
Data Mining Trevor Hastie, Stanford University 1

Modern Trends in Data Mining

Trevor Hastie
Stanford University
November, 2006.

•

• •

•
••

•
••

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
•

•

•

•
•

• • •
•

•

•

•

•

••
•

•

•

•

•

•

•

•

••

•

•

•

•

••

•

•

•

•
•

•

••

•

•• •

•

•

•



Data Mining Trevor Hastie, Stanford University 2

Datamining for Prediction

• We have a collection of data pertaining to our business,
industry, production process, monitoring device, etc.

• Often the goals of data-mining are vague, such as “look for
patterns in the data” — not too helpful.

• In many cases a “response” or “outcome” can be identified as a
good and useful target for prediction.

• Accurate prediction of this target can help the company make
better decisions, and save a lot of money.

• Data-mining is particularly good at building such prediction
models — an area known as ”supervised learning”.
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Example: Credit Risk Assessment

• Customers apply to a bank for a loan or credit card.

• They supply the bank with information such as age, income,
employment history, education, bank accounts, existing debts,
etc.

• The bank does further background checks to establish credit
history of customer.

• Based on this information, the bank must decide whether to
make the loan or issue the credit card.
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Example continued: Credit Risk Assessment

• The bank has a large database of existing and past customers.
Some of these defaulted on loans, others frequently made late
payments etc. An outcome variable “Status” is defined, taking
value “good” or “default”. Each of the past customers is scored
with a value for status.

• Background information is available for all the past customers.

• Using supervised learning techniques, we can build a risk
prediction model that takes as input the background
information, and outputs a risk estimate (probability of
default) for a prospective customer.

The California based company Fair-Isaac uses a generalized
additive model + boosting methods in the construction of their
credit risk scores.
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Example: Churn Prediction

• When a customer switches to another provider, we call this
“churn”. Examples are cell-phone service and credit card
providers.

• Based on customer information and usage patterns, we can
predict

– the probability of churn

– the retention probability (as a function of time)

• This information can be used to evaluate

– prospective customers to decide on acceptance

– present customers to decide on intervention strategy

Risk assessment and survival models are used by US cell-phone
companies such as AT&T to manage churn.
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Grand Prize: one million dollars, if beat Netflix’s RMSE by 10%.
After 2 months, the leaders are at 4.9%.
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Netflix Challenge

Netflix users rate movies from 1-5. Based on a history of ratings,
predict the rating a viewer will give to a new movie.

• Training data: sparse 400K (users) by 18K (movies) rating
matrix, with 98.7% missing. About 100M movie/rater pairs.

• Quiz set of about 1.4M movie/viewer pairs, for which
predictions of ratings are required (Netflix has held them back)

• Probe set of about 1.4 million movie/rater pairs similar in
composition to the quiz set, for which the ratings are known.
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The Supervised Learning Problem

Starting point:

• Outcome measurement Y (also called dependent variable,
response, target, output)

• Vector of p predictor measurements X (also called inputs,
regressors, covariates, features, independent variables)

• In the regression problem, Y is quantitative (e.g price, blood
pressure, rating)

• In classification, Y takes values in a finite, unordered set
(default yes/no, churn/retain, spam/email)

• We have training data (x1, y1), . . . , (xN , yN ). These are
observations (examples, instances) of these measurements.
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Objectives

On the basis of the training data we would like to:

• Accurately predict unseen test cases for which we know X but
do not know Y .

• In the case of classification, predict the probability of an
outcome.

• Understand which inputs affect the outcome, and how.

• Assess the quality of our predictions and inferences.
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More Examples

• Predict whether someone will have a heart attack on the basis
of demographic, diet and clinical measurements

• Determine whether an incoming email is “spam”, based on
frequencies of key words in the message

• Identify the numbers in a handwritten zip code, from a
digitized image

• Estimate the probability that an insurance claim is fraudulent,
based on client demographics, client history, and the amount
and nature of the claim.

• Predict the type of cancer in a tissue sample using DNA
expression values
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Email or Spam?

• data from 4601 emails sent to an individual (named George, at
HP labs, before 2000). Each is labeled as “spam” or “email”.

• goal: build a customized spam filter.

• input features: relative frequencies of 57 of the most commonly
occurring words and punctuation marks in these email
messages.

george you hp free ! edu remove

spam 0.00 2.26 0.02 0.52 0.51 0.01 0.28

email 1.27 1.27 0.90 0.07 0.11 0.29 0.01

Average percentage of words or characters in an email message equal to

the indicated word or character. We have chosen the words and

characters showing the largest difference between spam and email.
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Handwritten Digit Identification

A sample of segmented and normalized handwritten digits, scanned
from zip-codes on envelopes. Each image has 16 × 16 pixels of
greyscale values ranging from 0 − 255.
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Microarray Cancer Data

Expression matrix of 6830 genes
(rows) and 64 samples (columns),
for the human tumor data (100
randomly chosen rows shown).
The display is a heat map, rang-
ing from bright green (under ex-
pressed) to bright red (over ex-
pressed).
Goal: predict cancer class based
on expression values.
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Shameless self-promotion

Most of the topics in this lecture
are covered in our 2001 book, and
all will be covered in the 2nd edi-
tion (if it ever gets finished).
The book blends traditional linear
methods with contemporary non-
parametric methods, and many
between the two.
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Ideal Predictions

• For a quantitative output Y , the best prediction we can make
when the input vector X = x is

f(x) = Ave(Y |X = x)

– This is the conditional expectation — deliver the Y -average
of all those examples having X = x.

– This is best if we measure errors by average squared error
Ave(Y − f(X))2.

• For a qualitative output Y taking values 1, 2,. . . , M , compute

– Pr(Y = m|X = x) for each value of m. This is the
conditional probability of class m at X = x.

– Classify C(x) = j if Pr(Y = j|X = x) is the largest — the
majority vote classifier.
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Implementation with Training Data

The ideal prediction formulas suggest a data implementation. To
predict at X = x, gather all the training pairs (xi, yi) having
xi = x, then:

• For regression, use the mean of their yi to estimate
f(x) = Ave(Y |X = x)

• For classification, compute the relative proportions of each
class among these yi, to estimate Pr(Y = m|X = x); Classify
the new observation by majority vote.

Problem: in the training data, there may be NO observations
having xi = x.
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Nearest Neighbor Averaging

• Estimate Ave(Y |X = x) by

Averaging those yi whose xi are in a neighborhood of x.

• E.g. define the neighborhood to be the set of k observations
having values xi closest to x in euclidean distance ||xi − x||.

• For classification, compute the class proportions among these k

closest points.

• Nearest neighbor methods often outperform all other methods
— about one in three times — especially for classification.
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Kernel smoothing

• Smooth version of nearest-
neighbor averaging

• At each point x, the function
f(x) = Y (Y |X = x) is esti-
mated by the weighted aver-
age of the y’s.

• The weights die down
smoothly with distance from
the target point x (indicated
by shaded orange region).
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Structured Models

• When we have a lot of predictor variables, NN methods often
fail because of the curse of dimensionality:

It is hard to find nearby points in high dimensions!

• Near-neighbor models offer little interpretation.

• We can overcome these problems by assuming some structure
for the regression function Ave(Y |X = x) or the probability
function Pr(Y = k|X = x). Typical structural assumptions:

– Linear Models

– Additive Models

– Low-order interaction models

– Restrict attention to a subset of predictors

– . . . and many more
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Linear Models

• Linear models assume

Ave(Y |X = x) = β0 + β1X1 + β2X2 + . . . + βpXp

• For two class classification problems, linear logistic regression
has the form

log
Pr(Y = +1|X = x)
Pr(Y = −1|X = x)

= β0 + β1X1 + β2X2 + . . . + βpXp

• This translates to

Pr(Y = +1|X = x) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp

Chapters 3 and 4 of deal with linear models.
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Linear Model Complexity Control

With many inputs, linear regression can overfit the training data,
leading to poor predictions on future data. Two general remedies
are available:

• Variable selection: reduce the number of inputs in the model.
For example, stepwise selection or best subset selection.

• Regularization: leave all the variables in the model, but when
fitting the model, restrict their coefficients.

– Ridge:
∑p

j=1 β2
j ≤ s. All the coefficients are non-zero, but

are shrunk toward zero (and each other).

– Lasso:
∑p

j=1 |βj | ≤ s. Some coefficients drop out the model,
others are shrink toward zero.
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Each point corresponds to a linear model involving a subset of the
variables, and shows the residual sum-of-squares on the training
data. The red models are the candidates, and we need to choose s.
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Both ridge and lasso coefficients paths can be computed very
efficiently for all values of s.
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Overfitting and Model Assessment

• In all cases above, the larger s, the better we will fit the
training data. Often we overfit the training data.

• Overfit models can perform poorly on test data (high variance).

• Underfit models can perform poorly on test data (high bias).

Model assessment aims to

1. Choose a value for a tuning parameter s for a technique.

2. Estimate the future prediction ability of the chosen model.

• For both of these purposes, the best approach is to evaluate the
procedure on an independent test set, if one is available.

• If possible one should use different test data for (1) and (2)
above: a validation set for (1) and a test set for (2)
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K-Fold Cross-Validation

Primarily a method for estimating a tuning parameter s when data
is scarce; we illustrate for the regularized linear regression models.

• Divide the data into K roughly equal parts (5 or 10)

Train Train Train

5

TrainTest

21 3 4

• for each k = 1, 2, . . .K, fit the model with parameter s to the
other K − 1 parts, giving β̂−k(s) and compute its error in
predicting the kth part: Ek(λ) =

∑
i∈kth part(yi − xiβ̂

−k(s))2.

• This gives the overall cross-validation error
CV (s) = 1

K

∑K
k=1 Ek(s)

• do this for many values of s and choose the value of s that
makes CV (s) smallest.
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Cross-Validation Error Curve
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• 10-fold CV error curve using
lasso on some diabetes data
(64 inputs, 442 samples).

• Thick curve is CV error curve

• Shaded region indicates stan-
dard error of CV estimate.

• Curve shows effect of over-
fitting — errors start to in-
crease above s = 0.2.

• This shows a trade-off be-
tween bias and variance.
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Modern Structured Models in Data Mining

The following is a list of some of the more important and currently
popular prediction models in data mining.

• Linear Models (often heavily regularized)

• Generalized Additive Models

• Neural Networks

• Trees, Random Forests and Boosted Tree Models — hot!

• Support Vector and Kernel Machines — hot!
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Generalized Additive Models

Allow a compromise between linear models and more flexible local
models (kernel estimates) when there are a many inputs
X = (X1, X2, . . . , Xp).

• Additive models for regression:

Ave(Y |X = x) = α0 + f1(x1) + f2(x2) + . . . + fp(xp).

• Additive models for classification:

log
Pr(Y = +1|X = x)
Pr(Y = −1|X = x)

= α0 + f1(x1) + f2(x2) + . . . + fp(xp).

Each of the functions fj(xj) (one for each input variable), can be a
smooth function (ala kernel estimate), linear, or omitted.
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GAM fit to SPAM data

• Shown are the most important
predictors.

• Many show nonlinear behav-
ior.

• Overall error rate 5.3% .

• Functions can be re-
parametrized (e.g. log terms,
quadratic, step-functions),
and then fit by linear model.

• Produces a prediction per
email Pr(SPAM|X = x)
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Neural Networks

1Z

Single (Hidden) Layer Perceptron

X X X1 2 3

Z Z Z3 42

Input Layer

Hidden Layer

Output Layer1Y Y 2

• Like a complex regression or logis-
tic regression model — more flexi-
ble, but less interpretable — a “black
box”.

• Hidden units Z1, Z2, . . . , Zm (4 here):
Zj = σ(α0j + αT

j X)
σ(Z) = eZ/(1 + eZ) is the logistic
sigmoid activation function.

• Output is a linear regression or logis-
tic regression model in the Zj .

• Complexity controlled by m, ridge
regularization, and early stopping of
the backpropogation algorithm for fit-
ting the neural network.
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Support Vector Machines
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Margin

Margin

Decision Boundary

• Maximize the gap (margin)
between the two classes on the
training data.

• If not separable

– enlarge the feature space
via basis expansions (e.g.
polynomials).

– use a “soft” margin (allow
limited overlap).

• Solution depends on a small
number of points (“support
vectors”) — 3 here.
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Support Vector Machines

•
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••
ξ1ξ1ξ1

ξ2ξ2ξ2

ξ3ξ3

ξ4ξ4ξ4 ξ5

Soft Margin

Soft Margin

xT β + β0 = 0

• Maximize the soft margin sub-
ject to a bound on the total
overlap:

∑
i ξi ≤ B.

• With yi ∈ {−1, +1}, becomes
convex-optimization problem

min ||β|| s.t.

yi(xT
i β + β0) ≥ 1 − ξi ∀i

N∑
i=1

ξi ≤ B
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Properties of SVMs

• Primarily used for classification problems. Builds a linear
classifier f(X) = β0 + β1X1 + β2X2 + . . . βpXp.

If f(X) > 0, classify as +1, else if f(X) < 0, classify as -1.

• Generalizations use kernels (“radial basis functions”):

f(X) = α0 +
N∑

i=1

αiK(X, xi)

– K is a symmetric function, e.g. K(X, xi) = e−γ||X−xi||2 ,
and each xi is one of the samples (vectors)

– Many of the αi = 0; the rest are “support points”.

• Extensions to regression, logistic regression, PCA, . . ..

• Well developed mathematics — function estimation in
Reproducing Kernel Hilbert Spaces.
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SVM via Loss + Penalty
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With f(x) = xT β + β0 and
yi ∈ {−1, 1}, consider

min
β0, β

N∑
i=1

[1−yif(xi)]++
λ

2
‖β‖2

This hinge loss criterion
is equivalent to the SVM,
with λ monotone in B.
Compare with

min
β0, β

N∑
i=1

log
[
1 + e−yif(xi)

]
+

λ

2
‖β‖2

This is binomial deviance loss, and the solution is “ridged” linear
logistic regression.
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Path algorithms for the SVM

• The two-class SVM classifier f(X) = α0 +
∑N

i=1 αiK(X, xi)yi

can be seen to have a quadratic penalty and piecewise-linear
loss. As the cost parameter C is varied, the Lagrange
multipliers αi change piecewise-linearly.

• This allows the entire regularization path to be traced exactly.
The active set is determined by the points exactly on the
margin.

12 points, 6 per class, Separated
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Mixture Data − Radial Kernel Gamma=5

              Step:  483    Error: 1    Elbow Size: 90    Loss: 1.01
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Classification and Regression Trees

✔ Can handle huge datasets

✔ Can handle mixed predictors—quantitative and qualitative

✔ Easily ignore redundant variables

✔ Handle missing data elegantly

✔ Small trees are easy to interpret

✖ large trees are hard to interpret

✖ Often prediction performance is poor
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Tree fit to SPAM data
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Ensemble Methods and Boosting

Classification trees can be simple, but often produce noisy (bushy)
or weak (stunted) classifiers.

• Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify
by majority vote.

• Random Forests (Breiman 1999): Improvements over bagging.

• Boosting (Freund & Shapire, 1996): Fit many smallish trees to
reweighted versions of the training data. Classify by weighted
majority vote.

In general Boosting � Random Forests � Bagging � Single Tree.
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Boosting

• Average many trees, each
grown to re-weighted versions
of the training data.

• Weighting decorrelates the
trees, by focussing on regions
missed by past trees.

• Final Classifier is weighted av-
erage of classifiers:

C(x) = sign
[∑M

m=1 αmCm(x)
]
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Modern Gradient Boosting (Friedman, 2001)

• Fits an additive model

Fm(X) = T1(X) + T2(X) + T3(X) + . . . + Tm(X)

where each of the Tj(X) is a tree in X.

• Can be used for regression, logistic regression and more. For
example, gradient boosting for regression works by repeatedly
fitting trees to the residuals:

1. Fit a small tree T1(X) to Y .

2. Fit a small tree T2(X) to the residual Y − T1(X).

3. Fit a small tree T3(X) to the residual Y − T1(X) − T2(X).
and so on.

• m is the tuning parameter, which must be chosen using a
validation set (m too big will overfit).
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Gradient Boosting - Details

• For general loss function L[Y, Fm(X) + Tm+1(X)], fit a tree to
the gradient ∂L/∂Fm rather than residual.

• Shrink the new contribution before adding into the model:
Fm(X) + γTm+1(X). This slows the forward stagewise
algorithm, leading to improved performence.

• Tree depth determines interaction order of the model.

• Boosting will eventually overfit; number of terms m is a tuning
parameter.

• As γ ↓ 0, boosting path behaves like �1 regularization path in
the space of trees.
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Boosting − Error: 4.5%
SVM  −  Error: 6.7%
TREE − Error: 8.7%

Boosting on SPAM

Boosting dominates all other
methods on SPAM data —
4.5% test error.
Used 1000 trees (depth 6) with
default settings for gbm pack-
age in R.
ROC curve obtained by vary-
ing the threshold of the classi-
fier.
Sensitivity: proportion of true
spam identified
Specificity: proportion of true
email identified.
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Software

• R is free software for statistical modeling, graphics and a
general programming environment. Works on PCs, Macs and
Linux/Unix platforms. All the models here can be fit in R.

• Splus is like R, implements the same language S. Splus is not
free, but is supported.

• SAS and their Enterprise Miner can fit most of the models
mentioned in this talk, with good data-handling capabilities,
and high-end user interfaces.

• Salford Systems has commercial versions of trees, random
forests and gradient boosting.

• SVM software is all over, but beware of patent infringements if
put to commercial use.
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• Many free versions of good neural network software; Google will
find it.


