered along
the path form the conjuncts of the rule antecedent, while the class label at the
leaf node is assigned to the rule consequent. Figure 5.5 shows an example of a
rule set generated from a decision tree. Notice that the rule set is exhaustive
and contains mutually exclusive rules. However, some of the rules can be
simplified as shown in the next example.

Rule Set

r1: (P=No,Q=No) ==> -

: (P=No,Q=Yes) ==> +

: (P=Yes,Q=No) ==> +
(P=Yes,R=Yes,Q=No) ==> -
(P=Yes,R=Yes,Q=Yes) ==> +

Figure 5.5. Converting a decision tree into classification rules.

Example 5.2. Consider the following three rules from Figure 5.5:

r2: (P =No) A (Q = Yes) — +

r3: (P = Yes) A (R =No) — +

r5: (P = Yes) A (R = Yes) A (Q = Yes) — +
Observe that the rule set always predicts a positive class when the value of ()
is Yes. Therefore, we may simplify the rules as follows:

r2": (Q = Yes) — +
r3: (P = Yes) A (R =No) — +.
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Rule-Based Classifier:
(Gives Birth=No, Aerial Creature=Yes) => Birds

(Gives Birth=No, Aquatic Creature=Yes) => Fishes
(Gives Birth=Yes) => Mammals
(

Gives Birth=No, Aerial Creature=No, Aquatic Creature=No)
=> Reptiles
() => Amphibians

Amphibians Aerial
Creature

Reptiles

Fishes

Figure 5.6. Classification rules extracted from a decision tree for the vertebrate classification problem.

r3 is retained to cover the remaining instances of the positive class. Although
the rules obtained after simplification are no longer mutually exclusive, they
are less complex and are easier to interpret. [

In the following, we describe an approach used by the C4.5rules algorithm
to generate a rule set from a decision tree. Figure 5.6 shows the decision tree
and resulting classification rules obtained for the data set given in Table 5.2.

Rule Generation Classification rules are extracted for every path from the
root to one of the leaf nodes in the decision tree. Given a classification rule
r: A — y, we consider a simplified rule, ' : A’ — vy, where A’ is obtained
by removing one of the conjuncts in A. The simplified rule with the lowest
pessimistic error rate is retained provided its error rate is less than that of the
original rule. The rule-pruning step is repeated until the pessimistic error of
the rule cannot be improved further. Because some of the rules may become
identical after pruning, the duplicate rules must be discarded.

Rule Ordering After generating the rule set, C4.5rules uses the class-based
ordering scheme to order the extracted rules. Rules that predict the same class
are grouped together into the same subset. The total description length for
each subset is computed, and the classes are arranged in increasing order of
their total description length. The class that has the smallest description
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length is given the highest priority because it is expected to contain the best
set of rules. The total description length for a class is given by Lexception + g X
Liodel, where Lexception 1S the number of bits needed to encode the misclassified
examples, Ly odel 18 the number of bits needed to encode the model, and g is a
tuning parameter whose default value is 0.5. The tuning parameter depends
on the number of redundant attributes present in the model. The value of the
tuning parameter is small if the model contains many redundant attributes.

5.1.6 Characteristics of Rule-Based Classifiers
A rule-based classifier has the following characteristics:

e The expressiveness of a rule set is almost equivalent to that of a decision
tree because a decision tree can be represented by a set of mutually ex-
clusive and exhaustive rules. Both rule-based and decision tree classifiers
create rectilinear partitions of the attribute space and assign a class to
each partition. Nevertheless, if the rule-based classifier allows multiple
rules to be triggered for a given record, then a more complex decision
boundary can be constructed.

e Rule-based classifiers are generally used to produce descriptive models
that are easier to interpret, but gives comparable performance to the
decision tree classifier.

e The class-based ordering approach adopted by many rule-based classi-
fiers (such as RIPPER) is well suited for handling data sets with imbal-
anced class distributions.

5.2 Nearest-Neighbor classifiers

The classification framework shown in Figure 4.3 involves a two-step process:
(1) an inductive step for constructing a classification model from data, and
(2) a deductive step for applying the model to test examples. Decision tree
and rule-based classifiers are examples of eager learners because they are
designed to learn a model that maps the input attributes to the class label as
soon as the training data becomes available. An opposite strategy would be to
delay the process of modeling the training data until it is needed to classify the
test examples. Techniques that employ this strategy are known as lazy learn-
ers. An example of a lazy learner is the Rote classifier, which memorizes the
entire training data and performs classification only if the attributes of a test
instance match one of the training examples exactly. An obvious drawback of
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Figure 5.7. The 1-, 2-, and 3-nearest neighbors of an instance.

this approach is that some test records may not be classified because they do
not match any training example.

One way to make this approach more flexible is to find all the training
examples that are relatively similar to the attributes of the test example.
These examples, which are known as nearest neighbors, can be used to
determine the class label of the test example. The justification for using nearest
neighbors is best exemplified by the following saying: “If it walks like a duck,
quacks like a duck, and looks like a duck, then it’s probably a duck.” A nearest-
neighbor classifier represents each example as a data point in a d-dimensional
space, where d is the number of attributes. Given a test example, we compute
its proximity to the rest of the data points in the training set, using one of
the proximity measures described in Section 2.4 on page 65. The k-nearest
neighbors of a given example z refer to the k points that are closest to z.

Figure 5.7 illustrates the 1-, 2-; and 3-nearest neighbors of a data point
located at the center of each circle. The data point is classified based on
the class labels of its neighbors. In the case where the neighbors have more
than one label, the data point is assigned to the majority class of its nearest
neighbors. In Figure 5.7(a), the 1-nearest neighbor of the data point is a
negative example. Therefore the data point is assigned to the negative class.
If the number of nearest neighbors is three, as shown in Figure 5.7(c), then
the neighborhood contains two positive examples and one negative example.
Using the majority voting scheme, the data point is assigned to the positive
class. In the case where there is a tie between the classes (see Figure 5.7(b)),
we may randomly choose one of them to classify the data point.

The preceding discussion underscores the importance of choosing the right
value for k. If k is too small, then the nearest-neighbor classifier may be
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susceptible to overfitting because of noise in the training data. On the other
hand, if k£ is too large, the nearest-neighbor classifier may misclassify the test
instance because its list of nearest neighbors may include data points that are
located far away from its neighborhood (see Figure 5.8).

5.2.1 Algorithm

A high-level summary of the nearest-neighbor classification method is given in
Algorithm 5.2. The algorithm computes the distance (or similarity) between
each test example z = (x/,4') and all the training examples (x,y) € D to
determine its nearest-neighbor list, D,. Such computation can be costly if the
number of training examples is large. However, efficient indexing techniques
are available to reduce the amount of computations needed to find the nearest
neighbors of a test example.

Algorithm 5.2 The k-nearest neighbor classification algorithm.
: Let k be the number of nearest neighbors and D be the set of training examples.
: for each test example z = (x’,y’) do
Compute d(x’,x), the distance between z and every example, (x,y) € D.
Select D, C D, the set of k closest training examples to z.
y' = argmax Z(xhyi)eDZ I(v=1y;)
end for :

S ol
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Once the nearest-neighbor list is obtained, the test example is classified
based on the majority class of its nearest neighbors:

Majority Voting: 3’ = argmax Z I(v=1y;), (5.7)
v (XM/z')GDz

where v is a class label, y; is the class label for one of the nearest neighbors,
and I(-) is an indicator function that returns the value 1 if its argument is
true and 0 otherwise.

In the majority voting approach, every neighbor has the same impact on the
classification. This makes the algorithm sensitive to the choice of k, as shown
in Figure 5.7. One way to reduce the impact of k is to weight the influence
of each nearest neighbor x; according to its distance: w; = 1/d(x’,x;)%. As
a result, training examples that are located far away from z have a weaker
impact on the classification compared to those that are located close to z.
Using the distance-weighted voting scheme, the class label can be determined
as follows:

Distance-Weighted Voting: 1’ = argmax Z w; x I(v=1y;). (5.8)
v
(xi’yi)EDz

5.2.2 Characteristics of Nearest-Neighbor Classifiers
The characteristics of the nearest-neighbor classifier are summarized below:

e Nearest-neighbor classification is part of a more general technique known
as instance-based learning, which uses specific training instances to make
predictions without having to maintain an abstraction (or model) de-
rived from data. Instance-based learning algorithms require a proximity
measure to determine the similarity or distance between instances and a
classification function that returns the predicted class of a test instance
based on its proximity to other instances.

e Lazy learners such as nearest-neighbor classifiers do not require model
building. However, classifying a test example can be quite expensive
because we need to compute the proximity values individually between
the test and training examples. In contrast, eager learners often spend
the bulk of their computing resources for model building. Once a model
has been built, classifying a test example is extremely fast.

e Nearest-neighbor classifiers make their predictions based on local infor-
mation, whereas decision tree and rule-based classifiers attempt to find



5.3 Bayesian Classifiers 227

a global model that fits the entire input space. Because the classification
decisions are made locally, nearest-neighbor classifiers (with small values
of k) are quite susceptible to noise.

e Nearest-neighbor classifiers can produce arbitrarily shaped decision bound-
aries. Such boundaries provide a more flexible model representation
compared to decision tree and rule-based classifiers that are often con-
strained to rectilinear decision boundaries. The decision boundaries of
nearest-neighbor classifiers also have high variability because they de-
pend on the composition of training examples. Increasing the number of
nearest neighbors may reduce such variability.

e Nearest-neighbor classifiers can produce wrong predictions unless the
appropriate proximity measure and data preprocessing steps are taken.
For example, suppose we want to classify a group of people based on
attributes such as height (measured in meters) and weight (measured in
pounds). The height attribute has a low variability, ranging from 1.5 m
to 1.85 m, whereas the weight attribute may vary from 90 lb. to 250
Ib. If the scale of the attributes are not taken into consideration, the
proximity measure may be dominated by differences in the weights of a
person.

5.3 Bayesian Classifiers

In many applications the relationship between the attribute set and the class
variable is non-deterministic. In other words, the class label of a test record
cannot be predicted with certainty even though its attribute set is identical
to some of the training examples. This situation may arise because of noisy
data or the presence of certain confounding factors that affect classification
but are not included in the analysis. For example, consider the task of pre-
dicting whether a person is at risk for heart disease based on the person’s diet
and workout frequency. Although most people who eat healthily and exercise
regularly have less chance of developing heart disease, they may still do so be-
cause of other factors such as heredity, excessive smoking, and alcohol abuse.
Determining whether a person’s diet is healthy or the workout frequency is
sufficient is also subject to interpretation, which in turn may introduce uncer-
tainties into the learning problem.

This section presents an approach for modeling probabilistic relationships
between the attribute set and the class variable. The section begins with an
introduction to the Bayes theorem, a statistical principle for combining prior
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knowledge of the classes with new evidence gathered from data. The use of the
Bayes theorem for solving classification problems will be explained, followed
by a description of two implementations of Bayesian classifiers: naive Bayes
and the Bayesian belief network.

5.3.1 Bayes Theorem

Consider a football game between two rival teams: Team 0 and Team 1.
Suppose Team 0 wins 65% of the time and Team 1 wins the remaining
matches. Among the games won by Team 0, only 30% of them come
from playing on Team 1’s football field. On the other hand, 75% of the
victories for Team 1 are obtained while playing at home. If Team 1 is to
host the next match between the two teams, which team will most likely
emerge as the winner?

This question can be answered by using the well-known Bayes theorem. For
completeness, we begin with some basic definitions from probability theory.
Readers who are unfamiliar with concepts in probability may refer to Appendix
C for a brief review of this topic.

Let X and Y be a pair of random variables. Their joint probability, P(X =
x,Y = y), refers to the probability that variable X will take on the value
x and variable Y will take on the value y. A conditional probability is the
probability that a random variable will take on a particular value given that the
outcome for another random variable is known. For example, the conditional
probability P(Y = y|X = x) refers to the probability that the variable Y will
take on the value y, given that the variable X is observed to have the value x.
The joint and conditional probabilities for X and Y are related in the following
way:

P(X,)Y)=PY|X)x P(X)=P(X|Y) x P(Y). (5.9)

Rearranging the last two expressions in Equation 5.9 leads to the following
formula, known as the Bayes theorem:

PXY)P(Y)

PYIX) = =55

(5.10)

The Bayes theorem can be used to solve the prediction problem stated
at the beginning of this section. For notational convenience, let X be the
random variable that represents the team hosting the match and Y be the
random variable that represents the winner of the match. Both X and Y can
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take on values from the set {0,1}. We can summarize the information given
in the problem as follows:

Probability Team 0 wins is P(Y = 0) = 0.65.

Probability Team 1 wins is P(Y =1) =1— P(Y =0) = 0.35.

Probability Team 1 hosted the match it won is P(X = 1]Y = 1) = 0.75.
Probability Team 1 hosted the match won by Team 0 is P(X = 1|Y =0) = 0.3.

Our objective is to compute P(Y = 1|X = 1), which is the conditional
probability that Team 1 wins the next match it will be hosting, and compares
it against P(Y = 0|X = 1). Using the Bayes theorem, we obtain

P(X=1]Y =1) x P(Y = 1)
P(X =1)
P(X=1]Y =1) x P(Y = 1)
PX=1Y=1)+P(X=1Y=0)
P(X=1]Y =1) x P(Y = 1)

PY=1X=1) =

P(X=1Y =1)P(Y = 1)+ P(X = 1]Y = 0)P(Y =0)
0.75 x 0.35
0.75 x 0.35 + 0.3 x 0.65

= 0.5738,

where the law of total probability (see Equation C.5 on page 722) was applied
in the second line. Furthermore, P(Y =0/ X =1)=1-P(Y =1|X=1) =
0.4262. Since P(Y = 1|X = 1) > P(Y = 0|X = 1), Team 1 has a better
chance than Team 0 of winning the next match.

5.3.2 Using the Bayes Theorem for Classification

Before describing how the Bayes theorem can be used for classification, let
us formalize the classification problem from a statistical perspective. Let X
denote the attribute set and Y denote the class variable. If the class variable
has a non-deterministic relationship with the attributes, then we can treat
X and Y as random variables and capture their relationship probabilistically
using P(Y'|X). This conditional probability is also known as the posterior
probability for Y, as opposed to its prior probability, P(Y).

During the training phase, we need to learn the posterior probabilities
P(Y|X) for every combination of X and Y based on information gathered
from the training data. By knowing these probabilities, a test record X' can
be classified by finding the class Y’ that maximizes the posterior probability,
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P(Y'|X'). To illustrate this approach, consider the task of predicting whether
a loan borrower will default on their payments. Figure 5.9 shows a training
set with the following attributes: Home Owner, Marital Status, and Annual
Income. Loan borrowers who defaulted on their payments are classified as
Yes, while those who repaid their loans are classified as No.

N 0{\00\ .o\)o\{’
o ¢ c;'s@Q o°&\ 0\096
Tid Home Marital Annual Defaulted
Owner Status Income Borrower
1 Yes Single 125K No
2 No Married | 100K No
8 No Single 70K No
4 Yes Married | 120K No
5 No Divorced | 95K Yes
6 No Married | 60K No
7 Yes Divorced | 220K No
8 No Single 85K Yes
9 No Married | 75K No
10 | No Single 90K Yes

Figure 5.9. Training set for predicting the loan default problem.

Suppose we are given a test record with the following attribute set: X =
(Home Owner = No, Marital Status = Married, Annual Income = $120K). To
classify the record, we need to compute the posterior probabilities P(Yes|X)
and P(No|X) based on information available in the training data. If P(Yes|X) >
P(No|X), then the record is classified as Yes; otherwise, it is classified as No.

Estimating the posterior probabilities accurately for every possible combi-
nation of class label and attribute value is a difficult problem because it re-
quires a very large training set, even for a moderate number of attributes. The
Bayes theorem is useful because it allows us to express the posterior probabil-
ity in terms of the prior probability P(Y'), the class-conditional probability
P(X]Y), and the evidence, P(X):

P(X|Y) x P(Y)

P(Y|X) = )

(5.11)

When comparing the posterior probabilities for different values of Y, the de-
nominator term, P(X), is always constant, and thus, can be ignored. The
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prior probability P(Y') can be easily estimated from the training set by com-
puting the fraction of training records that belong to each class. To estimate
the class-conditional probabilities P(X|Y), we present two implementations of
Bayesian classification methods: the naive Bayes classifier and the Bayesian
belief network. These implementations are described in Sections 5.3.3 and
5.3.5, respectively.

5.3.3 Naive Bayes Classifier

A nalve Bayes classifier estimates the class-conditional probability by assuming
that the attributes are conditionally independent, given the class label y. The
conditional independence assumption can be formally stated as follows:

d
PX|Y =y) = [ P(XilY =), (5.12)

i=1
where each attribute set X = { X1, Xo,..., Xy} consists of d attributes.

Conditional Independence

Before delving into the details of how a naive Bayes classifier works, let us
examine the notion of conditional independence. Let X, Y, and Z denote
three sets of random variables. The variables in X are said to be conditionally
independent of Y, given Z, if the following condition holds:

P(X|Y,Z) = P(X|Z). (5.13)

An example of conditional independence is the relationship between a person’s
arm length and his or her reading skills. One might observe that people with
longer arms tend to have higher levels of reading skills. This relationship can
be explained by the presence of a confounding factor, which is age. A young
child tends to have short arms and lacks the reading skills of an adult. If the
age of a person is fixed, then the observed relationship between arm length
and reading skills disappears. Thus, we can conclude that arm length and
reading skills are conditionally independent when the age variable is fixed.
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The conditional independence between X and Y can also be written into
a form that looks similar to Equation 5.12:

P(X,Y,Z)
P(Z)
P(X,Y.Z) P(Y.Z)
P(Y,Z) P(Z)
= P(X|Y,Z) x P(Y|Z)
= P(X|Z) x P(Y|Z), (5.14)

P(X,Y|Z) =

where Equation 5.13 was used to obtain the last line of Equation 5.14.

How a Naive Bayes Classifier Works

With the conditional independence assumption, instead of computing the
class-conditional probability for every combination of X, we only have to esti-
mate the conditional probability of each X;, given Y. The latter approach is
more practical because it does not require a very large training set to obtain
a good estimate of the probability.

To classify a test record, the naive Bayes classifier computes the posterior
probability for each class Y:

POY) [T, P(XiY)
P(X)

P(Y|X) = (5.15)

Since P(X) is fixed for every Y, it is sufficient to choose the class that maxi-
mizes the numerator term, P(Y) H;‘i:1 P(X;|Y). In the next two subsections,
we describe several approaches for estimating the conditional probabilities
P(X;]Y) for categorical and continuous attributes.

Estimating Conditional Probabilities for Categorical Attributes

For a categorical attribute X;, the conditional probability P(X; = x;|Y = y)
is estimated according to the fraction of training instances in class y that take
on a particular attribute value x;. For example, in the training set given in
Figure 5.9, three out of the seven people who repaid their loans also own a
home. As a result, the conditional probability for P(Home Owner=Yes|No) is
equal to 3/7. Similarly, the conditional probability for defaulted borrowers
who are single is given by P(Marital Status = Single|Yes) = 2/3.
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Estimating Conditional Probabilities for Continuous Attributes

There are two ways to estimate the class-conditional probabilities for contin-
uous attributes in naive Bayes classifiers:

1. We can discretize each continuous attribute and then replace the con-
tinuous attribute value with its corresponding discrete interval. This
approach transforms the continuous attributes into ordinal attributes.
The conditional probability P(X;|Y = y) is estimated by computing
the fraction of training records belonging to class y that falls within the
corresponding interval for X;. The estimation error depends on the dis-
cretization strategy (as described in Section 2.3.6 on page 57), as well as
the number of discrete intervals. If the number of intervals is too large,
there are too few training records in each interval to provide a reliable
estimate for P(X;|Y). On the other hand, if the number of intervals
is too small, then some intervals may aggregate records from different
classes and we may miss the correct decision boundary.

2. We can assume a certain form of probability distribution for the contin-
uous variable and estimate the parameters of the distribution using the
training data. A Gaussian distribution is usually chosen to represent the
class-conditional probability for continuous attributes. The distribution
is characterized by two parameters, its mean, y, and variance, o2. For
each class y;, the class-conditional probability for attribute X; is

1 _(zi—l‘ij)z
o2,
P(X;=x|Y =y;) = Toma P I (5.16)
ij

The parameter p;; can be estimated based on the sample mean of X;
(z) for all training records that belong to the class y;. Similarly, O’,sz can
be estimated from the sample variance (s?) of such training records. For
example, consider the annual income attribute shown in Figure 5.9. The
sample mean and variance for this attribute with respect to the class No
are

1254+ 100+ 704+ ...+
- ) 00 ZO 75 110
2 2 2
o (125 - 110) +(100_71(é§)) to (1102

5 = V2975 = 54.54.
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Given a test record with taxable income equal to $120K, we can compute
its class-conditional probability as follows:

1 _ (120-110)2

P(Income=120|No) = ————exp 2x275 = (.0072.
V2 (54.54)

Note that the preceding interpretation of class-conditional probability
is somewhat misleading. The right-hand side of Equation 5.16 corre-
sponds to a probability density function, f(Xj;u;;,0i;). Since the
function is continuous, the probability that the random variable X; takes
a particular value is zero. Instead, we should compute the conditional
probability that X; lies within some interval, z; and z; + €, where € is a
small constant:

x;+e€
Pla; <X <zi+e€lY =y;) = / F( X pij, 045)dX;
z;

f@s; paj, 0i5) X €. (5.17)

Q

Since € appears as a constant multiplicative factor for each class, it
cancels out when we normalize the posterior probability for P(Y|X).
Therefore, we can still apply Equation 5.16 to approximate the class-
conditional probability P(X;|Y).

Example of the Naive Bayes Classifier

Consider the data set shown in Figure 5.10(a). We can compute the class-
conditional probability for each categorical attribute, along with the sample
mean and variance for the continuous attribute using the methodology de-
scribed in the previous subsections. These probabilities are summarized in
Figure 5.10(b).

To predict the class label of a test record X = (Home Owner=No, Marital
Status = Married, Income = $120K), we need to compute the posterior prob-
abilities P(No|X) and P(Yes|X). Recall from our earlier discussion that these
posterior probabilities can be estimated by computing the product between
the prior probability P(Y") and the class-conditional probabilities [, P(X;|Y),
which corresponds to the numerator of the right-hand side term in Equation
5.15.

The prior probabilities of each class can be estimated by calculating the
fraction of training records that belong to each class. Since there are three
records that belong to the class Yes and seven records that belong to the class



5.3 Bayesian Classifiers 235

P(Home Owner=Yes|No) = 3/7
P(Home Owner=No|No) = 4/7
Tid Home Marital Annual Defaulted P(Home Owner=Yes|Yes) =0
Owner Status Income Borrower PEHome OSwner=l\éo|Yes|) = )1 ,
; P(Marital Status=Single|No) = 2/7
1 |Yes |Single ) 125K | No P(Marital Status=Divorced|No) = 1/7
2 |No Married | 100K (No P(Marital Status=Married|No) = 4/7
& No Single 70K No P(Marital Status=Single|Yes) = 2/3
4 Yes Married 120K No P(Ma”tal StatUS=DiVorced|YeS) = 1/3
5 No Divorced | 95K Yes P(Marital Status=Married|Yes) = 0
6 No M.arried 60K No For Annual Income:
7 |Yes Divorced | 220K | No If class=No: sample mean=110
8 No Single 85K Yes sample variance=2975
9 No Married | 75K No If class=Yes: sample mefan=90
. sample variance=25
10 |No Single 90K Yes

(@) (b)

Figure 5.10. The naive Bayes classifier for the loan classification problem.

No, P(Yes) = 0.3 and P(No) = 0.7. Using the information provided in Figure
5.10(b), the class-conditional probabilities can be computed as follows:

P(X|No) = P(Home Owner = No|No) x P(Status = Married|No)
X P(Annual Income = $120K|No)
= 4/7 x 4/7 x 0.0072 = 0.0024.

P(X|Yes) = P(Home Owner = No|Yes) x P(Status = Married|Yes)
x P(Annual Income = $120K|Yes)
= 1x0x12x1077=0.

Putting them together, the posterior probability for class No is P(No|X) =
a x 7/10 x 0.0024 = 0.0016c, where o = 1/P(X) is a constant term. Using
a similar approach, we can show that the posterior probability for class Yes
is zero because its class-conditional probability is zero. Since P(No|X) >
P(Yes|X), the record is classified as No.
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M-estimate of Conditional Probability

The preceding example illustrates a potential problem with estimating poste-
rior probabilities from training data. If the class-conditional probability for
one of the attributes is zero, then the overall posterior probability for the class
vanishes. This approach of estimating class-conditional probabilities using
simple fractions may seem too brittle, especially when there are few training
examples available and the number of attributes is large.

In a more extreme case, if the training examples do not cover many of
the attribute values, we may not be able to classify some of the test records.
For example, if P(Marital Status = Divorced|No) is zero instead of 1/7,
then a record with attribute set X = (Home Owner = Yes, Marital Status =
Divorced, Income = $120K) has the following class-conditional probabilities:

P(X|No) = 3/7 x 0 x 0.0072 = 0.
P(X|Yes) =0x1/3x1.2x107? =0.

The naive Bayes classifier will not be able to classify the record. This prob-
lem can be addressed by using the m-estimate approach for estimating the
conditional probabilities:

Ne +mp

P($i|yj) = n+m

: (5.18)

where n is the total number of instances from class y;, n. is the number of
training examples from class y; that take on the value z;, m is a parameter
known as the equivalent sample size, and p is a user-specified parameter. If
there is no training set available (i.e., n = 0), then P(xz;|y;) = p. Therefore
p can be regarded as the prior probability of observing the attribute value
x; among records with class y;. The equivalent sample size determines the
tradeoff between the prior probability p and the observed probability n./n.

In the example given in the previous section, the conditional probability
P(Status = Married|Yes) = 0 because none of the training records for the
class has the particular attribute value. Using the m-estimate approach with
m = 3 and p = 1/3, the conditional probability is no longer zero:

P(Marital Status = Married|Yes) = (0+3x 1/3)/(3+43) =1/6.
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If we assume p = 1/3 for all attributes of class Yes and p = 2/3 for all
attributes of class No, then

P(X|No) = P(Home Owner = No|No) x P(Status = Married|No)
X P(Annual Income = $120K|No)
= 6/10 x 6/10 x 0.0072 = 0.0026.

P(X|Yes) = P(Home Owner = No|Yes) x P(Status = Married|Yes)
x P(Annual Income = $120K|Yes)
= 4/6x1/6x1.2x 107 =13 x1071%,

The posterior probability for class No is P(No|X) = a x 7/10 x 0.0026 =
0.0018c, while the posterior probability for class Yes is P(Yes|X) = a X
3/10 x 1.3 x 10710 = 4.0 x 10~ a. Although the classification decision has
not changed, the m-estimate approach generally provides a more robust way
for estimating probabilities when the number of training examples is small.

Characteristics of Naive Bayes Classifiers
Naive Bayes classifiers generally have the following characteristics:

e They are robust to isolated noise points because such points are averaged
out when estimating conditional probabilities from data. Naive Bayes
classifiers can also handle missing values by ignoring the example during
model building and classification.

e They are robust to irrelevant attributes. If X; is an irrelevant at-
tribute, then P(X;|Y’) becomes almost uniformly distributed. The class-
conditional probability for X; has no impact on the overall computation
of the posterior probability.

e Correlated attributes can degrade the performance of naive Bayes clas-
sifiers because the conditional independence assumption no longer holds
for such attributes. For example, consider the following probabilities:

P(A=0]Y =0) =04, P(A=1]Y =0)=0.6,

where A is a binary attribute and Y is a binary class variable. Suppose
there is another binary attribute B that is perfectly correlated with A



238 Chapter 5 Classification: Alternative Techniques

when Y = 0, but is independent of A when Y = 1. For simplicity,
assume that the class-conditional probabilities for B are the same as for
A. Given a record with attributes A = 0, B = 0, we can compute its
posterior probabilities as follows:

P(A=0]Y =0)P(B=0]Y =0)P(Y =0)
P(A=0,B=0)

0.16 x P(Y = 0)

P(A=0,B=0)

P —1A—0.5—0 — PAZOY=DPB=0Y =1)PE =1)

P(A=0,B=0)
. 036x P(Y =1)
~ P(A=0,B=0)

If P(Y =0) = P(Y = 1), then the naive Bayes classifier would assign
the record to class 1. However, the truth is,

P(A=0,B=0]Y =0) = P(A=0]Y =0) = 0.4,

because A and B are perfectly correlated when Y = 0. As a result, the
posterior probability for Y =0 is

P(A=0,B=0[Y =0)P(Y =0)
P(A=0,B=0)

0.4 x P(Y =0)

P(A=0,B=0)’

P(Y=0[A=0,B=0) =

which is larger than that for Y = 1. The record should have been
classified as class 0.

5.3.4 Bayes Error Rate

Suppose we know the true probability distribution that governs P(X|Y"). The
Bayesian classification method allows us to determine the ideal decision bound-
ary for the classification task, as illustrated in the following example.

Example 5.3. Consider the task of identifying alligators and crocodiles based
on their respective lengths. The average length of an adult crocodile is about 15
feet, while the average length of an adult alligator is about 12 feet. Assuming
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Alligator / \\ Crocodile

Length, x

Figure 5.11. Comparing the likelihood functions of a crocodile and an alligator.

that their length x follows a Gaussian distribution with a standard deviation
equal to 2 feet, we can express their class-conditional probabilities as follows:

1 1/X—15\7
P(X|Crocodile) = exp | — = (5.19)
or -2 2 2
1 1/X—12\?
P(X|Alligator) = exp | — = (5.20)
Vor -2 2 2

Figure 5.11 shows a comparison between the class-conditional probabilities
for a crocodile and an alligator. Assuming that their prior probabilities are
the same, the ideal decision boundary is located at some length & such that

P(X = #|Crocodile) = P(X = Z|Alligator).
Using Equations 5.19 and 5.20, we obtain
F-15\*  [&-12\°
2 B 2 ’

which can be solved to yield & = 13.5. The decision boundary for this example
is located halfway between the two means. =
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(a) (b) (c)

Figure 5.12. Representing probabilistic relationships using directed acyclic graphs.

When the prior probabilities are different, the decision boundary shifts
toward the class with lower prior probability (see Exercise 10 on page 319).
Furthermore, the minimum error rate attainable by any classifier on the given
data can also be computed. The ideal decision boundary in the preceding
example classifies all creatures whose lengths are less than & as alligators and
those whose lengths are greater than & as crocodiles. The error rate of the
classifier is given by the sum of the area under the posterior probability curve
for crocodiles (from length 0 to ) and the area under the posterior probability
curve for alligators (from Z to 00):

Error—/ P(Crocodile]X)dX—i—/ P(Alligator|X)dX.
0

&
The total error rate is known as the Bayes error rate.

5.3.5 Bayesian Belief Networks

The conditional independence assumption made by naive Bayes classifiers may
seem too rigid, especially for classification problems in which the attributes
are somewhat correlated. This section presents a more flexible approach for
modeling the class-conditional probabilities P(X|Y'). Instead of requiring all
the attributes to be conditionally independent given the class, this approach
allows us to specify which pair of attributes are conditionally independent.
We begin with a discussion on how to represent and build such a probabilistic
model, followed by an example of how to make inferences from the model.
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Model Representation

A Bayesian belief network (BBN), or simply, Bayesian network, provides a
graphical representation of the probabilistic relationships among a set of ran-
dom variables. There are two key elements of a Bayesian network:

1. A directed acyclic graph (dag) encoding the dependence relationships
among a set of variables.

2. A probability table associating each node to its immediate parent nodes.

Consider three random variables, A, B, and C, in which A and B are
independent variables and each has a direct influence on a third variable, C.
The relationships among the variables can be summarized into the directed
acyclic graph shown in Figure 5.12(a). Each node in the graph represents a
variable, and each arc asserts the dependence relationship between the pair
of variables. If there is a directed arc from X to Y, then X is the parent of
Y and Y is the child of X. Furthermore, if there is a directed path in the
network from X to Z, then X is an ancestor of Z, while Z is a descendant
of X. For example, in the diagram shown in Figure 5.12(b), A is a descendant
of D and D is an ancestor of B. Both B and D are also non-descendants of
A. An important property of the Bayesian network can be stated as follows:

Property 1 (Conditional Independence). A node in a Bayesian network
is conditionally independent of its non-descendants, if its parents are known.

In the diagram shown in Figure 5.12(b), A is conditionally independent of
both B and D given C' because the nodes for B and D are non-descendants
of node A. The conditional independence assumption made by a naive Bayes
classifier can also be represented using a Bayesian network, as shown in Figure
5.12(c), where y is the target class and { X7, Xo,..., Xy} is the attribute set.

Besides the conditional independence conditions imposed by the network
topology, each node is also associated with a probability table.

1. If a node X does not have any parents, then the table contains only the
prior probability P(X).

2. If a node X has only one parent, Y, then the table contains the condi-
tional probability P(X|Y).

3. If anode X has multiple parents, {Y7, Ya, ..., Yi}, then the table contains
the conditional probability P(X|Y7,Ya,..., Ys).
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E=Yes D=Healthy
0.7 0.25

Hb=Yes
EVes D=Healthy 0.2
D=Healthy D=Unhealthy 0.85
E=Yes
D=Unhealthy Heart
D=Healthy
E=No
D=Unhealthy CP=Yes
HD=Yes 0.8
Hb=Yes
HD=Yes
BP=High Blood Hb=No 06
HD=Yes| 0.85 Pressure HD=No | .,
HD=No 0.2 Hb=Yes )
HD=No
Hb=No 0.1

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

Figure 5.13 shows an example of a Bayesian network for modeling patients
with heart disease or heartburn problems. Each variable in the diagram is
assumed to be binary-valued. The parent nodes for heart disease (HD) cor-
respond to risk factors that may affect the disease, such as exercise (E) and
diet (D). The child nodes for heart disease correspond to symptoms of the
disease, such as chest pain (CP) and high blood pressure (BP). For example,
the diagram shows that heartburn (Hb) may result from an unhealthy diet
and may lead to chest pain.

The nodes associated with the risk factors contain only the prior proba-
bilities, whereas the nodes for heart disease, heartburn, and their correspond-
ing symptoms contain the conditional probabilities. To save space, some of
the probabilities have been omitted from the diagram. The omitted prob-
abilities can be recovered by noting that P(X = 7) = 1 — P(X = z) and
P(X =7|Y) =1—- P(X = z|Y), where T denotes the opposite outcome of x.
For example, the conditional probability

P(Heart Disease = No|Exercise = No,Diet = Healthy)
= 1— P(Heart Disease = Yes|Exercise = No,Diet = Healthy)
= 1—-0.55=0.45.
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Model Building

Model building in Bayesian networks involves two steps: (1) creating the struc-
ture of the network, and (2) estimating the probability values in the tables
associated with each node. The network topology can be obtained by encod-
ing the subjective knowledge of domain experts. Algorithm 5.3 presents a
systematic procedure for inducing the topology of a Bayesian network.

Algorithm 5.3 Algorithm for generating the topology of a Bayesian network.

1: Let T = (X1, Xo,...,X4) denote a total order of the variables.

2: for j =1toddo

3:  Let Xg(;) denote the 4" highest order variable in 7.

4: Let 7(Xp(;)) = {Xra), Xr@2),- - X1(j—1)} denote the set of variables preced-
ing XT(j)-

5. Remove the variables from 7(Xp(;)) that do not affect X; (using prior knowl-
edge).

6:  Create an arc between Xp(;) and the remaining variables in 7(X7p;)).
7: end for

Example 5.4. Consider the variables shown in Figure 5.13. After performing
Step 1, let us assume that the variables are ordered in the following way:
(E,D,HD,Hb,CP,BP). From Steps 2 to 7, starting with variable D, we
obtain the following conditional probabilities:

e P(D|E) is simplified to P(D).

P(HDI|E, D) cannot be simplified.

P(Hb|HD, E, D) is simplified to P(Hb|D).

P(CP|Hb,HD, E, D) is simplified to P(CP|Hb, HD).

P(BP|CP,Hb,HD, E, D) is simplified to P(BP|HD).

Based on these conditional probabilities, we can create arcs between the nodes
(E, HD), (D, HD), (D, Hb), (HD, CP), (Hb, CP), and (HD, BP). These

arcs result in the network structure shown in Figure 5.13. m

Algorithm 5.3 guarantees a topology that does not contain any cycles. The
proof for this is quite straightforward. If a cycle exists, then there must be at
least one arc connecting the lower-ordered nodes to the higher-ordered nodes,
and at least another arc connecting the higher-ordered nodes to the lower-
ordered nodes. Since Algorithm 5.3 prevents any arc from connecting the
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lower-ordered nodes to the higher-ordered nodes, there cannot be any cycles
in the topology.

Nevertheless, the network topology may change if we apply a different or-
dering scheme to the variables. Some topology may be inferior because it
produces many arcs connecting between different pairs of nodes. In principle,
we may have to examine all d! possible orderings to determine the most appro-
priate topology, a task that can be computationally expensive. An alternative
approach is to divide the variables into causal and effect variables, and then
draw the arcs from each causal variable to its corresponding effect variables.
This approach eases the task of building the Bayesian network structure.

Once the right topology has been found, the probability table associated
with each node is determined. Estimating such probabilities is fairly straight-
forward and is similar to the approach used by naive Bayes classifiers.

Example of Inferencing Using BBN

Suppose we are interested in using the BBN shown in Figure 5.13 to diagnose
whether a person has heart disease. The following cases illustrate how the
diagnosis can be made under different scenarios.

Case 1: No Prior Information

Without any prior information, we can determine whether the person is likely
to have heart disease by computing the prior probabilities P(HD = Yes) and
P(HD = No). To simplify the notation, let « € {Yes,No} denote the binary
values of Exercise and (3 € {Healthy, Unhealthy} denote the binary values
of Diet.

PHD=Yes) = Y > P(HD=Yes|E=a,D=B)P(E=a,D=0)
a B

= Y > P(HD=Yes|E =a,D=p)P(E=a)P(D=p)
a B

= 0.25x0.7x0.254+0.45 x 0.7 x 0.754+ 0.55 x 0.3 x 0.25
+ 0.75 x 0.3 x 0.75
= 0.49.

Since P(HD =no) = 1 — P(HD = yes) = 0.51, the person has a slightly higher
chance of not getting the disease.
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Case 2: High Blood Pressure

If the person has high blood pressure, we can make a diagnosis about heart
disease by comparing the posterior probabilities, P(HD = Yes|BP = High)
against P(HD = No|BP = High). To do this, we must compute P(BP = High):

P(BP =High) = Y P(BP =High|HD =~)P(HD = 7)
v
= 0.85x0.49+4 0.2 x 0.51 = 0.5185.

where v € {Yes, No}. Therefore, the posterior probability the person has heart
disease is

P(BP = High|HD = Yes)P(HD = Yes)
P(BP = High)
0.85 x 0.49

P(HD = Yes|BP = High) =

Similarly, P(HD = No|BP = High) = 1 — 0.8033 = 0.1967. Therefore, when a
person has high blood pressure, it increases the risk of heart disease.
Case 3: High Blood Pressure, Healthy Diet, and Regular Exercise

Suppose we are told that the person exercises regularly and eats a healthy diet.
How does the new information affect our diagnosis? With the new information,
the posterior probability that the person has heart disease is

P(HD = Yes|BP = High, D = Healthy, E/ = Yes)

P(BP = High|HD = Yes, D = Healthy, E/ = Yes)
P(BP = High|D = Healthy, F = Yes)

X P(HD = Yes|D = Healthy, E = Yes)

P(BP = High|HD = Yes)P(HD = Yes|D = Healthy, £ = Yes)
>, P(BP = High[HD = v)P(HD = 7|D = Healthy, I = Yes)

0.85 x 0.25
0.85x0.25+ 0.2 x 0.75

= 0.5862,

while the probability that the person does not have heart disease is

P(HD = No|BP = High, D = Healthy, F = Yes) = 1 — 0.5862 = 0.4138.
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The model therefore suggests that eating healthily and exercising regularly
may reduce a person’s risk of getting heart disease.

Characteristics of BBN

Following are some of the general characteristics of the BBN method:

1. BBN provides an approach for capturing the prior knowledge of a par-
ticular domain using a graphical model. The network can also be used
to encode causal dependencies among variables.

2. Constructing the network can be time consuming and requires a large
amount of effort. However, once the structure of the network has been
determined, adding a new variable is quite straightforward.

3. Bayesian networks are well suited to dealing with incomplete data. In-
stances with missing attributes can be handled by summing or integrat-
ing the probabilities over all possible values of the attribute.

4. Because the data is combined probabilistically with prior knowledge, the
method is quite robust to model overfitting.

5.4 Artificial Neural Network (ANN)

The study of artificial neural networks (ANN) was inspired by attempts to
simulate biological neural systems. The human brain consists primarily of
nerve cells called neurons, linked together with other neurons via strands
of fiber called axons. Axons are used to transmit nerve impulses from one
neuron to another whenever the neurons are stimulated. A neuron is connected
to the axons of other neurons via dendrites, which are extensions from the
cell body of the neuron. The contact point between a dendrite and an axon is
called a synapse. Neurologists have discovered that the human brain learns
by changing the strength of the synaptic connection between neurons upon
repeated stimulation by the same impulse.

Analogous to human brain structure, an ANN is composed of an inter-
connected assembly of nodes and directed links. In this section, we will exam-
ine a family of ANN models, starting with the simplest model called percep-
tron, and show how the models can be trained to solve classification problems.
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5.4.1 Perceptron

Consider the diagram shown in Figure 5.14. The table on the left shows a data
set containing three boolean variables (z1, x2, z3) and an output variable, y,
that takes on the value —1 if at least two of the three inputs are zero, and +1
if at least two of the inputs are greater than zero.

Xi | Xo | Xg y Input
] 0 = nodes
1o | 1] 1 Xy —>
1 1 0 1
1 1 1 1
X
00| 1]- 2 Y
0 1 0 |-
o | 1 | 1] 1 X3 o4
oo o0 |-1 t=0.
(a) Data set. (b) Perceptron.

Figure 5.14. Modeling a boolean function using a perceptron.

Figure 5.14(b) illustrates a simple neural network architecture known as a
perceptron. The perceptron consists of two types of nodes: input nodes, which
are used to represent the input attributes, and an output node, which is used
to represent the model output. The nodes in a neural network architecture
are commonly known as neurons or units. In a perceptron, each input node is
connected via a weighted link to the output node. The weighted link is used to
emulate the strength of synaptic connection between neurons. As in biological
neural systems, training a perceptron model amounts to adapting the weights
of the links until they fit the input-output relationships of the underlying data.

A perceptron computes its output value, ¢, by performing a weighted sum
on its inputs, subtracting a bias factor ¢ from the sum, and then examining
the sign of the result. The model shown in Figure 5.14(b) has three input
nodes, each of which has an identical weight of 0.3 to the output node and a
bias factor of t = 0.4. The output computed by the model is

1, if 0.3 0.3 0.3x3 — 0.4 > 0;
J = { 1 r1 + T9 + T3 (5‘21)

—1, if 0.3z7 +0.3z2 + 0.3z3 — 0.4 < 0.
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For example, if z1 = 1,290 = 1,23 = 0, then § = +1 because 0.3z + 0.3x2 +
0.3x3 — 0.4 is positive. On the other hand, if 1 = 0,20 = 1,23 = 0, then
17 = —1 because the weighted sum subtracted by the bias factor is negative.
Note the difference between the input and output nodes of a perceptron.
An input node simply transmits the value it receives to the outgoing link with-
out performing any transformation. The output node, on the other hand, is a
mathematical device that computes the weighted sum of its inputs, subtracts
the bias term, and then produces an output that depends on the sign of the
resulting sum. More specifically, the output of a perceptron model can be

expressed mathematically as follows:
y= sz’gn(wdxd + Wg_1Tg—1 + ...+ woxs +wix1 — t), (5.22)

where wy, ws, ..., wy are the weights of the input links and x1, xo, ..., x4 are
the input attribute values. The sign function, which acts as an activation
function for the output neuron, outputs a value +1 if its argument is positive
and —1 if its argument is negative. The perceptron model can be written in a
more compact form as follows:

§ = signwiry + wi—1Tq—1 + ... +wiT1 + Wero] = sign(w - x), (5.23)

where wg = —t, g = 1, and w-x is the dot product between the weight vector
w and the input attribute vector x.

Learning Perceptron Model

During the training phase of a perceptron model, the weight parameters w
are adjusted until the outputs of the perceptron become consistent with the
true outputs of training examples. A summary of the perceptron learning
algorithm is given in Algorithm 5.4.

The key computation for this algorithm is the weight update formula given
in Step 7 of the algorithm:

i 7 J

|
where w(®) is the weight parameter associated with the " input link after the
kth iteration, X is a parameter known as the learning rate, and x;j is the
value of the j* attribute of the training example x;. The justification for the
weight update formula is rather intuitive. Equation 5.24 shows that the new
weight w 1) is a combination of the old weight w*) and a term proportional



5.4  Artificial Neural Network (ANN) 249

Algorithm 5.4 Perceptron learning algorithm.
1: Let D = {(x4,y:) | i=1,2,..., N} be the set of training examples.
2: Initialize the weight vector with random values, w(®)
3: repeat
4:  for each training example (x;,y;) € D do

5 Compute the predicted output ;&gk)

6 for each weight w; do

7: Update the weight, w§k+1) = wj(-k) + )\(yi — g)fk))xij.
8 end for

9: end for

10: until stopping condition is met

to the prediction error, (y — g). If the prediction is correct, then the weight
remains unchanged. Otherwise, it is modified in the following ways:

e If y = +1 and § = —1, then the prediction error is (y — g) = 2. To
compensate for the error, we need to increase the value of the predicted
output by increasing the weights of all links with positive inputs and
decreasing the weights of all links with negative inputs.

e If y; = —1 and § = +1, then (y —y) = —2. To compensate for the error,
we need to decrease the value of the predicted output by decreasing the
weights of all links with positive inputs and increasing the weights of all
links with negative inputs.

In the weight update formula, links that contribute the most to the error term
are the ones that require the largest adjustment. However, the weights should
not be changed too drastically because the error term is computed only for
the current training example. Otherwise, the adjustments made in earlier
iterations will be undone. The learning rate A\, a parameter whose value is
between 0 and 1, can be used to control the amount of adjustments made in
each iteration. If X\ is close to 0, then the new weight is mostly influenced
by the value of the old weight. On the other hand, if A is close to 1, then
the new weight is sensitive to the amount of adjustment performed in the
current iteration. In some cases, an adaptive A value can be used; initially, A
is moderately large during the first few iterations and then gradually decreases
in subsequent iterations.

The perceptron model shown in Equation 5.23 is linear in its parameters
w and attributes x. Because of this, the decision boundary of a perceptron,
which is obtained by setting § = 0, is a linear hyperplane that separates the
data into two classes, —1 and +1. Figure 5.15 shows the decision boundary
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-1.5

15 -05 Xy

Figure 5.15. Perceptron decision boundary for the data given in Figure 5.14.

obtained by applying the perceptron learning algorithm to the data set given in
Figure 5.14. The perceptron learning algorithm is guaranteed to converge to an
optimal solution (as long as the learning rate is sufficiently small) for linearly
separable classification problems. If the problem is not linearly separable,
the algorithm fails to converge. Figure 5.16 shows an example of nonlinearly
separable data given by the XOR function. Perceptron cannot find the right
solution for this data because there is no linear hyperplane that can perfectly
separate the training instances.

15 T T T

10 + o .
Xy | Xo | Y
0 0 |— Xo 0.5) -
1 0
0|1
101 ]- Us o + 1

-0.5 1 1 1

-0.5 0 0.5 1 1.5

X4

Figure 5.16. XOR classification problem. No linear hyperplane can separate the two classes.
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5.4.2 Multilayer Artificial Neural Network

An artificial neural network has a more complex structure than that of a
perceptron model. The additional complexities may arise in a number of ways:

1. The network may contain several intermediary layers between its input
and output layers. Such intermediary layers are called hidden layers
and the nodes embedded in these layers are called hidden nodes. The
resulting structure is known as a multilayer neural network (see Fig-
ure 5.17). In a feed-forward neural network, the nodes in one layer

X4 Xo X3 X4 X5

Input
Layer

Hidden
Layer

Output
Layer

0
i

Figure 5.17. Example of a multilayer feed-forward artificial neural network (ANN).

are connected only to the nodes in the next layer. The perceptron is a
single-layer, feed-forward neural network because it has only one layer
of nodes—the output layer—that performs complex mathematical op-
erations. In a recurrent neural network, the links may connect nodes
within the same layer or nodes from one layer to the previous layers.

2. The network may use types of activation functions other than the sign
function. Examples of other activation functions include linear, sigmoid
(logistic), and hyperbolic tangent functions, as shown in Figure 5.18.
These activation functions allow the hidden and output nodes to produce
output values that are nonlinear in their input parameters.

These additional complexities allow multilayer neural networks to model
more complex relationships between the input and output variables. For ex-



252 Chapter 5 Classification: Alternative Techniques
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Figure 5.18. Types of activation functions in artificial neural networks.

ample, consider the XOR problem described in the previous section. The in-
stances can be classified using two hyperplanes that partition the input space
into their respective classes, as shown in Figure 5.19(a). Because a percep-
tron can create only one hyperplane, it cannot find the optimal solution. This
problem can be addressed using a two-layer, feed-forward neural network, as
shown in Figure 5.19(b). Intuitively, we can think of each hidden node as a
perceptron that tries to construct one of the two hyperplanes, while the out-
put node simply combines the results of the perceptrons to yield the decision
boundary shown in Figure 5.19(a).

To learn the weights of an ANN model, we need an efficient algorithm
that converges to the right solution when a sufficient amount of training data
is provided. Ome approach is to treat each hidden node or output node in
the network as an independent perceptron unit and to apply the same weight
update formula as Equation 5.24. Obviously, this approach will not work
because we lack a priori knowledge about the true outputs of the hidden
nodes. This makes it difficult to determine the error term, (y — ¢), associated
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(a) Decision boundary. (b) Neural network topology.

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.

with each hidden node. A methodology for learning the weights of a neural
network based on the gradient descent approach is presented next.

Learning the ANN Model

The goal of the ANN learning algorithm is to determine a set of weights w
that minimize the total sum of squared errors:

N

Bw) = 33— 0” (5.25)

=1

Note that the sum of squared errors depends on w because the predicted class
1 is a function of the weights assigned to the hidden and output nodes. Figure
5.20 shows an example of the error surface as a function of its two parameters,
wy and wsy. This type of error surface is typically encountered when g; is a
linear function of its parameters, w. If we replace § = w - x into Equation
5.25, then the error function becomes quadratic in its parameters and a global
minimum solution can be easily found.

In most cases, the output of an ANN is a nonlinear function of its param-
eters because of the choice of its activation functions (e.g., sigmoid or tanh
function). As a result, it is no longer straightforward to derive a solution for
w that is guaranteed to be globally optimal. Greedy algorithms such as those
based on the gradient descent method have been developed to efficiently solve
the optimization problem. The weight update formula used by the gradient
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Figure 5.20. Error surface E'(wy,ws) for a two-parameter model.

descent method can be written as follows:

OE(w)
8’LUj

Wy <—— Wy — A s (5.26)
where ) is the learning rate. The second term states that the weight should be
increased in a direction that reduces the overall error term. However, because
the error function is nonlinear, it is possible that the gradient descent method
may get trapped in a local minimum.

The gradient descent method can be used to learn the weights of the out-
put and hidden nodes of a neural network. For hidden nodes, the computation
is not trivial because it is difficult to assess their error term, 0E/0w;, without
knowing what their output values should be. A technique known as back-
propagation has been developed to address this problem. There are two
phases in each iteration of the algorithm: the forward phase and the backward
phase. During the forward phase, the weights obtained from the previous iter-
ation are used to compute the output value of each neuron in the network. The
computation progresses in the forward direction; i.e., outputs of the neurons
at level k are computed prior to computing the outputs at level £ + 1. Dur-
ing the backward phase, the weight update formula is applied in the reverse
direction. In other words, the weights at level k£ + 1 are updated before the
weights at level k are updated. This back-propagation approach allows us to
use the errors for neurons at layer k + 1 to estimate the errors for neurons at
layer k.
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Design Issues in ANN Learning

Before we train a neural network to learn a classification task, the following
design issues must be considered.

1.

The number of nodes in the input layer should be determined. Assign an
input node to each numerical or binary input variable. If the input vari-
able is categorical, we could either create one node for each categorical
value or encode the k-ary variable using [log, k] input nodes.

. The number of nodes in the output layer should be established. For

a two-class problem, it is sufficient to use a single output node. For a
k-class problem, there are k output nodes.

. The network topology (e.g., the number of hidden layers and hidden

nodes, and feed-forward or recurrent network architecture) must be se-
lected. Note that the target function representation depends on the
weights of the links, the number of hidden nodes and hidden layers, bi-
ases in the nodes, and type of activation function. Finding the right
topology is not an easy task. One way to do this is to start from a fully
connected network with a sufficiently large number of nodes and hid-
den layers, and then repeat the model-building procedure with a smaller
number of nodes. This approach can be very time consuming. Alter-
natively, instead of repeating the model-building procedure, we could
remove some of the nodes and repeat the model evaluation procedure to
select the right model complexity.

The weights and biases need to be initialized. Random assignments are
usually acceptable.

. Training examples with missing values should be removed or replaced

with most likely values.

5.4.3 Characteristics of ANN

Following is a summary of the general characteristics of an artificial neural
network:

1.

Multilayer neural networks with at least one hidden layer are univer-
sal approximators; i.e., they can be used to approximate any target
functions. Since an ANN has a very expressive hypothesis space, it is im-
portant to choose the appropriate network topology for a given problem
to avoid model overfitting.
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2. ANN can handle redundant features because the weights are automat-
ically learned during the training step. The weights for redundant fea-
tures tend to be very small.

3. Neural networks are quite sensitive to the presence of noise in the train-
ing data. One approach to handling noise is to use a validation set to
determine the generalization error of the model. Another approach is to
decrease the weight by some factor at each iteration.

4. The gradient descent method used for learning the weights of an ANN
often converges to some local minimum. One way to escape from the local
minimum is to add a momentum term to the weight update formula.

5. Training an ANN is a time consuming process, especially when the num-
ber of hidden nodes is large. Nevertheless, test examples can be classified
rapidly.

5.5 Support Vector Machine (SVM)

A classification technique that has received considerable attention is support
vector machine (SVM). This technique has its roots in statistical learning the-
ory and has shown promising empirical results in many practical applications,
from handwritten digit recognition to text categorization. SVM also works
very well with high-dimensional data and avoids the curse of dimensionality
problem. Another unique aspect of this approach is that it represents the deci-
sion boundary using a subset of the training examples, known as the support
vectors.

To illustrate the basic idea behind SVM, we first introduce the concept of
a maximal margin hyperplane and explain the rationale of choosing such
a hyperplane. We then describe how a linear SVM can be trained to explicitly
look for this type of hyperplane in linearly separable data. We conclude by
showing how the SVM methodology can be extended to non-linearly separable
data.

5.5.1 Maximum Margin Hyperplanes

Figure 5.21 shows a plot of a data set containing examples that belong to
two different classes, represented as squares and circles. The data set is also
linearly separable; i.e., we can find a hyperplane such that all the squares
reside on one side of the hyperplane and all the circles reside on the other
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Figure 5.21. Possible decision boundaries for a linearly separable data set.

side. However, as shown in Figure 5.21, there are infinitely many such hyper-
planes possible. Although their training errors are zero, there is no guarantee
that the hyperplanes will perform equally well on previously unseen examples.
The classifier must choose one of these hyperplanes to represent its decision
boundary, based on how well they are expected to perform on test examples.

To get a clearer picture of how the different choices of hyperplanes affect the
generalization errors, consider the two decision boundaries, B; and Bo, shown
in Figure 5.22. Both decision boundaries can separate the training examples
into their respective classes without committing any misclassification errors.
Each decision boundary B; is associated with a pair of hyperplanes, denoted
as b;; and b;e, respectively. b;; is obtained by moving a parallel hyperplane
away from the decision boundary until it touches the closest square(s), whereas
bi2 is obtained by moving the hyperplane until it touches the closest circle(s).
The distance between these two hyperplanes is known as the margin of the
classifier. From the diagram shown in Figure 5.22, notice that the margin for
B is considerably larger than that for By. In this example, By turns out to
be the maximum margin hyperplane of the training instances.

Rationale for Maximum Margin

Decision boundaries with large margins tend to have better generalization
errors than those with small margins. Intuitively, if the margin is small, then
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Figure 5.22. Margin of a decision boundary.

any slight perturbations to the decision boundary can have quite a significant
impact on its classification. Classifiers that produce decision boundaries with
small margins are therefore more susceptible to model overfitting and tend to
generalize poorly on previously unseen examples.

A more formal explanation relating the margin of a linear classifier to its
generalization error is given by a statistical learning principle known as struc-
tural risk minimization (SRM). This principle provides an upper bound to
the generalization error of a classifier (R) in terms of its training error (R.),
the number of training examples (IV), and the model complexity, otherwise
known as its capacity (h). More specifically, with a probability of 1 — 7, the
generalization error of the classifier can be at worst

hlog(n)
N N )

R§Re+cp< (5.27)

where ¢ is a monotone increasing function of the capacity h. The preced-
ing inequality may seem quite familiar to the readers because it resembles
the equation given in Section 4.4.4 (on page 179) for the minimum descrip-
tion length (MDL) principle. In this regard, SRM is another way to express
generalization error as a tradeoff between training error and model complexity.
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The capacity of a linear model is inversely related to its margin. Models
with small margins have higher capacities because they are more flexible and
can fit many training sets, unlike models with large margins. However, accord-
ing to the SRM principle, as the capacity increases, the generalization error
bound will also increase. Therefore, it is desirable to design linear classifiers
that maximize the margins of their decision boundaries in order to ensure that
their worst-case generalization errors are minimized. One such classifier is the
linear SVM, which is explained in the next section.

5.5.2 Linear SVM: Separable Case

A linear SVM is a classifier that searches for a hyperplane with the largest
margin, which is why it is often known as a maximal margin classifier. To
understand how SVM learns such a boundary, we begin with some preliminary
discussion about the decision boundary and margin of a linear classifier.

Linear Decision Boundary

Consider a binary classification problem consisting of N training examples.
Each example is denoted by a tuple (xj,y;) (1 = 1,2,...,N), where x; =
(241, T2, . . ., ;q)T corresponds to the attribute set for the i example. By
convention, let y; € {—1,1} denote its class label. The decision boundary of a
linear classifier can be written in the following form:

w-x+b=0, (5.28)

where w and b are parameters of the model.

Figure 5.23 shows a two-dimensional training set consisting of squares and
circles. A decision boundary that bisects the training examples into their
respective classes is illustrated with a solid line. Any example located along
the decision boundary must satisfy Equation 5.28. For example, if x, and x;
are two points located on the decision boundary, then

w- X, +b=0,
W'Xb—l-b:().

Subtracting the two equations will yield the following:

W (xp —Xq) =0,
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Figure 5.23. Decision boundary and margin of SVM.

where x; — x, is a vector parallel to the decision boundary and is directed
from x, to Xp. Since the dot product is zero, the direction for w must be
perpendicular to the decision boundary, as shown in Figure 5.23.

For any square x; located above the decision boundary, we can show that

w-Xs+b=kF, (5.29)

where k£ > 0. Similarly, for any circle x. located below the decision boundary,
we can show that
w-x.+b=F, (5.30)

where £’ < 0. If we label all the squares as class +1 and all the circles as
class —1, then we can predict the class label y for any test example z in the
following way:

(5.31)

1, ifw-z+b>0;
vy= —1, ifw-z+b<0.

Margin of a Linear Classifier

Consider the square and the circle that are closest to the decision boundary.
Since the square is located above the decision boundary, it must satisfy Equa-
tion 5.29 for some positive value k, whereas the circle must satisfy Equation
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5.30 for some negative value k’. We can rescale the parameters w and b of
the decision boundary so that the two parallel hyperplanes b;; and b;o can be
expressed as follows:

bi1: w-x+b=1, (532)
bio: W-x+b=—1. (5.33)

The margin of the decision boundary is given by the distance between these
two hyperplanes. To compute the margin, let x; be a data point located on
b;1 and xo be a data point on b;2, as shown in Figure 5.23. Upon substituting
these points into Equations 5.32 and 5.33, the margin d can be computed by
subtracting the second equation from the first equation:

W (x1 —X9) =2
i x d =2
2

L= (5.34)

Learning a Linear SVM Model

The training phase of SVM involves estimating the parameters w and b of the
decision boundary from the training data. The parameters must be chosen in
such a way that the following two conditions are met:

w-x;+b> 1ify; =1,
w-x;+b< —1ify; =—1. (5.35)

These conditions impose the requirements that all training instances from
class y = 1 (i.e., the squares) must be located on or above the hyperplane
w - x + b = 1, while those instances from class y = —1 (i.e., the circles) must
be located on or below the hyperplane w - x + b = —1. Both inequalities can
be summarized in a more compact form as follows:

yilw-x;+b)>1, i=1,2,...,N. (5.36)

Although the preceding conditions are also applicable to any linear classi-
fiers (including perceptrons), SVM imposes an additional requirement that the
margin of its decision boundary must be maximal. Maximizing the margin,
however, is equivalent to minimizing the following objective function:

_wl?

f(w) 5 (5.37)
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Definition 5.1 (Linear SVM: Separable Case). The learning task in SVM
can be formalized as the following constrained optimization problem:

]
w 2

subject to yilw-x;+b)>1, i=1,2,...,N.

Since the objective function is quadratic and the constraints are linear in
the parameters w and b, this is known as a convex optimization problem,
which can be solved using the standard Lagrange multiplier method. Fol-
lowing is a brief sketch of the main ideas for solving the optimization problem.
A more detailed discussion is given in Appendix E.

First, we must rewrite the objective function in a form that takes into
account the constraints imposed on its solutions. The new objective function
is known as the Lagrangian for the optimization problem:

N
1
Lp = 5\\w\\2 =Y\ (yi(w Xj4b) — 1), (5.38)
=1

where the parameters \; are called the Lagrange multipliers. The first term in
the Lagrangian is the same as the original objective function, while the second
term captures the inequality constraints. To understand why the objective
function must be modified, consider the original objective function given in
Equation 5.37. It is easy to show that the function is minimized when w = 0, a
null vector whose components are all zeros. Such a solution, however, violates
the constraints given in Definition 5.1 because there is no feasible solution
for b. The solutions for w and b are infeasible if they violate the inequality
constraints; i.e., if y;(w-x;+b)—1 < 0. The Lagrangian given in Equation 5.38
incorporates this constraint by subtracting the term from its original objective
function. Assuming that A\; > 0, it is clear that any infeasible solution may
only increase the value of the Lagrangian.

To minimize the Lagrangian, we must take the derivative of L p with respect
to w and b and set them to zero:

oL N
P _ _§ : P
—8 =0=w= 2 Azyzxza (5‘39)
N
oL,
5 0= ;1 yi =0 (5.40)
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Because the Lagrange multipliers are unknown, we still cannot solve for w and
b. If Definition 5.1 contains only equality instead of inequality constraints, then
we can use the N equations from equality constraints along with Equations
5.39 and 5.40 to find the feasible solutions for w, b, and );. Note that the
Lagrange multipliers for equality constraints are free parameters that can take
any values.

One way to handle the inequality constraints is to transform them into a
set, of equality constraints. This is possible as long as the Lagrange multipliers
are restricted to be non-negative. Such transformation leads to the following
constraints on the Lagrange multipliers, which are known as the Karush-Kuhn-
Tucker (KKT) conditions:

v

0, (5.41)

Ai
Ailyi(w - x; +b) — 1] = 0. (5.42)

At first glance, it may seem that there are as many Lagrange multipli-
ers as there are training instances. It turns out that many of the Lagrange
multipliers become zero after applying the constraint given in Equation 5.42.
The constraint states that the Lagrange multiplier \; must be zero unless the
training instance x; satisfies the equation y;(w - x; +b) = 1. Such training
instance, with A; > 0, lies along the hyperplanes b;; or b2 and is known as a
support vector. Training instances that do not reside along these hyperplanes
have A\; = 0. Equations 5.39 and 5.42 also suggest that the parameters w and
b, which define the decision boundary, depend only on the support vectors.

Solving the preceding optimization problem is still quite a daunting task
because it involves a large number of parameters: w, b, and \;. The problem
can be simplified by transforming the Lagrangian into a function of the La-
grange multipliers only (this is known as the dual problem). To do this, we
first substitute Equations 5.39 and 5.40 into Equation 5.38. This will lead to
the following dual formulation of the optimization problem:

N
1
LD = Z )\i — 5 Z )\i)\jyiiji - Xj- (543)
=1 ,J

The key differences between the dual and primary Lagrangians are as fol-
lows:

1. The dual Lagrangian involves only the Lagrange multipliers and the
training data, while the primary Lagrangian involves the Lagrange mul-
tipliers as well as parameters of the decision boundary. Nevertheless, the
solutions for both optimization problems are equivalent.
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2. The quadratic term in Equation 5.43 has a negative sign, which means
that the original minimization problem involving the primary Lagrangian,
Lp, has turned into a maximization problem involving the dual La-
grangian, Lp.

For large data sets, the dual optimization problem can be solved using
numerical techniques such as quadratic programming, a topic that is beyond
the scope of this book. Once the \;’s are found, we can use Equations 5.39
and 5.42 to obtain the feasible solutions for w and b. The decision boundary
can be expressed as follows:

N
(Z AiliX; - x) +b=0. (5.44)
=1

b is obtained by solving Equation 5.42 for the support vectors. Because the \;’s
are calculated numerically and can have numerical errors, the value computed
for b may not be unique. Instead it depends on the support vector used in
Equation 5.42. In practice, the average value for b is chosen to be the parameter
of the decision boundary.

Example 5.5. Consider the two-dimensional data set shown in Figure 5.24,
which contains eight training instances. Using quadratic programming, we can
solve the optimization problem stated in Equation 5.43 to obtain the Lagrange
multiplier \; for each training instance. The Lagrange multipliers are depicted
in the last column of the table. Notice that only the first two instances have
non-zero Lagrange multipliers. These instances correspond to the support
vectors for this data set.

Let w = (w1, w2) and b denote the parameters of the decision boundary.
Using Equation 5.39, we can solve for w; and ws in the following way:

w) = Z)\iyixil = 65.5621 x 1 x 0.3858 + 65.5621 x —1 x 0.4871 = —6.64.

(2

wy = Y Aithitiz = 65.5621 x 1 x 0.4687 + 65.5621 x —1 x 0.611 = —9.32.

7

The bias term b can be computed using Equation 5.42 for each support vector:

D = 1—w-x; =1—(—6.64)(0.3858) — (—9.32)(0.4687) = 7.9300.
b = —1—w-xy=—1—(—6.64)(0.4871) — (—9.32)(0.611) = 7.9289.

Averaging these values, we obtain b = 7.93. The decision boundary corre-
sponding to these parameters is shown in Figure 5.24. ]
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Lagrange
X1 X2 v Multiplier
0.3858 0.4687 1 65.5261
0.4871 0.611 -1 65.5261
0.9218 0.4103 -1 0
0.7382 0.8936 -1 0
0.1763 0.0579 1 0
0.4057 0.3529 1 0
0.9355 0.8132 -1 0
0.2146 0.0099 1 0
1 T T T T
0.9+ O -
-6.64 x1-9.32x,+7.93=0
0.8
0.7+
0.6
205
0.4
0.3+
0.2
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Figure 5.24. Example of a linearly separable data set.

Once the parameters of the decision boundary are found, a test instance z
is classified as follows:

N
f(z) = sign(w -z + b) = sign(Z \iviXi - Z + b).
=1

If f(z) = 1, then the test instance is classified as a positive class; otherwise, it
is classified as a negative class.
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5.5.3 Linear SVM: Nonseparable Case

Figure 5.25 shows a data set that is similar to Figure 5.22, except it has two
new examples, P and ). Although the decision boundary B; misclassifies the
new examples, while Bs classifies them correctly, this does not mean that Bs is
a better decision boundary than B; because the new examples may correspond
to noise in the training data. Bj should still be preferred over By because it
has a wider margin, and thus, is less susceptible to overfitting. However, the
SVM formulation presented in the previous section constructs only decision
boundaries that are mistake-free. This section examines how the formulation
can be modified to learn a decision boundary that is tolerable to small training
errors using a method known as the soft margin approach. More importantly,
the method presented in this section allows SVM to construct a linear decision
boundary even in situations where the classes are not linearly separable. To
do this, the learning algorithm in SVM must consider the trade-off between
the width of the margin and the number of training errors committed by the
linear decision boundary.

boy Bo boo
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Figure 5.25. Decision boundary of SVM for the nonseparable case.
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Figure 5.26. Slack variables for nonseparable data.

While the original objective function given in Equation 5.37 is still appli-
cable, the decision boundary Bj no longer satisfies all the constraints given
in Equation 5.36. The inequality constraints must therefore be relaxed to ac-
commodate the nonlinearly separable data. This can be done by introducing
positive-valued slack variables () into the constraints of the optimization
problem, as shown in the following equations:

w-xi+b>1-§ ity =1,
w-x;+b< —-1+4+¢& ify, =—1, (5.45)

where Vi : & > 0.

To interpret the meaning of the slack variables &;, consider the diagram
shown in Figure 5.26. The circle P is one of the instances that violates the
constraints given in Equation 5.35. Let w-x 4+ b = —1 + £ denote a line that
is parallel to the decision boundary and passes through the point P. It can be
shown that the distance between this line and the hyperplane w-x+ b= —1
is &/||lw||. Thus, £ provides an estimate of the error of the decision boundary
on the training example P.

In principle, we can apply the same objective function as before and impose
the conditions given in Equation 5.45 to find the decision boundary. However,



268 Chapter 5 Classification: Alternative Techniques

Figure 5.27. A decision boundary that has a wide margin but large training error.

since there are no constraints on the number of mistakes the decision boundary
can make, the learning algorithm may find a decision boundary with a very
wide margin but misclassifies many of the training examples, as shown in
Figure 5.27. To avoid this problem, the objective function must be modified
to penalize a decision boundary with large values of slack variables. The
modified objective function is given by the following equation:

[ N
Fow) = S+ 036",
=1

where C' and k are user-specified parameters representing the penalty of mis-
classifying the training instances. For the remainder of this section, we assume
k =1 to simplify the problem. The parameter C' can be chosen based on the
model’s performance on the validation set.

It follows that the Lagrangian for this constrained optimization problem
can be written as follows:

N N N
1
Lp=3Iwl?+C Y 6 =Y Auilw-xi+6) = 1+&} = > pi&, (5.46)
i=1 i=1 i=1

where the first two terms are the objective function to be minimized, the third
term represents the inequality constraints associated with the slack variables,
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and the last term is the result of the non-negativity requirements on the val-
ues of &’s. Furthermore, the inequality constraints can be transformed into
equality constraints using the following KKT conditions:

Aidyi(w-x; +b) =1+ &} =0, (5.48)
pi&i = 0. (5.49)

Note that the Lagrange multiplier \; given in Equation 5.48 is non-vanishing
only if the training instance resides along the lines w - x; + b = +1 or has
& > 0. On the other hand, the Lagrange multipliers u; given in Equation 5.49
are zero for any training instances that are misclassified (i.e., having & > 0).

Setting the first-order derivative of L with respect to w, b, and &; to zero
would result in the following equations:

oL al S

e =wj; — Z Aiyizij =0 = wj = Z AiYiij. (5'50)
J i=1 i=1

oL al Y

5= D Awi=0 => Ay =0, (5.51)

=1 i=1
oL
e = CNmm=0 = Ntu=C (5.52)

Substituting Equations 5.50, 5.51, and 5.52 into the Lagrangian will pro-
duce the following dual Lagrangian:

Lp = % Z AiNjyiyiXi - X + C Z &
Y] i
- Z )‘i{yi(z NjyiXi X5 +b) — 14§}
g J
- Z(C — A&
N Z 1
= DN 2 AN, (5.53)
i=1 i

which turns out to be identical to the dual Lagrangian for linearly separable
data (see Equation 5.40 on page 262). Nevertheless, the constraints imposed
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on the Lagrange multipliers \;’s are slightly different those in the linearly
separable case. In the linearly separable case, the Lagrange multipliers must
be non-negative, i.e., A\; > 0. On the other hand, Equation 5.52 suggests that
Ai should not exceed C' (since both p; and \; are non-negative). Therefore,
the Lagrange multipliers for nonlinearly separable data are restricted to 0 <
A< C.

The dual problem can then be solved numerically using quadratic pro-
gramming techniques to obtain the Lagrange multipliers );. These multipliers
can be replaced into Equation 5.50 and the KKT conditions to obtain the
parameters of the decision boundary.

5.5.4 Nonlinear SVM

The SVM formulations described in the previous sections construct a linear de-
cision boundary to separate the training examples into their respective classes.
This section presents a methodology for applying SVM to data sets that have
nonlinear decision boundaries. The trick here is to transform the data from its
original coordinate space in x into a new space ®(x) so that a linear decision
boundary can be used to separate the instances in the transformed space. Af-
ter doing the transformation, we can apply the methodology presented in the
previous sections to find a linear decision boundary in the transformed space.

Attribute Transformation

To illustrate how attribute transformation can lead to a linear decision bound-
ary, Figure 5.28(a) shows an example of a two-dimensional data set consisting
of squares (classified as y = 1) and circles (classified as y = —1). The data set
is generated in such a way that all the circles are clustered near the center of
the diagram and all the squares are distributed farther away from the center.
Instances of the data set can be classified using the following equation:

y(z1,2) = (5.54)

1 if /(21 — 0.5)2 + (22 — 0.5)2 > 0.2,
—1 otherwise.

The decision boundary for the data can therefore be written as follows:

V(z1 —0.5)2 + (22 — 0.5)2 = 0.2,
which can be further simplified into the following quadratic equation:

¥ — 1y + 22—z = —0.46.
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Figure 5.28. Classifying data with a nonlinear decision boundary.

A nonlinear transformation ® is needed to map the data from its original
feature space into a new space where the decision boundary becomes linear.
Suppose we choose the following transformation:

@ : (z1,20) — (22,23, V 221, V219, 1). (5.55)

In the transformed space, we can find the parameters w = (wg, wy, ..., wy)
such that:
w;;:c? + ngg + wa V21 + wiV2x9 + wo = 0.

For illustration purposes, let us plot the graph of 3 — x5 versus 23 — 7 for
the previously given instances. Figure 5.28(b) shows that in the transformed
space, all the circles are located in the lower right-hand side of the diagram. A
linear decision boundary can therefore be constructed to separate the instances
into their respective classes.

One potential problem with this approach is that it may suffer from the
curse of dimensionality problem often associated with high-dimensional data.
We will show how nonlinear SVM avoids this problem (using a method known
as the kernel trick) later in this section.

Learning a Nonlinear SVM Model

Although the attribute transformation approach seems promising, it raises
several implementation issues. First, it is not clear what type of mapping
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function should be used to ensure that a linear decision boundary can be
constructed in the transformed space. One possibility is to transform the data
into an infinite dimensional space, but such a high-dimensional space may not
be that easy to work with. Second, even if the appropriate mapping function is
known, solving the constrained optimization problem in the high-dimensional
feature space is a computationally expensive task.

To illustrate these issues and examine the ways they can be addressed, let
us assume that there is a suitable function, ®(x), to transform a given data
set. After the transformation, we need to construct a linear decision boundary
that will separate the instances into their respective classes. The linear decision
boundary in the transformed space has the following form: w - ®(x) + b = 0.

Definition 5.2 (Nonlinear SVM). The learning task for a nonlinear SVM
can be formalized as the following optimization problem:

]
w 2

subject to yi(w-®(x;)+b)>1, i=1,2,...,N.

Note the similarity between the learning task of a nonlinear SVM to that
of a linear SVM (see Definition 5.1 on page 262). The main difference is that,
instead of using the original attributes x, the learning task is performed on the
transformed attributes ®(x). Following the approach taken in Sections 5.5.2
and 5.5.3 for linear SVM, we may derive the following dual Lagrangian for the
constrained optimization problem:

= 1
Lp= Z Ai — 3 Z Aidjyiy P (x;) - P(x;5) (5.56)
i—1 i

Once the \;’s are found using quadratic programming techniques, the param-
eters w and b can be derived using the following equations:

W= Z Aii®(x;) (5.57)

Ai{yxz Ajyi®(x;) - B(x;) +b) — 1} =0, (5.58)
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which are analogous to Equations 5.39 and 5.40 for linear SVM. Finally, a test
instance z can be classified using the following equation:

f(z) = sign(w - ®(z) +b) = sz’gn(Z Niyi®(x;) - P(z) + b>. (5.59)

i=1

Except for Equation 5.57, note that the rest of the computations (Equa-
tions 5.58 and 5.59) involve calculating the dot product (i.e., similarity) be-
tween pairs of vectors in the transformed space, ®(x;) - ®(x;). Such computa-
tion can be quite cumbersome and may suffer from the curse of dimensionality
problem. A breakthrough solution to this problem comes in the form of a
method known as the kernel trick.

Kernel Trick

The dot product is often regarded as a measure of similarity between two
input vectors. For example, the cosine similarity described in Section 2.4.5
on page 73 can be defined as the dot product between two vectors that are
normalized to unit length. Analogously, the dot product ®(x;) - ®(x;) can also
be regarded as a measure of similarity between two instances, x; and x;, in
the transformed space.

The kernel trick is a method for computing similarity in the transformed
space using the original attribute set. Consider the mapping function ® given
in Equation 5.55. The dot product between two input vectors u and v in the
transformed space can be written as follows:

Q)(u) ’ Q)(V) = (’LL%, ’LL%, \/iuh \/5’&2, 1) ’ (’Ui U%a \/§U1> \/§U2a 1)
= wv? + udvd 4 2uiv + 2ugvy + 1
= (u-v+1)>2 (5.60)

This analysis shows that the dot product in the transformed space can be
expressed in terms of a similarity function in the original space:

K(u,v) = ®(u) - &(v) = (u-v+ 1) (5.61)

The similarity function, K, which is computed in the original attribute space,
is known as the kernel function. The kernel trick helps to address some
of the concerns about how to implement nonlinear SVM. First, we do not
have to know the exact form of the mapping function ® because the kernel
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functions used in nonlinear SVM must satisfy a mathematical principle known
as Mercer’s theorem. This principle ensures that the kernel functions can
always be expressed as the dot product between two input vectors in some
high-dimensional space. The transformed space of the SVM kernels is called
a reproducing kernel Hilbert space (RKHS). Second, computing the
dot products using kernel functions is considerably cheaper than using the
transformed attribute set ®(x). Third, since the computations are performed
in the original space, issues associated with the curse of dimensionality problem
can be avoided.

Figure 5.29 shows the nonlinear decision boundary obtained by SVM using
the polynomial kernel function given in Equation 5.61. A test instance x is
classified according to the following equation:

flz) = sign(d_ Nigi®(x;) - D(z) + b)

=1

= sign(>_ A\iyiK (xi,2z) +b)
i=1

= sign(z Nyi(%i -z + 1)% +b), (5.62)
i=1

where b is the parameter obtained using Equation 5.58. The decision boundary
obtained by nonlinear SVM is quite close to the true decision boundary shown
in Figure 5.28(a).

Mercer’s Theorem

The main requirement for the kernel function used in nonlinear SVM is that
there must exist a corresponding transformation such that the kernel function
computed for a pair of vectors is equivalent to the dot product between the
vectors in the transformed space. This requirement can be formally stated in
the form of Mercer’s theorem.

Theorem 5.1 (Mercer’s Theorem). A kernel function K can be expressed
as

K(u,v) = ®(u) - &(v)
if and only if, for any function g(z) such that [ g(x)*dz is finite, then

[ K@) 9(@) g(y) dody 0.
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Figure 5.29. Decision boundary produced by a nonlinear SVM with polynomial kernel.

Kernel functions that satisfy Theorem 5.1 are called positive definite kernel
functions. Examples of such functions are listed below:

K(x,y)=(x-y+1)? (5.63)
K(x,y) = ¢ Ix=¥l?/(20%) (5.64)
K(x,y) = tanh(kx -y — 0) (5.65)

Example 5.6. Consider the polynomial kernel function given in Equation
5.63. Let g(z) be a function that has a finite Ly norm, i.e., [ g(x)?dx < .

[y + 17gg(y)axdy

:/zp:Z

(p> (x-y)'g(x)g(y)dxdy

=0
- g(?) /m;? (OlleQ...) [(xlyl)al($2y2)a2($3y3)a3--~

g(x1,22,...) 9(y1,y2,...)dr1d2s . .. dindys . . .
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P ) )
1
- Z Z (f) <a1a2...) [/m?lx?---9(361,962,...)da:1dx2... .

1=0 a1,02,...

Because the result of the integration is non-negative, the polynomial kernel
function therefore satisfies Mercer’s theorem. =

5.5.5 Characteristics of SVM

SVM has many desirable qualities that make it one of the most widely used
classification algorithms. Following is a summary of the general characteristics
of SVM:

1. The SVM learning problem can be formulated as a convex optimization
problem, in which efficient algorithms are available to find the global
minimum of the objective function. Other classification methods, such
as rule-based classifiers and artificial neural networks, employ a greedy-
based strategy to search the hypothesis space. Such methods tend to
find only locally optimum solutions.

2. SVM performs capacity control by maximizing the margin of the decision
boundary. Nevertheless, the user must still provide other parameters
such as the type of kernel function to use and the cost function C for
introducing each slack variable.

3. SVM can be applied to categorical data by introducing dummy variables
for each categorical attribute value present in the data. For example, if
Marital Status has three values {Single, Married, Divorced}, we can
introduce a binary variable for each of the attribute values.

4. The SVM formulation presented in this chapter is for binary class prob-
lems. Some of the methods available to extend SVM to multiclass prob-
lems are presented in Section 5.8.

5.6 Ensemble Methods

The classification techniques we have seen so far in this chapter, with the ex-
ception of the nearest-neighbor method, predict the class labels of unknown
examples using a single classifier induced from training data. This section
presents techniques for improving classification accuracy by aggregating the
predictions of multiple classifiers. These techniques are known as the ensem-
ble or classifier combination methods. An ensemble method constructs a
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set of base classifiers from training data and performs classification by taking
a vote on the predictions made by each base classifier. This section explains
why ensemble methods tend to perform better than any single classifier and
presents techniques for constructing the classifier ensemble.

5.6.1 Rationale for Ensemble Method

The following example illustrates how an ensemble method can improve a
classifier’s performance.

Example 5.7. Consider an ensemble of twenty-five binary classifiers, each of
which has an error rate of € = 0.35. The ensemble classifier predicts the class
label of a test example by taking a majority vote on the predictions made
by the base classifiers. If the base classifiers are identical, then the ensemble
will misclassify the same examples predicted incorrectly by the base classifiers.
Thus, the error rate of the ensemble remains 0.35. On the other hand, if the
base classifiers are independent—i.e., their errors are uncorrelated—then the
ensemble makes a wrong prediction only if more than half of the base classifiers
predict incorrectly. In this case, the error rate of the ensemble classifier is

25
25\ . y
€ensemble = Z < . )61(1 - 6>25 t= 0067 (566)

! (3
=13

which is considerably lower than the error rate of the base classifiers. ]

Figure 5.30 shows the error rate of an ensemble of twenty-five binary clas-
sifiers (€epsemble) for different base classifier error rates (¢). The diagonal line
represents the case in which the base classifiers are identical, while the solid
line represents the case in which the base classifiers are independent. Observe
that the ensemble classifier performs worse than the base classifiers when e is
larger than 0.5.

The preceding example illustrates two necessary conditions for an ensem-
ble classifier to perform better than a single classifier: (1) the base classifiers
should be independent of each other, and (2) the base classifiers should do bet-
ter than a classifier that performs random guessing. In practice, it is difficult to
ensure total independence among the base classifiers. Nevertheless, improve-
ments in classification accuracies have been observed in ensemble methods in
which the base classifiers are slightly correlated.
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Figure 5.30. Comparison between errors of base classifiers and errors of the ensemble classifier.
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Figure 5.31. A logical view of the ensemble learning method.

5.6.2 Methods for Constructing an Ensemble Classifier

A logical view of the ensemble method is presented in Figure 5.31. The basic
idea is to construct multiple classifiers from the original data and then aggre-
gate their predictions when classifying unknown examples. The ensemble of
classifiers can be constructed in many ways:
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1. By manipulating the training set. In this approach, multiple train-
ing sets are created by resampling the original data according to some
sampling distribution. The sampling distribution determines how likely
it is that an example will be selected for training, and it may vary from
one trial to another. A classifier is then built from each training set using
a particular learning algorithm. Bagging and boosting are two exam-
ples of ensemble methods that manipulate their training sets. These
methods are described in further detail in Sections 5.6.4 and 5.6.5.

2. By manipulating the input features. In this approach, a subset
of input features is chosen to form each training set. The subset can
be either chosen randomly or based on the recommendation of domain
experts. Some studies have shown that this approach works very well
with data sets that contain highly redundant features. Random forest,
which is described in Section 5.6.6, is an ensemble method that manip-
ulates its input features and uses decision trees as its base classifiers.

3. By manipulating the class labels. This method can be used when the
number of classes is sufficiently large. The training data is transformed
into a binary class problem by randomly partitioning the class labels
into two disjoint subsets, Ag and A;. Training examples whose class
label belongs to the subset Ay are assigned to class 0, while those that
belong to the subset Ay are assigned to class 1. The relabeled examples
are then used to train a base classifier. By repeating the class-relabeling
and model-building steps multiple times, an ensemble of base classifiers
is obtained. When a test example is presented, each base classifier C; is
used to predict its class label. If the test example is predicted as class
0, then all the classes that belong to Ag will receive a vote. Conversely,
if it is predicted to be class 1, then all the classes that belong to A;
will receive a vote. The votes are tallied and the class that receives the
highest vote is assigned to the test example. An example of this approach
is the error-correcting output coding method described on page 307.

4. By manipulating the learning algorithm. Many learning algo-
rithms can be manipulated in such a way that applying the algorithm
several times on the same training data may result in different models.
For example, an artificial neural network can produce different mod-
els by changing its network topology or the initial weights of the links
between neurons. Similarly, an ensemble of decision trees can be con-
structed by injecting randomness into the tree-growing procedure. For
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example, instead of choosing the best splitting attribute at each node,
we can randomly choose one of the top k attributes for splitting.

The first three approaches are generic methods that are applicable to any
classifiers, whereas the fourth approach depends on the type of classifier used.
The base classifiers for most of these approaches can be generated sequentially
(one after another) or in parallel (all at once). Algorithm 5.5 shows the steps
needed to build an ensemble classifier in a sequential manner. The first step
is to create a training set from the original data D. Depending on the type
of ensemble method used, the training sets are either identical to or slight
modifications of D. The size of the training set is often kept the same as the
original data, but the distribution of examples may not be identical; i.e., some
examples may appear multiple times in the training set, while others may not
appear even once. A base classifier C; is then constructed from each training
set D;. Ensemble methods work better with unstable classifiers, i.e., base
classifiers that are sensitive to minor perturbations in the training set. FEx-
amples of unstable classifiers include decision trees, rule-based classifiers, and
artificial neural networks. As will be discussed in Section 5.6.3, the variability
among training examples is one of the primary sources of errors in a classifier.
By aggregating the base classifiers built from different training sets, this may
help to reduce such types of errors.

Finally, a test example x is classified by combining the predictions made
by the base classifiers Cj(x):

C*(x) = Vote(C1(x), Ca(x), . . ., Cr(x)).

The class can be obtained by taking a majority vote on the individual predic-
tions or by weighting each prediction with the accuracy of the base classifier.

Algorithm 5.5 General procedure for ensemble method.
1: Let D denote the original training data, k denote the number of base classifiers,
and T be the test data.
for i =1 to k do
Create training set, D; from D.
Build a base classifier C; from D;.
end for
for each test record z € T do
C*(z) = Vote(C1(x), Ca(x), . .., Cr(x))
end for
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5.6.3 Bias-Variance Decomposition

Bias-variance decomposition is a formal method for analyzing the prediction
error of a predictive model. The following example gives an intuitive explana-
tion for this method.

Figure 5.32 shows the trajectories of a projectile launched at a particular
angle. Suppose the projectile hits the floor surface at some location z, at a
distance d away from the target position . Depending on the force applied
to the projectile, the observed distance may vary from one trial to another.
The observed distance can be decomposed into several components. The first
component, which is known as bias, measures the average distance between
the target position and the location where the projectile hits the floor. The
amount of bias depends on the angle of the projectile launcher. The second
component, which is known as variance, measures the deviation between x
and the average position T where the projectile hits the floor. The variance
can be explained as a result of changes in the amount of force applied to the
projectile. Finally, if the target is not stationary, then the observed distance
is also affected by changes in the location of the target. This is considered the
noise component associated with variability in the target position. Putting
these components together, the average distance can be expressed as:

dso(y,t) = Biasg + Variances + Noisey, (5.67)

where f refers to the amount of force applied and @ is the angle of the launcher.

The task of predicting the class label of a given example can be analyzed
using the same approach. For a given classifier, some predictions may turn out
to be correct, while others may be completely off the mark. We can decompose
the expected error of a classifier as a sum of the three terms given in Equation
5.67, where expected error is the probability that the classifier misclassifies a

Target, t
% >
«—> <> y
‘Variance’ ‘Noise’
——

Figure 5.32. Bias-variance decomposition.
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given example. The remainder of this section examines the meaning of bias,
variance, and noise in the context of classification.

A classifier is usually trained to minimize its training error. However, to
be useful, the classifier must be able to make an informed guess about the
class labels of examples it has never seen before. This requires the classifier to
generalize its decision boundary to regions where there are no training exam-
ples available—a decision that depends on the design choice of the classifier.
For example, a key design issue in decision tree induction is the amount of
pruning needed to obtain a tree with low expected error. Figure 5.33 shows
two decision trees, 71 and 715, that are generated from the same training data,
but have different complexities. T5 is obtained by pruning 7} until a tree with
maximum depth of two is obtained. 77, on the other hand, performs very little
pruning on its decision tree. These design choices will introduce a bias into
the classifier that is analogous to the bias of the projectile launcher described
in the previous example. In general, the stronger the assumptions made by
a classifier about the nature of its decision boundary, the larger the classi-
fier’s bias will be. T5 therefore has a larger bias because it makes stronger
assumptions about its decision boundary (which is reflected by the size of the
tree) compared to Tj. Other design choices that may introduce a bias into a
classifier include the network topology of an artificial neural network and the
number of neighbors considered by a nearest-neighbor classifier.

The expected error of a classifier is also affected by variability in the train-
ing data because different compositions of the training set may lead to differ-
ent decision boundaries. This is analogous to the variance in x when different
amounts of force are applied to the projectile. The last component of the ex-
pected error is associated with the intrinsic noise in the target class. The target
class for some domains can be non-deterministic; i.e., instances with the same
attribute values can have different class labels. Such errors are unavoidable
even when the true decision boundary is known.

The amount of bias and variance contributing to the expected error depend
on the type of classifier used. Figure 5.34 compares the decision boundaries
produced by a decision tree and a l-nearest neighbor classifier. For each
classifier, we plot the decision boundary obtained by “averaging” the models
induced from 100 training sets, each containing 100 examples. The true deci-
sion boundary from which the data is generated is also plotted using a dashed
line. The difference between the true decision boundary and the “averaged”
decision boundary reflects the bias of the classifier. After averaging the mod-
els, observe that the difference between the true decision boundary and the
decision boundary produced by the 1-nearest neighbor classifier is smaller than
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Figure 5.33. Two decision trees with different complexities induced from the same training data.

the observed difference for a decision tree classifier. This result suggests that
the bias of a 1-nearest neighbor classifier is lower than the bias of a decision
tree classifier.

On the other hand, the 1-nearest neighbor classifier is more sensitive to
the composition of its training examples. If we examine the models induced
from different training sets, there is more variability in the decision boundary
of a 1-nearest neighbor classifier than a decision tree classifier. Therefore, the
decision boundary of a decision tree classifier has a lower variance than the
1-nearest neighbor classifier.

5.6.4 Bagging

Bagging, which is also known as bootstrap aggregating, is a technique that
repeatedly samples (with replacement) from a data set according to a uniform
probability distribution. Each bootstrap sample has the same size as the origi-
nal data. Because the sampling is done with replacement, some instances may
appear several times in the same training set, while others may be omitted
from the training set. On average, a bootstrap sample D; contains approxi-
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Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.

Algorithm 5.6 Bagging algorithm.
: Let k be the number of bootstrap samples.
: fori=1to k do
Create a bootstrap sample of size N, D;.
Train a base classifier C; on the bootstrap sample D;.
end for

: C*(x) = argznax > 6(Ci(x) = y).

{6(-) = 1 if its argument is true and 0 otherwise}.

mately 63% of the original training data because each sample has a probability
1 — (1 = 1/N)N of being selected in each D;. If N is sufficiently large, this
probability converges to 1 — 1/e ~ 0.632. The basic procedure for bagging is
summarized in Algorithm 5.6. After training the k classifiers, a test instance
is assigned to the class that receives the highest number of votes.

To illustrate how bagging works, consider the data set shown in Table 5.4.
Let x denote a one-dimensional attribute and y denote the class label. Suppose
we apply a classifier that induces only one-level binary decision trees, with a
test condition x < k, where k is a split point chosen to minimize the entropy
of the leaf nodes. Such a tree is also known as a decision stump.

Without bagging, the best decision stump we can produce splits the records
at either z < 0.35 or z < 0.75. Either way, the accuracy of the tree is at

30
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Table 5.4. Example of data set used to construct an ensemble of bagging classifiers.

z101(02103]04|05|06]07]08|09]1
y| 1 1 1 | -1|-1}-1]-1| 1 1 ]1

most 70%. Suppose we apply the bagging procedure on the data set using
ten bootstrap samples. The examples chosen for training in each bagging
round are shown in Figure 5.35. On the right-hand side of each table, we also
illustrate the decision boundary produced by the classifier.

We classify the entire data set given in Table 5.4 by taking a majority
vote among the predictions made by each base classifier. The results of the
predictions are shown in Figure 5.36. Since the class labels are either —1 or
+1, taking the majority vote is equivalent to summing up the predicted values
of y and examining the sign of the resulting sum (refer to the second to last
row in Figure 5.36). Notice that the ensemble classifier perfectly classifies all
ten examples in the original data.

The preceding example illustrates another advantage of using ensemble
methods in terms of enhancing the representation of the target function. Even
though each base classifier is a decision stump, combining the classifiers can
lead to a decision tree of depth 2.

Bagging improves generalization error by reducing the variance of the base
classifiers. The performance of bagging depends on the stability of the base
classifier. If a base classifier is unstable, bagging helps to reduce the errors
associated with random fluctuations in the training data. If a base classifier
is stable, i.e., robust to minor perturbations in the training set, then the
error of the ensemble is primarily caused by bias in the base classifier. In
this situation, bagging may not be able to improve the performance of the
base classifiers significantly. It may even degrade the classifier’s performance
because the effective size of each training set is about 37% smaller than the
original data.

Finally, since every sample has an equal probability of being selected, bag-
ging does not focus on any particular instance of the training data. It is
therefore less susceptible to model overfitting when applied to noisy data.

5.6.5 Boosting

Boosting is an iterative procedure used to adaptively change the distribution
of training examples so that the base classifiers will focus on examples that
are hard to classify. Unlike bagging, boosting assigns a weight to each training
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example and may adaptively change the weight at the end of each boosting
round. The weights assigned to the training examples can be used in the

Chapter 5

Bagging Round 1:

Classification: Alternative Techniques

X 01 /02| 02| 03| 04|04 |05)|06 | 09|09

y 1 1 1 1 -1 -1 -1 -1 1 1
Bagging Round 2:

X 01 |02 | 03| 04| 05| 08| 09 1 1 1

y 1 1 1 -1 -1 1 1 1 1 1
Bagging Round 3:

X 01 /02|03 | 04| 04| 05|07 |07 ]| 08|09

y 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 4:

X 01 /01|02 | 04| 04| 05|05 )07 ]| 08|09

y 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 5:

X 01 01|02 | 05| 06 | 06 | 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1
Bagging Round 6:

X 02 | 04 | 05| 06| 07| 07 |07 | 08 09 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 7:

X 01 |04 |04 | 06| 07| 08|09 |09 | 09 1

y 1 -1 -1 -1 -1 1 1 1 1 1
Bagging Round 8:

X 0102 | 05| 05| 05|07 |07 |08 09 1

y 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 9:

X 01 /03 |04 | 04| 06| 07 ] 07|08 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 10:

X 01 | 01 | 01 | 041 03 | 03 |08 | 08 | 09 | 09

y 1 1 1 1 1 1 1 1 1 1

following ways:

1.

They can be used as a sampling distribution to draw a set of bootstrap

Figure 5.35. Example of bagging.

samples from the original data.

toward higher-weight examples.

Xx<=035==>y=1
X>0.35==>y=-1

X<=065==>y=1
x>0.65==>y=1

X<=0.35==>y=1
x>035==>y=-1

X<=03==>y=1
X>03==>y=-1

X<=035==>y=1
x>0.35==>y=-1

X<=0.75==>y="-1
X>075==>y=1

X<=0.75==>y=-1
X>075==>y=1

X<=0.75==>y=-1
x>075==>y=1

X<=0.75==>y=-1
Xx>075==>y=1

X <=0.05==>y=-1
x>005==>y=1

. They can be used by the base classifier to learn a model that is biased
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Round x=0.1 [ x=0.2 | x=0.3 | x=0.4 | x=0.5 | x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0
1 1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1
4 1 1 1 -1 -1 -1 -1 -1 -1 -1
5 1 1 1 -1 -1 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 -1 -1 -1 1 1 1
7 -1 -1 -1 -1 -1 -1 -1 1 1 1
8 -1 -1 -1 -1 -1 -1 -1 1 1 1
9 -1 -1 -1 -1 -1 -1 -1 1 1 1
10 1 1 1 1 1 1 1 1 1 1
Sum 2 2 2 -6 -6 -6 -6 2 2 2
Sign 1 1 1 -1 -1 -1 -1 1 1 1
True Class 1 1 1 -1 -1 -1 -1 1 1 1

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

This section describes an algorithm that uses weights of examples to de-
termine the sampling distribution of its training set. Initially, the examples
are assigned equal weights, 1/N, so that they are equally likely to be chosen
for training. A sample is drawn according to the sampling distribution of the
training examples to obtain a new training set. Next, a classifier is induced
from the training set and used to classify all the examples in the original data.
The weights of the training examples are updated at the end of each boost-
ing round. Examples that are classified incorrectly will have their weights
increased, while those that are classified correctly will have their weights de-
creased. This forces the classifier to focus on examples that are difficult to
classify in subsequent iterations.

The following table shows the examples chosen during each boosting round.

Boosting (Round 1): 713128 |7/9]4|10]6|3
Boosting (Round 2): 50419141125 71412
Boosting (Round 3): 414181014 |5(4]6 |34

—_

Initially, all the examples are assigned the same weights. However, some ex-
amples may be chosen more than once, e.g., examples 3 and 7, because the
sampling is done with replacement. A classifier built from the data is then
used to classify all the examples. Suppose example 4 is difficult to classify.
The weight for this example will be increased in future iterations as it gets
misclassified repeatedly. Meanwhile, examples that were not chosen in the pre-
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vious round, e.g., examples 1 and 5, also have a better chance of being selected
in the next round since their predictions in the previous round were likely to
be wrong. As the boosting rounds proceed, examples that are the hardest to
classify tend to become even more prevalent. The final ensemble is obtained
by aggregating the base classifiers obtained from each boosting round.

Over the years, several implementations of the boosting algorithm have
been developed. These algorithms differ in terms of (1) how the weights of
the training examples are updated at the end of each boosting round, and (2)
how the predictions made by each classifier are combined. An implementation
called AdaBoost is explored in the next section.

AdaBoost

Let {(xj,y5) | 7 = 1,2,..., N} denote a set of N training examples. In the
AdaBoost algorithm, the importance of a base classifier C; depends on its error
rate, which is defined as

€ = %LZNIWJ‘ I(Ci(xj) # yyﬂ (5.68)

where I(p) = 1 if the predicate p is true, and 0 otherwise. The importance of
a classifier C; is given by the following parameter,

11 1—¢
i = = 1In .
i 2 €;

Note that «; has a large positive value if the error rate is close to 0 and a large
negative value if the error rate is close to 1, as shown in Figure 5.37.

The «; parameter is also used to update the weight of the training ex-
amples. To illustrate, let wl(] ) denote the weight assigned to example (x;, ;)
during the j** boosting round. The weight update mechanism for AdaBoost

is given by the equation:

Wit = %

exp~ % if Ci(x3) = y;
x o i) = v : (5.69)
exp® if Cj(xi) # i
where Z; is the normalization factor used to ensure that ), wz(j ) = 1. The
weight update formula given in Equation 5.69 increases the weights of incor-
rectly classified examples and decreases the weights of those classified correctly.
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Figure 5.37. Plot of « as a function of training error e.

Instead of using a majority voting scheme, the prediction made by each
classifier C; is weighted according to a;. This approach allows AdaBoost to
penalize models that have poor accuracy, e.g., those generated at the earlier
boosting rounds. In addition, if any intermediate rounds produce an error
rate higher than 50%, the weights are reverted back to their original uniform
values, w; = 1/N, and the resampling procedure is repeated. The AdaBoost
algorithm is summarized in Algorithm 5.7.

Let us examine how the boosting approach works on the data set shown
in Table 5.4. Initially, all the examples have identical weights. After three
boosting rounds, the examples chosen for training are shown in Figure 5.38(a).
The weights for each example are updated at the end of each boosting round
using Equation 5.69.

Without boosting, the accuracy of the decision stump is, at best, 70%.
With AdaBoost, the results of the predictions are given in Figure 5.39(b).
The final prediction of the ensemble classifier is obtained by taking a weighted
average of the predictions made by each base classifier, which is shown in the
last row of Figure 5.39(b). Notice that AdaBoost perfectly classifies all the
examples in the training data.

An important analytical result of boosting shows that the training error of
the ensemble is bounded by the following expression:

€ensemble < 1:[ [\/ﬁ], (5.70)
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Algorithm 5.7 AdaBoost algorithm.
1:w={w;=1/N|j=1,2,...,N}. {Initialize the weights for all N examples.}
2: Let k be the number of boosting rounds.
3: for i =1 to k do
4:  Create training set D; by sampling (with replacement) from D according to w.

5:  Train a base classifier C; on D;.

6:  Apply C; to all examples in the original training set, D.

T 6= [Z] w; 6(Ci(z;) #y;)] {Calculate the weighted error.}

8: if ¢, > 0.5 then

9: w={w;=1/N|j=1,2,...,N}. {Reset the weights for all N examples.}
10: Go back to Step 4.
11:  end if

120 ;= Lilnl=e,
? 2 €4
13:  Update the weight of each example according to Equation 5.69.
14: end for
N T
15: C*(x) = argmax ) ;_; a;0(Cj(x) = Y)).
Yy

where ¢; is the error rate of each base classifier 7. If the error rate of the base
classifier is less than 50%, we can write ¢; = 0.5 — ~y;, where ~; measures how
much better the classifier is than random guessing. The bound on the training
error of the ensemble becomes

€ensemble < H \/ 1-— 4712 < exp < — 22’73) . (571)

If v < % for all i’s, then the training error of the ensemble decreases expo-
nentially, which leads to the fast convergence of the algorithm. Nevertheless,
because of its tendency to focus on training examples that are wrongly classi-
fied, the boosting technique can be quite susceptible to overfitting.

5.6.6 Random Forests

Random forest is a class of ensemble methods specifically designed for decision
tree classifiers. It combines the predictions made by multiple decision trees,
where each tree is generated based on the values of an independent set of
random vectors, as shown in Figure 5.40. The random vectors are generated
from a fixed probability distribution, unlike the adaptive approach used in
AdaBoost, where the probability distribution is varied to focus on examples
that are hard to classify. Bagging using decision trees is a special case of
random forests, where randomness is injected into the model-building process
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Boosting Round 1:
X 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1
y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

X 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3
y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:
X 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7
y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

(a) Training records chosen during boosting

Round |[x=0.1 [x=0.2 | x=0.3 |x=0.4 |x=0.5 [x=0.6 |x=0.7 |x=0.8 |x=0.9 |x=1.0
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 |0.311 [0.311 | 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.029 |0.029 [0.029 |0.228 |0.228 |0.228 |0.228 | 0.009 |0.009 |0.009

(b) Weights of training records

Figure 5.38. Example of boosting.

by randomly choosing N samples, with replacement, from the original training
set. Bagging also uses the same uniform probability distribution to generate
its bootstrapped samples throughout the entire model-building process.

It was theoretically proven that the upper bound for generalization error
of random forests converges to the following expression, when the number of
trees is sufficiently large.

p(l—s?)

Generalization error < 5 ,
S

(5.72)
where p is the average correlation among the trees and s is a quantity that
measures the “strength” of the tree classifiers. The strength of a set of classi-
fiers refers to the average performance of the classifiers, where performance is
measured probabilistically in terms of the classifier’s margin:

A~

margin, M (X,Y) = P(Yp =Y) — max P(Yy = 2), (5.73)

where Yy is the predicted class of X according to a classifier built from some
random vector #. The higher the margin is, the more likely it is that the
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Round |Split Point | Left Class |Right Class o
1 0.75 -1 1 1.738
2 0.05 1 1 2.7784
3 0.3 1 -1 4.1195

Round |x=0.1 | x=0.2 | x=0.3 | x=0.4 | x=0.5 | x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0
1 -1 -1 -1 -1 -1 B R 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 | 5.16 | 5.16 | -3.08 | -3.08 | -3.08 | -3.08 | 0.397 |0.397 | 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1

Figure 5.39. Example of combining classifiers constructed using the AdaBoost approach.

_ Step 1:
Randomize}  Create random

vectors

Original
Training data

Use random
vector to
build multiple
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v
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T

— - -
R

Step 3:
Combine
decision trees

Figure 5.40. Random forests.

classifier correctly predicts a given example X. Equation 5.72 is quite intuitive;
as the trees become more correlated or the strength of the ensemble decreases,
the generalization error bound tends to increase. Randomization helps to

reduce the correlation among decision trees so that the generalization error of
the ensemble can be improved.
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Each decision tree uses a random vector that is generated from some fixed
probability distribution. A random vector can be incorporated into the tree-
growing process in many ways. The first approach is to randomly select F'
input features to split at each node of the decision tree. As a result, instead of
examining all the available features, the decision to split a node is determined
from these selected F' features. The tree is then grown to its entirety without
any pruning. This may help reduce the bias present in the resulting tree.
Once the trees have been constructed, the predictions are combined using a
majority voting scheme. This approach is known as Forest-RI, where RI refers
to random input selection. To increase randomness, bagging can also be used
to generate bootstrap samples for Forest-RI. The strength and correlation of
random forests may depend on the size of F. If F' is sufficiently small, then
the trees tend to become less correlated. On the other hand, the strength of
the tree classifier tends to improve with a larger number of features, F. As
a tradeoff, the number of features is commonly chosen to be F' = logyd + 1,
where d is the number of input features. Since only a subset of the features
needs to be examined at each node, this approach helps to significantly reduce
the runtime of the algorithm.

If the number of original features d is too small, then it is difficult to choose
an independent set of random features for building the decision trees. One
way to increase the feature space is to create linear combinations of the input
features. Specifically, at each node, a new feature is generated by randomly
selecting L of the input features. The input features are linearly combined
using coefficients generated from a uniform distribution in the range of [—1,
1]. At each node, F' of such randomly combined new features are generated,
and the best of them is subsequently selected to split the node. This approach
is known as Forest-RC.

A third approach for generating the random trees is to randomly select
one of the F' best splits at each node of the decision tree. This approach may
potentially generate trees that are more correlated than Forest-RI and Forest-
RC, unless F is sufficiently large. It also does not have the runtime savings of
Forest-RI and Forest-RC because the algorithm must examine all the splitting
features at each node of the decision tree.

It has been shown empirically that the classification accuracies of random
forests are quite comparable to the AdaBoost algorithm. It is also more robust
to noise and runs much faster than the AdaBoost algorithm. The classification
accuracies of various ensemble algorithms are compared in the next section.
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Table 5.5. Comparing the accuracy of a decision tree classifier against three ensemble methods.

Data Set Number of Decision | Bagging | Boosting RF

(Attributes, Classes, | Tree (%) (%) (%) (%)

Records)

Anneal (39, 6, 898) 92.09 94.43 95.43 95.43
Australia (15, 2, 690) 85.51 87.10 85.22 85.80
Auto (26, 7, 205) 81.95 85.37 85.37 84.39
Breast (11, 2, 699) 95.14 96.42 97.28 96.14
Cleve (14, 2, 303) 76.24 81.52 82.18 82.18
Credit (16, 2, 690) 85.8 86.23 86.09 85.8
Diabetes (9, 2, 768) 72.40 76.30 73.18 75.13
German (21, 2, 1000) 70.90 73.40 73.00 74.5
Glass (10, 7, 214) 67.29 76.17 77.57 78.04
Heart (14, 2, 270) 80.00 81.48 80.74 83.33
Hepatitis (20, 2, 155) 81.94 81.29 83.87 83.23
Horse (23, 2, 368) 85.33 85.87 81.25 85.33
Tonosphere (35, 2, 351) 89.17 92.02 93.73 93.45
Tris (5, 3, 150) 94.67 94.67 94.00 93.33
Labor (17, 2, 57) 78.95 84.21 89.47 84.21
LedT7 (8, 10, 3200) 73.34 73.66 73.34 73.06
Lymphography (19, 4, 148) 77.03 79.05 85.14 82.43
Pima (9, 2, 768) 74.35 76.69 73.44 77.60
Sonar (61, 2, 208) 78.85 78.85 84.62 85.58
Tic-tac-toe (10, 2, 958) 83.72 93.84 98.54 95.82
Vehicle (19, 4, 846) 71.04 74.11 78.25 74.94
Waveform (22, 3, 5000) 76.44 83.30 83.90 84.04
Wine (14, 3, 178) 94.38 96.07 97.75 97.75
Zoo (17, 7, 101) 93.07 93.07 95.05 97.03

5.6.7 Empirical Comparison among Ensemble Methods

Table 5.5 shows the empirical results obtained when comparing the perfor-
mance of a decision tree classifier against bagging, boosting, and random for-
est. The base classifiers used in each ensemble method consist of fifty decision
trees. The classification accuracies reported in this table are obtained from
ten-fold cross-validation. Notice that the ensemble classifiers generally out-
perform a single decision tree classifier on many of the data sets.

5.7 Class Imbalance Problem

Data sets with imbalanced class distributions are quite common in many real
applications. For example, an automated inspection system that monitors
products that come off a manufacturing assembly line may find that the num-
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ber of defective products is significantly fewer than that of non-defective prod-
ucts. Similarly, in credit card fraud detection, fraudulent transactions are
outnumbered by legitimate transactions. In both of these examples, there is
a disproportionate number of instances that belong to different classes. The
degree of imbalance varies from one application to another—a manufacturing
plant operating under the six sigma principle may discover four defects in a
million products shipped to their customers, while the amount of credit card
fraud may be of the order of 1 in 100. Despite their infrequent occurrences,
a correct classification of the rare class in these applications often has greater
value than a correct classification of the majority class. However, because the
class distribution is imbalanced, this presents a number of problems to existing
classification algorithms.

The accuracy measure, which is used extensively to compare the perfor-
mance of classifiers, may not be well suited for evaluating models derived from
imbalanced data sets. For example, if 1% of the credit card transactions are
fraudulent, then a model that predicts every transaction as legitimate has an
accuracy of 99% even though it fails to detect any of the fraudulent activities.
Additionally, measures that are used to guide the learning algorithm (e.g., in-
formation gain for decision tree induction) may need to be modified to focus
on the rare class.

Detecting instances of the rare class is akin to finding a needle in a haystack.
Because their instances occur infrequently, models that describe the rare class
tend to be highly specialized. For example, in a rule-based classifier, the
rules extracted for the rare class typically involve a large number of attributes
and cannot be easily simplified into more general rules with broader coverage
(unlike the rules for the majority class). Such models are also susceptible
to the presence of noise in training data. As a result, many of the existing
classification algorithms may not effectively detect instances of the rare class.

This section presents some of the methods developed for handling the class
imbalance problem. First, alternative metrics besides accuracy are introduced,
along with a graphical method called ROC analysis. We then describe how
cost-sensitive learning and sampling-based methods may be used to improve
the detection of rare classes.

5.7.1 Alternative Metrics

Since the accuracy measure treats every class as equally important, it may
not be suitable for analyzing imbalanced data sets, where the rare class is
considered more interesting than the majority class. For binary classification,
the rare class is often denoted as the positive class, while the majority class is
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Table 5.6. A confusion matrix for a binary classification problem in which the classes are not equally
important.

Predicted Class

+ —
Actual | + | f+4+ (TP) | fi— (FN)
Class | — | fo+ (FP) | f—— (TN)

denoted as the negative class. A confusion matrix that summarizes the number
of instances predicted correctly or incorrectly by a classification model is shown
in Table 5.6.

The following terminology is often used when referring to the counts tab-
ulated in a confusion matrix:

e True positive (TP) or fi 4, which corresponds to the number of positive
examples correctly predicted by the classification model.

e False negative (FN) or fy_, which corresponds to the number of positive
examples wrongly predicted as negative by the classification model.

e False positive (FP) or f_, which corresponds to the number of negative
examples wrongly predicted as positive by the classification model.

e True negative (TN) or f__, which corresponds to the number of negative
examples correctly predicted by the classification model.

The counts in a confusion matrix can also be expressed in terms of percentages.
The true positive rate (I'PR) or sensitivity is defined as the fraction of
positive examples predicted correctly by the model, i.e.,

TPR=TP/(TP + FN).

Similarly, the true negative rate ('NR) or specificity is defined as the
fraction of negative examples predicted correctly by the model, i.e.,

TNR =TN/(TN + FP).

Finally, the false positive rate (FPR) is the fraction of negative examples
predicted as a positive class, i.e.,

FPR=FP/(TN + FP),
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while the false negative rate (FNR) is the fraction of positive examples
predicted as a negative class, i.e.,

FNR = FN/(TP + FN).

Recall and precision are two widely used metrics employed in applica-
tions where successful detection of one of the classes is considered more signif-
icant than detection of the other classes. A formal definition of these metrics
is given below.

TP
Precisi = —_— .74
recision, p = T (5.74)
TP
I, r=——— .
Recall, r TP LN (5.75)

Precision determines the fraction of records that actually turns out to be
positive in the group the classifier has declared as a positive class. The higher
the precision is, the lower the number of false positive errors committed by the
classifier. Recall measures the fraction of positive examples correctly predicted
by the classifier. Classifiers with large recall have very few positive examples
misclassified as the negative class. In fact, the value of recall is equivalent to
the true positive rate.

It is often possible to construct baseline models that maximize one metric
but not the other. For example, a model that declares every record to be the
positive class will have a perfect recall, but very poor precision. Conversely,
a model that assigns a positive class to every test record that matches one of
the positive records in the training set has very high precision, but low recall.
Building a model that maximizes both precision and recall is the key challenge
of classification algorithms.

Precision and recall can be summarized into another metric known as the

F} measure.
2rp 2xTP

r+p 2xTP+FP+FN

In principle, F; represents a harmonic mean between recall and precision, i.e.,

F = (5.76)

2
+

=

3 =
S L

The harmonic mean of two numbers x and y tends to be closer to the smaller
of the two numbers. Hence, a high value of Fj-measure ensures that both
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precision and recall are reasonably high. A comparison among harmonic, ge-
ometric, and arithmetic means is given in the next example.

Example 5.8. Consider two positive numbers a = 1 and b = 5. Their arith-
metic mean is 1, = (a + b)/2 = 3 and their geometric mean is y, = Vab =
2.236. Their harmonic mean is pj, = (2x1x5)/6 = 1.667, which is closer to the
smaller value between a and b than the arithmetic and geometric means. =

More generally, the Fj3 measure can be used to examine the tradeoff be-
tween recall and precision:

_ @+ Urp _ (B2 +1)x TP
=SBy TP OIP+ PFPTEN (5.77)

Both precision and recall are special cases of Fg by setting 3 = 0 and 3 = oo,
respectively. Low values of 8 make Fp closer to precision, and high values
make it closer to recall.

A more general metric that captures Fjg as well as accuracy is the weighted
accuracy measure, which is defined by the following equation:

w1 TP+ wyTN

. 5.78
w1 TP + weFP + w3FN +wyTN ( )

Weighted accuracy =

The relationship between weighted accuracy and other performance metrics is
summarized in the following table:

Measure w1 wy | w3 | wy
Recall 1 1 0 0
Precision 1 0 1 0
Fs B2+1 3] 1] 0
Accuracy 1 1 1 1

5.7.2 The Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve is a graphical approach for
displaying the tradeoff between true positive rate and false positive rate of a
classifier. In an ROC curve, the true positive rate (T'PR) is plotted along the
y axis and the false positive rate (F'PR) is shown on the x axis. Each point
along the curve corresponds to one of the models induced by the classifier.
Figure 5.41 shows the ROC curves for a pair of classifiers, M; and Mo.
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Figure 5.41. ROC curves for two different classifiers.

There are several critical points along an ROC curve that have well-known
interpretations:

(TPR=0, FPR=0): Model predicts every instance to be a negative class.
(TPR=1, FPR=1): Model predicts every instance to be a positive class.
(TPR=1, FPR=0): The ideal model.

A good classification model should be located as close as possible to the up-
per left corner of the diagram, while a model that makes random guesses should
reside along the main diagonal, connecting the points (I'PR = 0, FPR = 0)
and (TPR = 1, FPR = 1). Random guessing means that a record is classi-
fied as a positive class with a fixed probability p, irrespective of its attribute
set. For example, consider a data set that contains n, positive instances
and n_ negative instances. The random classifier is expected to correctly
classify pny of the positive instances and to misclassify pn_ of the negative
instances. Therefore, the TPR of the classifier is (pny)/ny = p, while its
FPRis (pn_)/p = p. Since the TPR and F PR are identical, the ROC curve
for a random classifier always reside along the main diagonal.

An ROC curve is useful for comparing the relative performance among
different classifiers. In Figure 5.41, M; is better than My when FPR is less
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than 0.36, while My is superior when F PR is greater than 0.36. Clearly,
neither of these two classifiers dominates the other.

The area under the ROC curve (AUC) provides another approach for eval-
uating which model is better on average. If the model is perfect, then its area
under the ROC curve would equal 1. If the model simply performs random
guessing, then its area under the ROC curve would equal 0.5. A model that
is strictly better than another would have a larger area under the ROC curve.

Generating an ROC curve

To draw an ROC curve, the classifier should be able to produce a continuous-
valued output that can be used to rank its predictions, from the most likely
record to be classified as a positive class to the least likely record. These out-
puts may correspond to the posterior probabilities generated by a Bayesian
classifier or the numeric-valued outputs produced by an artificial neural net-
work. The following procedure can then be used to generate an ROC curve:

1. Assuming that the continuous-valued outputs are defined for the positive
class, sort the test records in increasing order of their output values.

2. Select the lowest ranked test record (i.e., the record with lowest output
value). Assign the selected record and those ranked above it to the
positive class. This approach is equivalent to classifying all the test
records as positive class. Because all the positive examples are classified
correctly and the negative examples are misclassified, TPR = FPR = 1.

3. Select the next test record from the sorted list. Classify the selected
record and those ranked above it as positive, while those ranked below it
as negative. Update the counts of TP and F'P by examining the actual
class label of the previously selected record. If the previously selected
record is a positive class, the TP count is decremented and the FP
count remains the same as before. If the previously selected record is a
negative class, the F'P count is decremented and TP count remains the
same as before.

4. Repeat Step 3 and update the T'P and F' P counts accordingly until the
highest ranked test record is selected.

5. Plot the TPR against F'PR of the classifier.

Figure 5.42 shows an example of how to compute the ROC curve. There
are five positive examples and five negative examples in the test set. The class



5.7 Class Imbalance Problem 301
+
.2 087 093 095 1.0
5 0
5 0
0 5
0 5
TPR| 1 08 | 08 | 06 | 06 | 06 | 06 | 04 | 04 | 02 0
FPR| 1 1 08 | 08 | 06 | 04 | 02 | 02 0 0 0
Figure 5.42. Constructing an ROC curve.
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Figure 5.43. ROC curve for the data shown in Figure 5.42.

labels of the test records are shown in the first row of the table. The second row
corresponds to the sorted output values for each record. For example, they
may correspond to the posterior probabilities P(+|x) generated by a naive
Bayes classifier. The next six rows contain the counts of TP, FFP, TN, and
F N, along with their corresponding TPR and FPR. The table is then filled
from left to right. Initially, all the records are predicted to be positive. Thus,
TP =FP =5and TPR = FPR = 1. Next, we assign the test record with
the lowest output value as the negative class. Because the selected record is
actually a positive example, the TP count reduces from 5 to 4 and the F'P
count is the same as before. The FPR and TPR are updated accordingly.
This process is repeated until we reach the end of the list, where TPR = 0
and FPR = 0. The ROC curve for this example is shown in Figure 5.43.
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5.7.3 Cost-Sensitive Learning

A cost matrix encodes the penalty of classifying records from one class as
another. Let C(i,7) denote the cost of predicting a record from class i as class
j. With this notation, C(+, —) is the cost of committing a false negative error,
while C'(—, +) is the cost of generating a false alarm. A negative entry in the
cost matrix represents the reward for making correct classification. Given a
collection of NV test records, the overall cost of a model M is

Ci(M)= TPxC(+,+)+FPxC(—,+)+FN x C(+,—)
+ TN x C(—,—). (5.79)

Under the 0/1 cost matrix, i.e., C(+,4) = C(—,—) = 0 and C(+,—) =
C(—,+) =1, it can be shown that the overall cost is equivalent to the number
of misclassification errors.

Cy(M)=0x (TP+TN)+1x (FP+ FN) =N x Err, (5.80)

where Err is the error rate of the classifier.

Example 5.9. Consider the cost matrix shown in Table 5.7: The cost of
committing a false negative error is a hundred times larger than the cost
of committing a false alarm. In other words, failure to detect any positive
example is just as bad as committing a hundred false alarms. Given the
classification models with the confusion matrices shown in Table 5.8, the total
cost for each model is

Cy(My) = 150 x (—1) 4+ 60 x 1+ 40 x 100 = 3910,
Cy(My) = 250 x (—1) 4+ 5 x 1445 x 100 = 4255.

Table 5.7. Cost matrix for Example 5.9.

Predicted Class
Class = + | Class = —
Actual | Class = -1 100

Class | Class = — 1 0

+
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Table 5.8. Confusion matrix for two classification models.

Model M, Predicted Class Model M,y Predicted Class
Class + | Class - Class + | Class -
Actual | Class + 150 40 Actual | Class + 250 45
Class | Class - 60 250 Class | Class - 5 200

Notice that despite improving both of its true positive and false positive counts,
model My is still inferior since the improvement comes at the expense of in-
creasing the more costly false negative errors. A standard accuracy measure

would have preferred model My over M;.

A cost-sensitive classification technique takes the cost matrix into consid-
eration during model building and generates a model that has the lowest cost.
For example, if false negative errors are the most costly, the learning algorithm
will try to reduce these errors by extending its decision boundary toward the
negative class, as shown in Figure 5.44. In this way, the generated model can
cover more positive examples, although at the expense of generating additional

false alarms.

Figure 5.44. Modifying the decision boundary (from B; to Bs) to reduce the false negative errors of a

classifier.

There are various ways to incorporate cost information into classification
algorithms. For example, in the context of decision tree induction, the cost
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information can be used to: (1) choose the best attribute to use for splitting
the data, (2) determine whether a subtree should be pruned, (3) manipulate
the weights of the training records so that the learning algorithm converges to
a decision tree that has the lowest cost, and (4) modify the decision rule at
each leaf node. To illustrate the last approach, let p(i|t) denote the fraction of
training records from class i that belong to the leaf node t. A typical decision
rule for a binary classification problem assigns the positive class to node ¢ if
the following condition holds.

p(+[t) > p(=t)
= p(+[t) > (1= p(+[t))
= 2p(+t) > 1
= p(+[t) > 0.5. (5.81)

The preceding decision rule suggests that the class label of a leaf node depends
on the majority class of the training records that reach the particular node.
Note that this rule assumes that the misclassification costs are identical for
both positive and negative examples. This decision rule is equivalent to the
expression given in Equation 4.8 on page 165.

Instead of taking a majority vote, a cost-sensitive algorithm assigns the
class label 7 to node t if it minimizes the following expression:

C(ift) = Zp(jlt)C(M) (5.82)

In the case where C'(+,4) = C(—,—) = 0, a leaf node ¢ is assigned to the
positive class if:

PO+ —) > p(—[)C(=,+)
— PO ) > (L pH)C(—, +)
— () > C(_7f§‘+’ gg+,_) (5.83)

This expression suggests that we can modify the threshold of the decision rule
from 0.5 to C(—,+)/(C(—,+) + C(+, —)) to obtain a cost-sensitive classifier.
If C(—,+) < C(+,—), then the threshold will be less than 0.5. This result
makes sense because the cost of making a false negative error is more expensive
than that for generating a false alarm. Lowering the threshold will expand the
decision boundary toward the negative class, as shown in Figure 5.44.
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Figure 5.45. lllustrating the effect of oversampling 