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Chapter 6

Classification and Prediction

Databases are rich with hidden information that can be used for intelligent decision making. Classification and
prediction are two forms of data analysis that can be used to extract models describing important data classes
or to predict future data trends. Such analysis can help provide us with a better understanding of the data at
large. Whereas classification predicts categorical (discrete, unordered) labels, prediction models continuous-valued
functions. For example, we can build a classification model to categorize bank loan applications as either safe or
risky, or a prediction model to predict the expenditures in dollars of potential customers on computer equipment
given their income and occupation. Many classification and prediction methods have been proposed by researchers
in machine learning, pattern recognition, and statistics. Most algorithms are memory resident, typically assuming
a small data size. Recent data mining research has built on such work, developing scalable classification and
prediction techniques capable of handling large disk-resident data.

In this chapter, you will learn basic techniques for data classification such as how to build decision tree classi-
fiers, Bayesian classifiers, Bayesian belief networks, and rule-based classifiers. Backpropagation (a neural network
technique) is also discussed, in addition to a more recent approach to classification known as support vector ma-
chines. Classification based on association rule mining is explored. Other approaches to classification, such as
k-nearest neighbor classifiers, case-based reasoning, genetic algorithms, rough sets, and fuzzy logic techniques are
introduced. Methods for prediction, including linear regression, nonlinear regression, and other regression-based
models, are briefly discussed. Where applicable, you will learn about extensions to these techniques for their appli-
cation to classification and prediction in large databases. Classification and prediction have numerous applications
including fraud detection, target marketing, performance prediction, manufacturing, and medical diagnosis.

6.1 What Is Classification? What Is Prediction?

A bank loans officer needs analysis of her data in order to learn which loan applicants are “safe” and which are
“risky” for the bank. A marketing manager at AllElectronics needs data analysis to help guess whether or not
a customer with a given profile will buy a new computer. A medical researcher wants to analyze breast cancer
data in order to predict which one of three specific treatments a patient should receive. In each of these examples,
the data analysis task is classification, where a model or classifier is constructed to predict categorical labels,
such as “safe” or “risky” for the loan application data, “yes” or “no” for the marketing data, or “treatment A”,
“treatment B”, or “treatment C” for the medical data. These categories can be represented by discrete values,
where the ordering among values has no meaning. For example, the values 1, 2, and 3 may be used to represent
treatments A, B, and C, above, where there is no ordering implied among this group of treatment regimes.

Suppose that the marketing manager above would like to predict how much a given customer will spend
during a sale at AllElectronics. This data analysis task is an example of numeric prediction, where the model
constructed predicts a continuous-valued function, or ordered value, as opposed to a categorical label. This model
is a predictor. Regression analysis is a statistical methodology that is most often used for numeric prediction,
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4 CHAPTER 6. CLASSIFICATION AND PREDICTION

hence the two terms are often used synonymously. We do not treat the two terms as synonyms, however, since
several other methods can be used for numeric prediction, as we shall see later in this chapter. Classification and
numeric prediction are the two major types of prediction problems. For simplicity, when there is no ambiguity,
we will use the shortened term of prediction to refer to numeric prediction.
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Figure 6.1: The data classification process: (a) Learning : Training data are analyzed by a classification algorithm.
Here, the class label attribute is loan decision, and the learned model or classifier is represented in the form of
classification rules. (b) Classification: Test data are used to estimate the accuracy of the classification rules. If
the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples.

“How does classification work? Data classification is a two-step process, as shown for the loan application
data of Figure 6.1. (The data are simplified for illustrative purposes. In reality, we may expect many more
attributes to be considered.) In the first step, a classifier is built describing a predetermined set of data classes or
concepts. This is the learning step (or training phase), where a classification algorithm builds the classifier by
analyzing or “learning from” a training set made up of database tuples and their associated class labels. A tuple,
X, is represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n measurements made
on the tuple from n database attributes, respectively, A1, A2, . . . , An.

1 Each tuple, X, is assumed to belong to a
predefined class as determined by another database attribute called the class label attribute. The class label
attribute is discrete-valued and unordered. It is categorical in that each value serves as a category or class. The
individual tuples making up the training set are referred to as training tuples and are selected from the database

1Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term feature vector rather than
attribute vector. Since our discussion is from a database perspective, we propose the term “attribute vector”. In our notation, any
variable representing a vector is shown in bold italic font; measurements depicting the vector are shown in italic font, e.g., X =
(x1, x2, x3).
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under analysis. In the context of classification, data tuples can be referred to as samples, examples, instances,
data points, or objects.2

Since the class label of each training tuple is provided, this step is also known as supervised learning (i.e., the
learning of the classifier is “supervised” in that it is told to which class each training tuple belongs). It contrasts
with unsupervised learning (or clustering), in which the class label of each training tuple is not known, and
the number or set of classes to be learned may not be known in advance. For example, if we did not have the
loan decision data available for the training set, we could use clustering to try to determine “groups of like tuples”,
which may correspond to risk groups within the loan application data. Clustering is the topic of Chapter 7.

This first step of the classification process can also be viewed as the learning of a mapping or function, y = f(X),
that can predict the associated class label y of a given tuple X. In this view, we wish to learn a mapping or function
that separates the data classes. Typically, this mapping is represented in the form of classification rules, decision
trees, or mathematical formulae. In our example, the mapping is represented as classification rules that identify
loan applications as being either safe or risky (Figure 6.1(a)). The rules can be used to categorize future data
tuples, as well as provide deeper insight into the database contents. They also provide a compressed representation
of the data.

“What about classification accuracy?” In the second step (Figure 6.1(b)), the model is used for classification.
First, the predictive accuracy of the classifier is estimated. If we were to use the training set to measure the
accuracy of the classifier, this estimate would likely be optimistic since the classifier tends to overfit the data
(that is, during learning it may incorporate some particular anomalies of the training data that are not present
in the general data set overall). Therefore, a test set is used, made up of test tuples and their associated class
labels. These tuples are randomly selected from the general data set. They are independent of the training tuples,
meaning that they are not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that are correctly classified by
the classifier. The associated class label of each test tuple is compared with the learned classifier’s class prediction
for that tuple. Section 6.13 describes several methods for estimating classifier accuracy. If the accuracy of the
classifier is considered acceptable, the classifier can be used to classify future data tuples for which the class label is
not known. (Such data are also referred to in the machine learning literature as “unknown” or “previously unseen”
data.) For example, the classification rules learned in Figure 6.1(a) from the analysis of data from previous loan
applications can be used to approve or reject new or future loan applicants.

“How is (numeric) prediction different from classification?” Data prediction is a two-step process, similar to
that of data classification as described in Figure 6.1. However, for prediction, we lose the terminology of “class
label attribute” since the attribute for which values are being predicted is continuous-valued (ordered), rather
than categorical (discrete-valued and unordered). The attribute can be referred to, simply, as the predicted
attribute3. Suppose that, in our example, we instead wanted to predict the amount (in dollars) that would be
“safe” for the bank to loan an applicant. The data mining task becomes prediction, rather than classification. We
would replace the categorical attribute, loan decision, with the continuous-valued loan amount as the predicted
attribute, and build a predictor for our task.

Note that prediction can also be viewed as a mapping or function, y = f(X), where X is the input (e.g., a
tuple describing a loan applicant ) and the output y is a continuous or ordered value (such as the predicted amount
that the bank can safely loan the applicant). That is, we wish to learn a mapping or function that models the
relationship between X and y.

Prediction and classification also differ in the methods that are used to build their respective models. As with
classification, the training set used to build a predictor should not be used to assess its accuracy. An independent
test set should be used instead. The accuracy of a predictor is estimated by computing an error based on the
difference between the predicted value and the actual known value of y for each of the test tuples, X. There
are various predictor error measures (Section 6.12.2). General methods for error estimation are discussed in
Section 6.13.

2In the machine learning literature, training tuples are commonly referred to as training samples. Throughout this text, we prefer
to use the term tuples instead of samples since we discuss the theme of classification from a database-oriented perspective.

3We could also use this term for classification, although, for that task, the term “class label attribute” is more descriptive.
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6.2 Issues Regarding Classification and Prediction

This section describes issues regarding preprocessing the data for classification and prediction. Criteria for the
comparison and evaluation of classification methods are also described.

6.2.1 Preparing the Data for Classification and Prediction

The following preprocessing steps may be applied to the data in order to help improve the accuracy, efficiency, and
scalability of the classification or prediction process.

• Data cleaning: This refers to the preprocessing of data in order to remove or reduce noise (by applying
smoothing techniques, for example), and the treatment of missing values (e.g., by replacing a missing value
with the most commonly occurring value for that attribute, or with the most probable value based on
statistics). Although most classification algorithms have some mechanisms for handling noisy or missing
data, this step can help reduce confusion during learning.

• Relevance analysis: Many of the attributes in the data may be redundant. Correlation analysis can be
used to identify whether any two given attributes are statistically related. For example, a strong correlation
between attributes A1 and A2 would suggest that one of the two could be removed from further analysis. A
database may also contain irrelevant attributes. Attribute subset selection4 can be used in these cases to
find a reduced set of attributes such that the resulting probability distribution of the data classes is as close
as possible to the original distribution obtained using all attributes. Hence, relevance analysis, in the form
of correlation analysis and attribute subset selection, can be used to detect attributes that do not contribute
to the classification or prediction task. Including such attributes may otherwise slow down, and possibly
mislead, the learning step.

Ideally, the time spent on relevance analysis, when added to the time spent on learning from the resulting
“reduced” attribute (or feature) subset, should be less than the time that would have been spent on learn-
ing from the original set of attributes. Hence, such analysis can help improve classification efficiency and
scalability.

• Data transformation and reduction: The data may be transformed by normalization, particularly when
neural networks or methods involving distance measurements are used in the learning step. Normalization
involves scaling all values for a given attribute so that they fall within a small specified range, such as −1.0
to 1.0, or 0.0 to 1.0. In methods that use distance measurements, for example, this would prevent attributes
with initially large ranges (like, say, income) from outweighing attributes with initially smaller ranges (such
as binary attributes).

The data can also be transformed by generalizing it to higher-level concepts. Concept hierarchies may be used
for this purpose. This is particularly useful for continuous-valued attributes. For example, numeric values
for the attribute income can be generalized to discrete ranges such as low, medium, and high. Similarly,
categorical attributes, like street, can be generalized to higher-level concepts, like city. Since generalization
compresses the original training data, fewer input/output operations may be involved during learning.

Data can also be reduced by applying many other methods, ranging from wavelet transformation and principle
components analysis, to discretization techniques such as binning, histogram analysis, and clustering.

Data cleaning, relevance analysis (in the form of correlation analysis and attribute subset selection), and data
transformation are described in greater detail in Chapter 2 of this book.

6.2.2 Comparing Classification and Prediction Methods

Classification and prediction methods can be compared and evaluated according to the following criteria:

4In machine learning, this is known as feature subset selection.
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• Accuracy: The accuracy of a classifier refers to the ability of a given classifier to correctly predict the
class label of new or previously unseen data (i.e., tuples without class label information). Similarly, the
accuracy of a predictor refers to how well a given predictor can guess the value of the predicted attribute
for new or previously unseen data. Accuracy measures are given in Section 6.12. Accuracy can be estimated
using one or more test sets that are independent of the training set. Estimation techniques, such as cross-
validation and bootstrapping, are described in Section 6.13. Strategies for improving the accuracy of a model
are given in Section 6.14. Since the accuracy computed is only an estimate of how well the classifier or
predictor will do on new data tuples, confidence limits can be computed to help gauge this estimate. This is
discussed in Section 6.15.

• Speed: This refers to the computational costs involved in generating and using the given classifier or
predictor.

• Robustness: This is the ability of the classifier or predictor to make correct predictions given noisy data or
data with missing values.

• Scalability: This refers to the ability to construct the classifier or predictor efficiently given large amounts
of data.

• Interpretability: This refers to the level of understanding and insight that is provided by the classifier
or predictor. Interpretability is subjective and therefore more difficult to assess. We discuss some work in
this area, such as the extraction of classification rules from a “black box” neural network classifier called
backpropagation (Section 6.6.4).

These issues are discussed throughout the chapter with respect to the various classification and prediction
methods presented. Recent data mining research has contributed to the development of scalable algorithms for
classification and prediction. Additional contributions include the exploration of mined “associations” between
attributes and their use for effective classification. Model selection is discussed in Section 6.15.

6.3 Classification by Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision tree
is a flow-chart-like tree structure, where each internal node (non-leaf node) denotes a test on an attribute,
each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label.
The topmost node in a tree is the root node. A typical decision tree is shown in Figure 6.2. It represents the
concept buys computer, that is, it predicts whether or not a customer at AllElectronics is likely to purchase a
computer. Internal nodes are denoted by rectangles, and leaf nodes are denoted by ovals. Some decision tree
algorithms produce only binary trees (where each internal node branches to exactly two other nodes), while others
can produce non-binary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class label is
unknown, the attribute values of the tuple are tested against the decision tree. A path is traced from the root to
a leaf node, which holds the class prediction for that tuple. Decision trees can easily be converted to classification
rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does not require any
domain knowledge or parameter setting and therefore is appropriate for exploratory knowledge discovery. Decision
trees can handle high dimensional data. Their representation of acquired knowledge in tree form is intuitive and
generally easy to assimilate by humans. The learning and classification steps of decision tree induction are simple
and fast. In general, decision tree classifiers have good accuracy. However, successful use may depend on the data
at hand. Decision tree induction algorithms have been used for classification in many application areas, such as
medicine, manufacturing and production, financial analysis, astronomy, and molecular biology. Decision trees are
the basis of several commercial rule induction systems.
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Figure 6.2: A decision tree for the concept buys computer, indicating whether or not a customer at AllElectronics
is likely to purchase a computer. Each internal (nonleaf) node represents a test on an attribute. Each leaf node
represents a class (either buys computer = yes or buys computer = no).

In Section 6.3.1, we describe a basic algorithm for learning decision trees. During tree construction, attribute
selection measures are used to select the attribute that best partitions the tuples into distinct classes. Popular
measures of attribute selection are given in Section 6.3.2. When decision trees are built, many of the branches may
reflect noise or outliers in the training data. Tree pruning attempts to identify and remove such branches, with the
goal of improving classification accuracy on unseen data. Tree pruning is described in Section 6.3.3. Scalability
issues for the induction of decision trees from large databases are discussed in Section 6.3.4.

6.3.1 Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a decision
tree algorithm known as ID3 (Iterative Dichotomiser). This work expanded on earlier work on concept learning
systems, described by E. B. Hunt, J. Marin, and P. T. Stone. Quinlan later presented C4.5 (a successor of
ID3), which became a benchmark to which newer supervised learning algorithms are often compared. In 1984, a
group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published the book Classification and
Regression Trees (CART), which described the generation of binary decision trees. ID3 and CART were invented
independently of one another at around the same time, yet follow a similar approach for learning decision trees
from training tuples. These two cornerstone algorithms spawned a flurry of work on decision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., non-backtracking) approach where decision trees are constructed
in a top-down recursive divide-and-conquer manner. The vast majority of algorithms for decision tree induction
also follow such a top-down approach, which starts with a training set of tuples and their associated class labels.
The training set is recursively partitioned into smaller subsets as the tree is being built. A basic decision tree
algorithm is summarized in Figure 6.3. At first glance, the algorithm may appear long, but fear not! It is quite
straightforward. The strategy is as follows.

• The algorithm is called with three parameters: D, attribute list, and Attribute selection method. We refer
to D as a data partition. Initially, it is the complete set of training tuples and their associated class labels.
The parameter attribute list is a list of attributes describing the tuples. Attribute selection method specifies
a heuristic procedure for selecting the attribute that “best” discriminates the given tuples according to class.
This procedure employs an attribute selection measure, such as information gain or the gini index. Whether
or not the tree is strictly binary is generally driven by the attribute selection measure. Some attribute
selection measures, such as the gini index, enforce the resulting tree to be binary. Others, like information
gain, do not, therein allowing multiway splits (i.e., two or more branches to be grown from a node).

• The tree starts as a single node, N , representing the training tuples in D (step 1).5

5The partition of class-labeled training tuples at node N is the set of tuples that follow a path from the root of the tree to node
N when being processed by the tree. This set is sometimes referred to in the literature as the family of tuples at node N . We have
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Algorithm: Generate decision tree. Generate a decision tree from the training tuples of data partition D.

Input:

• Data partition, D, which is a set of training tuples and their associated class labels;

• attribute list, the set of candidate attributes;

• Attribute selection method, a procedure to determine the splitting criterion that “best” partitions the data tuples
into individual classes. This criterion consists of a splitting attribute and, possibly, either a split point or splitting

subset.

Output: A decision tree.

Method:

(1) create a node N ;
(2) if tuples in D are all of the same class, C then

(3) return N as a leaf node labeled with the class C;
(4) if attribute list is empty then

(5) return N as a leaf node labeled with the majority class in D; // majority voting
(6) apply Attribute selection method(D, attribute list) to find “best” splitting criterion;
(7) label node N with splitting criterion;
(8) if splitting attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees
(9) attribute list ← attribute list − splitting attribute; // remove splitting attribute

(10) for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition
(11) let Dj be the set of data tuples in D satisfying outcome j; // a partition
(12) if Dj is empty then

(13) attach a leaf labeled with the majority class in D to node N ;
(14) else attach the node returned by Generate decision tree(Dj , attribute list) to node N ;

endfor

(15) return N ;

Figure 6.3: Basic algorithm for inducing a decision tree from training tuples.

• If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that class (steps 2
and 3). Note that steps 4 and 5 are terminating conditions. All of the terminating conditions are explained
at the end of the algorithm.

• Otherwise, the algorithm calls Attribute selection method to determine the splitting criterion. The splitting
criterion tells us which attribute to test at node N by determining the “best” way to separate or partition the
tuples in D into individual classes (step 6). The splitting criterion also tells us which branches to grow from
node N with respect to the outcomes of the chosen test. More specifically, the splitting criterion indicates
the splitting attribute and may also indicate either a split point or a splitting subset. The splitting
criterion is determined so that, ideally, the resulting partitions at each branch are as “pure” as possible. A
partition is pure if all of the tuples in it belong to the same class. In other words, if we were to split up the
tuples in D according to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting
partitions to be as pure as possible.

• The node N is labeled with the splitting criterion, which serves as a test at the node (step 7). A branch
is grown from node N for each of the outcomes of the splitting criterion. The tuples in D are partitioned
accordingly (steps 10-11). There are three possible scenarios, as illustrated in Figure 6.4. Let A be the
splitting attribute. A has v distinct values, {a1, a2, · · · , av}, based on the training data.

1. A is discrete-valued : In this case, the outcomes of the test at node N correspond directly to the known

referred to this set as the “tuples represented at node N”, “the tuples that reach node N”, or simply “the tuples at node N”. Rather
than storing the actual tuples at a node, most implementations store pointers to these tuples.
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Figure 6.4: Three possibilities for partitioning tuples based on the splitting criterion, shown with examples. Let
A be the splitting attribute. (a) If A is discrete-valued then one branch is grown for each known value of A. (b)
If A is continuous-valued then two branches are grown, corresponding to A ≤ split point and A > split point. (c)
If A is discrete-valued and a binary tree must be produced then the test is of the form A ∈ SA, where SA is the
splitting subset for A. [to editor The symbol ∈ somehow is not appearing in A ∈ SA. Please fix! Also, two lines
from part (a) show up on screen but not in printout. Please check. Thanks!]

values of A. A branch is created for each known value, aj , of A and labeled with that value (Figure 6.4a)).
Partition Dj is the subset of class-labeled tuples in D having value aj of A. Since all of the tuples in a
given partition have the same value for A, then A need not be considered in any future partitioning of
the tuples. Therefore, it is removed from attribute list (steps 8-9).

2. A is continuous-valued : In this case, the test at node N has two possible outcomes, corresponding to
the conditions A ≤ split point and A > split point, respectively, where split point is the split point
returned by Attribute selection method as part of the splitting criterion. (In practice, the split point, a,
is often taken as the midpoint of two known adjacent values of A and therefore may not actually be a
pre-existing value of A from the training data.) Two branches are grown from N and labeled according
to the above outcomes (Figure 6.4b)). The tuples are partitioned such that D1 holds the subset of
class-labeled tuples in D for which A ≤ split point, while D2 holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute selection measure
or algorithm being used): The test at node N is of the form “A ∈ SA?”. SA is the splitting subset for
A, returned by Attribute selection method as part of the splitting criterion. It is a subset of the known
values of A. If a given tuple has value aj of A and if aj ∈ SA, then the test at node N is satisfied. Two
branches are grown from N (Figure 6.4c)). By convention, the left branch out of N is labeled yes so
that D1 corresponds to the subset of class-labeled tuples in D that satisfy the test. The right branch
out of N is labeled no so that D2 corresponds to the subset of class-labeled tuples from D that do not
satisfy the test.

• The algorithm uses the same process recursively to form a decision tree for the tuples at each resulting
partition, Dj , of D (step 14).
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• The recursive partitioning stops only when any one of the following terminating conditions is true:

1. All of the tuples in partition D (represented at node N) belong to the same class (steps 2 and 3), or

2. There are no remaining attributes on which the tuples may be further partitioned (step 4). In this case,
majority voting is employed (step 5). This involves converting node N into a leaf and labelling it with
the most common class in D. Alternatively, the class distribution of the node tuples may be stored.

3. There are no tuples for a given branch, i.e., a partition Dj is empty (step 12). In this case, a leaf is
created with the majority class in D (step 13).

• The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n × |D| × log(|D|)), where n is the
number of attributes describing the tuples in D and |D| is the number of training tuples in D. This means that
the computational cost of growing a tree grows at most n× |D| × log(|D|) with |D| tuples. The proof is left as an
exercise.

Incremental versions of decision tree induction have also been proposed. When given new training data, these
restructure the decision tree acquired from learning on previous training data, rather than relearning a new tree
from scratch.

Differences in decision tree algorithms include how the attributes are selected in creating the tree (Section 6.3.2)
and the mechanisms used for pruning (Section 6.3.3). The basic algorithm described above requires one pass over
the training tuples in D for each level of the tree. This can lead to long training times and lack of available memory
when dealing with large databases. Improvements regarding the scalability of decision tree induction are discussed
in Section 6.3.4. A discussion of strategies for extracting rules from decision trees is given in Section 6.5.2 regarding
rule-based classification.

6.3.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates a given
data partition, D, of class-labeled training tuples into individual classes. If we were to splitD into smaller partitions
according to the outcomes of the splitting criterion, ideally each partition would be pure (where all of the tuples
that fall into a given partition would belong to the same class). Conceptually, the “best” splitting criterion is the
one that most closely results in such a scenario. Attribute selection measures are also known as splitting rules
since they determine how the tuples at a given node are to be split. The attribute selection measure provides a
ranking for each attribute describing the given training tuples. The attribute having the best score for the measure6

is chosen as the splitting attribute for the given tuples. If the splitting attribute is continuous-valued or if we are
restricted to binary trees then, respectively, either a split point or a splitting subset must also be determined as part
of the splitting criterion. The tree node created for partition D is labeled with the splitting criterion, branches are
grown for each outcome of the criterion, and the tuples are partitioned accordingly. This section describes three
popular attribute selection measures—information gain, gain ratio, and gini index.

The notation used herein is as follows. Let D, the data partition, be a training set of class-labeled tuples.
Suppose the class label attribute has m distinct values defining m distinct classes, Ci (for i = 1, . . . ,m). Let Ci,D
be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the number of tuples in D and Ci,D, respectively.

Information gain

ID3 uses information gain as its attribute selection measure. This measure is based on pioneering work by
Claude Shannon on information theory, which studied the value or “information content” of messages. Let node
N represent or hold the tuples of partition D. The attribute with the highest information gain is chosen as

6Depending on the measure, either the highest or lowest score is chosen as the best, i.e., some measures strive to maximize while
others strive to minimize.
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the splitting attribute for node N . This attribute minimizes the information needed to classify the tuples in
the resulting partitions and reflects the least randomness or “impurity” in these partitions. Such an approach
minimizes the expected number of tests needed to classify a given tuple and guarantees that a simple (but not
necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D is given by

Info(D) = −
m
∑

i=1

pi log2(pi), (6.1)

where pi is the probability that an arbitrary tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. A
log function to the base 2 is used since the information is encoded in bits. Info(D) is just the average amount of
information needed to identify the class label of a tuple in D. Note that, at this point, the information we have is
based solely on the proportions of tuples of each class. Info(D) is also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values, {a1, a2, · · · , av},
as observed from the training data. If A is discrete-valued, these values correspond directly to the v outcomes of a
test on A. Attribute A can be used to split D into v partitions or subsets, {D1, D2, · · · , Dv}, where Dj contains
those tuples in D that have outcome aj of A. These partitions would correspond to the branches grown from node
N . Ideally, we would like this partitioning to produce an exact classification of the tuples. That is, we would
like for each partition to be pure. However, it is quite likely that the partitions will be impure, e.g., where a
partition may contain a collection of tuples from different classes rather than from a single class. How much more
information would we still need (after the partitioning) in order to arrive at an exact classification? This amount
is measured by

InfoA(D) =
v
∑

j=1

|Dj |
|D| × Info(Dj). (6.2)

The term
|Dj |
|D| acts as the weight of the jth partition. InfoA(D) is the expected information required to classify

a tuple from D based on the partitioning by A. The smaller the expected information (still) required, the greater
the purity of the partitions.

Information gain is defined as the difference between the original information requirement (i.e., based on just
the proportion of classes) and the new requirement (i.e., obtained after partitioning on A). That is,

Gain(A) = Info(D)− InfoA(D). (6.3)

In other words, Gain(A) tells us how much would be gained by branching on A. It is the expected reduction in
the information requirement caused by knowing the value of A. The attribute A with the highest information gain
(Gain(A)), is chosen as the splitting attribute at node N . This is equivalent to saying that we want to partition on
the attribute A that would do the “best classification”, so that the amount of information still required to finish
classifying the tuples is minimal (i.e., minimum InfoA(D)).

Example 6.1 Induction of a decision tree using information gain. Table 6.1 presents a training set, D,
of class-labeled tuples randomly selected from the AllElectronics customer database. (The data are adapted from
[Qui86]. In this example, each attribute is discrete-valued. Continuous-valued attributes have been generalized.)
The class label attribute, buys computer, has two distinct values (namely, {yes, no}); therefore, there are two
distinct classes (that is, m = 2). Let class C1 correspond to yes and class C2 correspond to no. There are 9 tuples
of class yes and 5 tuples of class no. A (root) node N is created for the tuples in D. To find the splitting criterion
for these tuples, we must compute the information gain of each attribute. We first use Equation (6.1) to compute
the expected information needed to classify a tuple in D:

Info(D) = − 9

14
log2

( 9

14

)

− 5

14
log2

( 5

14

)

= 0.940 bits.

Next, we need to compute the expected information requirement for each attribute. Let’s start with the
attribute age. We need to look at the distribution of yes and no tuples for each category of age. For the age
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RID age income student credit rating Class: buys computer
1 youth high no fair no
2 youth high no excellent no
3 middle aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes
10 senior medium yes fair yes
11 youth medium yes excellent yes
12 middle aged medium no excellent yes
13 middle aged high yes fair yes
14 senior medium no excellent no

Table 6.1: Class-labeled training tuples from the AllElectronics customer database.

category “youth”, there are 2 yes tuples and 3 no tuples. For the category “middle aged”, there are 4 yes tuples
and 0 no tuples. For the category “senior”, there are 3 yes tuples and 2 no tuples. Using Equation (6.2), the
expected information needed to classify a tuple in D if the tuples are partitioned according to age is

Infoage(D) =
5

14
× (−2

5
log2

2

5
− 3

5
log2

3

5
)

+
4

14
× (−4

4
log2

4

4
− 0

4
log2

0

4
)

+
5

14
× (−3

5
log2

3

5
− 2

5
log2

2

5
)

= 0.694 bits.

Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D)− Infoage(D) = 0.940− 0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits, and Gain(credit rating)
= 0.048 bits. Since age has the highest information gain among the attributes, it is selected as the splitting
attribute. Node N is labeled with age, and branches are grown for each of the attribute’s values. The tuples are
then partitioned accordingly, as shown in Figure 6.5. Notice that the tuples falling into the partition for age =
middle aged all belong to the same class. Since they all belong to class “yes”, a leaf should therefore be created
at the end of this branch and labeled with “yes”. The final decision tree returned by the algorithm is shown in
Figure 6.2.

“But how can we compute the information gain of an attribute that is continuous-valued, unlike above?” Suppose,
instead, that we have an attribute A that is continuous-valued, rather than discrete-valued. (For example, suppose
that instead of the discretized version of age above, we instead have the raw values for this attribute.) For such a
scenario, we must determine the “best” split point for A, where the split point is a threshold on A. We first sort
the values of A in increasing order. Typically, the midpoint between each pair of adjacent values is considered as
a possible split point. Therefore, given v values of A, then v − 1 possible splits are evaluated. For example, the
midpoint between the values ai and ai+1 of A is

ai + ai+1

2
. (6.4)

If the values of A are sorted in advance, then determining the best split for A requires only one pass through the
values. For each possible split point for A, we evaluate InfoA(D), where the number of partitions is two, i.e.,
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Figure 6.5: The attribute age has the highest information gain and therefore becomes the splitting attribute at
the root node of the decision tree. Branches are grown for each outcome of age. The tuples are shown partitioned
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v = 2 (or j = 1, 2) in Equation (6.2). The point with the minimum expected information requirement for A is
selected as the split point for A. D1 is the set of tuples in D satisfying A ≤ split point and D2 is the set of tuples
in D satisfying A > split point.

Gain ratio

The information gain measure is biased towards tests with many outcomes. That is, it prefers to select attributes
having a large number of values. For example, consider an attribute that acts as a unique identifier, such as
product ID. A split on product ID would result in a large number of partitions (as many as there are values), each
one containing just one tuple. Since each partition is pure, the information required to classify data set D based
on this partitioning would be Infoproduct ID(D) = 0. Therefore, the information gained by partitioning on this
attribute is maximal. Clearly, such a partitioning is useless for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, which attempts to overcome
this bias. It applies a kind of normalization to information gain using a “split information” value defined analogously
with Info(D) as

SplitInfoA(D) = −
v
∑

j=1

|Dj |
|D| × log2

( |Dj |
|D|

)

. (6.5)

This value represents the potential information generated by splitting the training data set, D, into v partitions,
corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, it considers the number
of tuples having that outcome with respect to the total number of tuples in D. It differs from information gain,
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which measures the information with respect to classification that is acquired based on the same partitioning. The
gain ratio is defined as

GainRatio(A) =
Gain(A)

SplitInfo(A)
. (6.6)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note, however, that as the split
information approaches 0, the ratio becomes unstable. A constraint is added to avoid this, whereby the information
gain of the test selected must be large—at least as great as the average gain over all tests examined.

Example 6.2 Computation of gain ratio for the attribute income. A test on income splits the data
of Table 6.1 into three partitions, namely low, medium, and high, containing 4, 6, and 4 tuples, respectively. To
compute the gain ratio of income, we first use Equation (6.5) to obtain

SplitInfoA(D) = − 4

14
× log2

( 4

14

)

− 6

14
× log2

( 6

14

)

− 4

14
× log2

( 4

14

)

= 0.926.

From Example 6.1, we have Gain(income) = 0.029. Therefore, GainRatio(income) = 0.029/0.926 = 0.013.

Gini index

The gini index is used in CART. Using the notation described above, the gini index measures the impurity of D,
a data partition or set of training tuples, as

Gini(D) = 1−
m
∑

i=1

p2
i , (6.7)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. The sum is
computed over m classes.

The gini index considers a binary split for each attribute. Let’s first consider the case where A is a discrete-
valued attribute having v distinct values, {a1, a2, · · · , av}, occurring in D. To determine the best binary split on
A, we examine all of the possible subsets that can be formed using known values of A. Each subset, SA, can be
considered as a binary test for attribute A of the form “A ∈ SA?”. Given a tuple, this test is satisfied if the value
of A for the tuple is among the values listed in SA. If A has v possible values then there are 2v possible subsets.
For example, if income has three possible values, namely {low, medium, high}, then the possible subsets are {low,
medium, high}, {low, medium}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the
power set, {low, medium, high}, and the empty set from consideration since, conceptually, they do not represent
a split. Therefore, there are 2v − 2 possible ways to form two partitions of the data, D, based on a binary split on
A.

When considering a binary split, we compute a weighted sum of the impurity of each resulting partition. For
example, if a binary split on A partitions D into D1 and D2, the gini index of D given that partitioning is

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2). (6.8)

For each attribute, each of the possible binary splits is considered. For a discrete-valued attribute, the subset that
gives the minimum gini index for that attribute is selected as its splitting subset.

For continuous-valued attributes, each possible split point must be considered. The strategy is similar to that
described above for information gain, where the midpoint between each pair of (sorted) adjacent values is taken
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as a possible split point. The point giving the minimum gini index for a given (continuous-valued) attribute is
taken as the split point of that attribute. Recall that for a possible split point of A, D1 is the set of tuples in D
satisfying A ≤ split point and D2 is the set of tuples in D satisfying A > split point.

The reduction in impurity that would be incurred by a binary split on a discrete- or continuous-valued attribute
A is

∆Gini(A) = Gini(D)−GiniA(D). (6.9)

The attribute that maximizes the reduction in impurity (or, equivalently, has the minimum gini index) is selected
as the splitting attribute. This attribute and either its splitting subset (for a discrete-valued splitting attribute)
or split point (for a continuous-valued splitting attribute) together form the splitting criterion.

Example 6.3 Induction of a decision tree using gini index. Let D be the training data of Table 6.1
where there are 9 tuples belonging to the class buys computer = yes and the remaining 5 tuples belong to the class
buys computer = no. A (root) node N is created for the tuples in D. We first use Equation (6.7) for gini index to
compute the impurity of D:

Gini(D) = 1−
( 9

14

)2

−
( 5

14

)2

= 0.459.

To find the splitting criterion for the tuples in D, we need to compute the gini index for each attribute. Let’s
start with the attribute income and consider each of the possible splitting subsets. Consider the subset {low,
medium}. This would result in 10 tuples in partition D1 satisfying the condition “income ∈ {low, medium}”.
The remaining 4 tuples of D would be assigned to partition D2. The gini index value computed based on this
partitioning is

Giniincome ∈ {low,medium}(D) =
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14

(

1− (
6

10
)2 − (

4

10
)2
)

+
4

14

(

1− (
1

4
)2 − (

3

4
)2
)

= 0.450

= Giniincome ∈ {high}(D)

Similarly, the gini index values for splits on the remaining subsets are: 0.315 (for the subsets {low, high} and
{medium}) and 0.300 (for the subsets {medium, high} and {low}). Therefore, the best binary split for attribute
income is on {medium, high} (or {low}) because it minimizes the gini index. Evaluating the attribute, we obtain
{youth, senior} (or {middle aged}) as the best split for age with a gini index of 0.375; the attributes {student}
and {credit rating} are both binary, with gini index values of 0.367 and 0.429, respectively.

The attribute income and splitting subset {medium, high} therefore give the minimum gini index overall, with
a reduction in impurity of 0.459 − 0.300 = 0.159. The binary split “income ∈ {medium, high}” results in the
maximum reduction in impurity of the tuples in D and is returned as the splitting criterion. Node N is labeled
with the criterion, two branches are grown from it, and the tuples are partitioned accordingly. Hence, the gini
index has selected income instead of age at the root node, unlike the (non-binary) tree created by information gain
(Example 6.1).

This section on attribute selection measures was not intended to be exhaustive. We have shown three measures
that are commonly used for building decision trees. These measures are not without their biases. Information
gain, as we saw, is biased towards multivalued attributes. Although the gain ratio adjusts for this bias, it tends to
prefer unbalanced splits in which one partition is much smaller than the others. The gini index is biased towards
multivalued attributes and has difficulty when the number of classes is large. It also tends to favor tests that
result in equal-sized partitions and purity in both partitions. Although biased, these measures give reasonably
good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree algorithm that is popular
in marketing, uses an attribute selection measure that is based on the statistical χ2 test for independence. Other
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Figure 6.6: An unpruned decision tree, and a pruned version of it.

measures include C-SEP (which performs better than information gain and gini index in certain cases) and G-
statistic (an information theoretic measure that is a close approximation to χ2 distribution).

Attribute selection measures based on the Minimum Description Length (MDL) principle have the least
bias toward multivalued attributes. MDL-based measures use encoding techniques to define the “best” decision
tree as the one that requires the fewest number of bits to both (1) encode the tree and (2) encode the exceptions
to the tree (i.e., cases that are not correctly classified by the tree). Its main idea is that the simplest of solutions
is preferred.

Other attribute selection measures consider multivariate splits, i.e., where the partitioning of tuples is based
on a combination of attributes, rather than on a single attribute. The CART system, for example, can find
multivariate splits based on a linear combination of attributes. Multivariate splits are a form of attribute (or
feature) construction, where new attributes are created based on the existing ones. (Attribute construction is
also discussed in Chapter 2, as a form of data transformation.) These other measures mentioned here are beyond
the scope of this book. Additional references are given in the Bibliographic Notes at the end of this chapter.

“Which attribute selection measure is the best?” All measures have some bias. It has been shown that the time
complexity of decision tree induction generally increases exponentially with tree height. Hence, measures that tend
to produce shallower trees (e.g., with multiway rather than binary splits, and that favor more balanced splits)
may be preferred. However, some studies have found that shallow trees tend to have a large number of leaves and
higher error rates. In spite of several comparative studies, no one attribute selection measure has been found to
be significantly superior to others. Most measures give quite good results.

6.3.3 Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training data due to noise or
outliers. Tree pruning methods address this problem of overfitting the data. Such methods typically use statistical
measures to remove the least reliable branches. An unpruned tree and a pruned version of it are shown in Figure 6.6.
Pruned trees tend to be smaller and less complex and, thus, easier to comprehend. They are usually faster and
better at correctly classifying independent test data (i.e., of previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning: prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g., by deciding not to
further split or partition the subset of training tuples at a given node). Upon halting, the node becomes a leaf.
The leaf may hold the most frequent class among the subset tuples or the probability distribution of those tuples.
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When constructing a tree, measures such as statistical significance, information gain, gini index, and so on, can
be used to assess the goodness of a split. If partitioning the tuples at a node would result in a split that falls below
a prespecified threshold, then further partitioning of the given subset is halted. There are difficulties, however, in
choosing an appropriate threshold. High thresholds could result in oversimplified trees, while low thresholds could
result in very little simplification.

The second and more common approach is postpruning, which removes subtrees from a “fully grown” tree.
A subtree at a given node is pruned by removing its branches and replacing it with a leaf. The leaf is labeled with
the most frequent class among the subtree being replaced. For example, notice the subtree at node “A3?” in the
unpruned tree of Figure 6.6. Suppose that the most common class within this subtree is “class B”. In the pruned
version of the tree, the subtree in question is pruned by replacing it with the leaf “class B”.

The cost complexity pruning algorithm used in CART is an example of the postpruning approach. This
approach considers the cost complexity of a tree to be a function of the number of leaves in the tree and the
error rate of the tree (where the error rate is the percentage of tuples misclassified by the tree). It starts from
the bottom of the tree. For each internal node, N , it computes the cost complexity of the subtree at N , and
the cost complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf node). The two values
are compared. If pruning the subtree at node N would result in a smaller cost complexity, then the subtree is
pruned. Otherwise, it is kept. A pruning set of class-labeled tuples is used to estimate cost complexity. This set
is independent of the training set used to build the unpruned tree and of any test set used for accuracy estimation.
The algorithm generates a set of progressively pruned trees. In general, the smallest decision tree that minimizes
the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complexity method in that it
also uses error rate estimates to make decisions regarding subtree pruning. Pessimistic pruning, however, does not
require the use of a prune set. Instead, it uses the training set to estimate error rates. Recall that an estimate
of accuracy or error based on the training set is overly optimistic and, therefore, strongly biased. The pessimistic
pruning method therefore adjusts the error rates obtained from the training set by adding a penalty, so as to
counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based on the number of bits
required to encode them. The “best” pruned tree is the one that minimizes the number of encoding bits. This
method adopts the Minimum Description Length (MDL) principle, which was briefly introduced in Section 6.3.2.
The basic idea is that the simplest solution is preferred. Unlike cost complexity pruning, it does not require an
independent set of tuples.

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postpruning requires
more computation than prepruning, yet generally leads to a more reliable tree. No single pruning method has been
found to be superior over all others. While some pruning methods do depend on the availability of additional data
for pruning, this is usually not a concern when dealing with large databases.

Although pruned trees tend to be more compact than their unpruned counterparts, they may still be rather large
and complex. Decision trees can suffer from repetition and replication (Figure 6.7), making them overwhelming
to interpret. Repetition occurs when an attribute is repeatedly tested along a given branch of the tree (such as
“age < 60?”, followed by “age < 45”?, and so on). In replication, duplicate subtrees exist within the tree. These
situations can impede the accuracy and comprehensibility of a decision tree. The use of multivariate splits (splits
based on a combination of attributes) can prevent these problems. Another approach is to use a different form of
knowledge representation, such as rules, instead of decision trees. This is described in Section 6.5.2, which shows
how a rule-based classifier can be constructed by extracting IF-THEN rules from a decision tree.

6.3.4 Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory? In other words, how
scalable is decision tree induction?” The efficiency of existing decision tree algorithms, such as ID3, C4.5, and
CART, has been well established for relatively small data sets. Efficiency becomes an issue of concern when these
algorithms are applied to the mining of very large real-world databases. The pioneering decision tree algorithms
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Figure 6.7: An example of subtree (a) repetition (where an attribute is repeatedly tested along a given branch of
the tree, e.g., age) and (b) replication (where duplicate subtrees exist within a tree, such as the subtree headed
by the node “credit rating?”).

that we have discussed so far have the restriction that the training tuples should reside in memory. In data mining
applications, very large training sets of millions of tuples are common. Most often, the training data will not fit in
memory! Decision tree construction therefore becomes inefficient due to swapping of the training tuples in and out
of main and cache memories. More scalable approaches, capable of handling training data that are too large to fit
in memory, are required. Earlier strategies to “save space” included discretizing continuous-valued attributes and
sampling data at each node. These, however, still assume that the training set can fit in memory.

More recent decision tree algorithms that address the scalability issue have been proposed. Algorithms for the
induction of decision trees from very large training sets include SLIQ and SPRINT, both of which can handle
categorical and continuous-valued attributes. Both algorithms propose presorting techniques on disk-resident data
sets that are too large to fit in memory. Both define the use of new data structures to facilitate the tree construction.
SLIQ employs disk-resident attribute lists and a single memory-resident class list. The attribute lists and class
list generated by SLIQ for the tuple data of Table 6.2 are shown in Figure 6.8. Each attribute has an associated
attribute list, indexed by RID (a record identifier). Each tuple is represented by a linkage of one entry from each
attribute list to an entry in the class list (holding the class label of the given tuple), which in turn is linked to
its corresponding leaf node in the decision tree. The class list remains in memory since it is often accessed and
modified in the building and pruning phases. The size of the class list grows proportionally with the number of
tuples in the training set. When a class list cannot fit into memory, the performance of SLIQ decreases.

SPRINT uses a different attribute list data structure that holds the class and RID information, as shown in
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RID credit rating age buys computer
1 excellent 38 yes
2 excellent 26 yes
3 fair 35 no
4 excellent 49 no
. . . . . . . . . . . .

Table 6.2: Tuple data for the class buys computer.
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Figure 6.8: Attribute list and class list data structures used in SLIQ for the tuple data of Table 6.2. [to editor

Please italicize credit rating, age, RID, buys computer and node.]

Figure 6.9. When a node is split, the attribute lists are partitioned and distributed among the resulting child nodes
accordingly. When a list is partitioned, the order of the records in the list is maintained. Hence, partitioning lists
does not require resorting. SPRINT was designed to be easily parallelized, further contributing to its scalability.

While both SLIQ and SPRINT handle disk-resident data sets that are too large to fit into memory, the scalability
of SLIQ is limited by the use of its memory-resident data structure. SPRINT removes all memory restrictions, yet
requires the use of a hash tree proportional in size to the training set. This may become expensive as the training
set size grows.

To further enhance the scalability of decision-tree induction, a method called RainForest was proposed. It
adapts to the amount of main memory available and applies to any decision tree induction algorithm. The method
maintains an AVC-set (where AVC stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node,
describing the training tuples at the node. The AVC-set of an attribute A at node N gives the class label counts
for each value of A for the tuples at N . Figure 6.10 shows AVC-sets for the tuple data of Table 6.1. The set of
all AVC-sets at a node N is the AVC-group of N . The size of an AVC-set for attribute A at node N depends
only on the number of district values of A and the number of classes in the set of tuples at N . Typically, this size
should fit in memory, even for real-world data. RainForest has techniques, however, for handling the case where
the AVC-group does not fit in memory. RainForest can use any attribute selection measure and was shown to be
more efficient than earlier approaches employing aggregate data structures, such as SLIQ and SPRINT.

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction) is a decision tree algorithm that takes a
completely different approach to scalability—it is not based on the use of any special data structures. Instead,
it uses a statistical technique known as “bootstrapping” (Section 6.13.3) to create several smaller samples (or
subsets) of the given training data, each of which fits in memory. Each subset is used to construct a tree, resulting
in several trees. The trees are examined and used to construct a new tree, T ′, that turns out to be “very close” to
the tree that would have been generated if all of the original training data had fit in memory. BOAT can use any
attribute selection measure that selects binary splits and that is based on the notion of purity of partitions, such
as the gini index. BOAT uses a lower-bound on the attribute selection measure in order to detect if this “very
good” tree, T ′, is different than the “real” tree, T , that would have been generated using the entire data. It refines
T ′ in order to arrive at T .
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Figure 6.9: Attribute list data structure used in SPRINT for the tuple data of Table 6.2. [to editor Please
italicize credit rating, age, RID and buys computer.]
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Figure 6.10: The use of data structures to hold aggregate information regarding the training data (such as these
AVC-sets describing the data of Table 6.1) are one approach to improving the scalability of decision tree induction.
[to editor Please italicize age, income, student, credit rating and buys computer.]

BOAT usually requires only two scans of D. This is quite an improvement, even in comparison to traditional
decision tree algorithms (such as the basic algorithm in Figure 6.3), which require one scan per level of the tree!
BOAT was found to be two to three times faster than RainForest, while constructing exactly the same tree. An
additional advantage of BOAT is that it can be used for incremental updates. That is, BOAT can take new
insertions and deletions for the training data and update the decision tree to reflect these changes, without having
to reconstruct the tree from scratch.

6.4 Bayesian Classification

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class membership
probabilities, such as the probability that a given tuple belongs to a particular class.

Bayesian classification is based on Bayes’ theorem, described below. Studies comparing classification algorithms
have found a simple Bayesian classifier known as the naive Bayesian classifier to be comparable in performance
with decision tree and selected neural network classifiers. Bayesian classifiers have also exhibited high accuracy
and speed when applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a given class is independent of the
values of the other attributes. This assumption is called class conditional independence. It is made to simplify
the computations involved and, in this sense, is considered “naive.” Bayesian belief networks are graphical models,
which unlike naive Bayesian classifiers, allow the representation of dependencies among subsets of attributes.
Bayesian belief networks can also be used for classification.

Section 6.4.1 reviews basic probability notation and Bayes’ theorem. In Section 6.4.2 you will learn how to do
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naive Bayesian classification. Bayesian belief networks are described in Section 6.4.3.

6.4.1 Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early work in probability
and decision theory during the 18th century. Let X be a data tuple. In Bayesian terms, X is considered “evidence”.
As usual, it is described by measurements made on a set of n attributes. Let H be some hypothesis, such as that
the data tuple X belongs to a specified class C. For classification problems, we want to determine P (H|X), the
probability that the hypothesis H holds given the “evidence” or observed data tuple X. In other words, we are
looking for the probability that tuple X belongs to class C, given that we know the attribute description of X.

P (H|X) is the posterior probability, or a posteriori probability, of H conditioned on X. For example,
suppose our world of data tuples is confined to customers described by the attributes age and income, respectively,
and that X is a 35 year old customer with an income of $40K. Suppose that H is the hypothesis that our customer
will buy a computer. Then P (H|X) reflects the probability that customer X will buy a computer given that we
know the customer’s age and income.

In contrast, P (H) is the prior probability, or a priori probability, ofH. For our example, this is the probability
that any given customer will buy a computer, regardless of their age, income, or any other information, for that
matter. The posterior probability, P (H|X), is based on more information (e.g., customer information) than the
prior probability, P (H), which is independent of X.

Similarly, P (X|H) is the posterior probability of X conditioned on H. That is, it is the probability that a
customer, X, is 35 years old and earns $40K, given that we know the customer will buy a computer.

P (X) is the prior probability of X. Using our example, it is the probability that a person from our set of
customers is 35 years old and earns $40K.

“How are these probabilities estimated?” P (H), and P (X|H), and P (X) may be estimated from the given data,
as we shall see below. Bayes’ theorem is useful in that it provides a way of calculating the posterior probability,
P (H|X), from P (H), P (X|H), and P (X). Bayes’ theorem is

P (H|X) =
P (X|H)P (H)

P (X)
. (6.10)

Now that we’ve got that out of the way, in the next section, we will look at how Bayes’ theorem is used in the
naive Bayesian classifier.

6.4.2 Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is represented by an
n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n measurements made on the tuple from n
attributes, respectively, A1, A2, . . . , An.

2. Suppose that there are m classes, C1, C2, . . . , Cm. Given a tuple, X, the classifier will predict that X belongs
to the class having the highest posterior probability, conditioned on X. That is, the naive Bayesian classifier
predicts that tuple X belongs to the class Ci if and only if

P (Ci|X) > P (Cj |X) for 1 ≤ j ≤ m, j 6= i.

Thus we maximize P (Ci|X). The class Ci for which P (Ci|X) is maximized is called the maximum posteriori
hypothesis. By Bayes’ theorem (Equation (6.10)),

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
. (6.11)
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3. As P (X) is constant for all classes, only P (X|Ci)P (Ci) need be maximized. If the class prior probabilities
are not known, then it is commonly assumed that the classes are equally likely, that is, P (C1) = P (C2) =
. . . = P (Cm), and we would therefore maximize P (X|Ci). Otherwise, we maximize P (X|Ci)P (Ci). Note
that the class prior probabilities may be estimated by P (Ci) = |Ci,D|/|D|, where |Ci,D| is the number of
training tuples of class Ci in D.

4. Given data sets with many attributes, it would be extremely computationally expensive to compute P (X|Ci).
In order to reduce computation in evaluating P (X|Ci), the naive assumption of class conditional indepen-
dence is made. This presumes that the values of the attributes are conditionally independent of one another,
given the class label of the tuple, i.e., that there are no dependence relationships among the attributes. Thus,

P (X|Ci) =
n
∏

k=1

P (xk|Ci)

= P (x1|Ci)× P (x2|Ci)× . . . P (xn|Ci).
(6.12)

We can easily estimate the probabilities P (x1|Ci), P (x2|Ci), . . . , P (xn|Ci) from the training tuples. Recall
that here xk refers to the value of attribute Ak for tuple X. For each attribute, we look at whether the
attribute is categorical or continuous-valued. For instance, to compute P (X|Ci), we consider the following:

(a) If Ak is categorical, then P (xk|Ci) is the number of tuples of class Ci in D having the value xk for Ak,
divided by |Ci,D|, the number of tuples of class Ci in D.

(b) If Ak is continuous-valued then we need to do a bit more work, but the calculation is pretty straightfor-
ward. A continuous-valued attribute is typically assumed to have a Gaussian distribution with a mean
µ and standard deviation σ, defined by

g(x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (6.13)

so that

P (xk|Ci) = g(xk, µCi , σCi). (6.14)

These equations may appear daunting, but hold on! We need to compute µCi and σCi , which are
the mean (i.e., average) and standard deviation, respectively, of the values of attribute Ak for training
tuples of class Ci. We then plug these two quantities into Equation (6.13), together with xk, in order
to estimate P (xk|Ci). For example, let X = (35, $40K), where A1 and A2 are the attributes age and
income, respectively. Let the class label attribute be buys computer. The associated class label for
X is “yes”, i.e., buys computer = yes. Let’s suppose that age has not been discretized and therefore
exists as a continuous-valued attribute. Suppose that from the training set, we find that customers in
D who buy a computer are 38 ± 12 years of age. In other words, for attribute age and this class, we
have µ = 38 years and σ = 12. We can plug these quantities, along with x1 = 35 for our tuple X into
Equation (6.13) in order to estimate P(age = 35|buys computer = yes). For a quick review of mean and
standard deviation calculations, please see Section 2.2.

5. In order to predict the class label of X, P (X|Ci)P (Ci) is evaluated for each class Ci. The classifier predicts
that the class label of tuple X is the class Ci if and only if

P (X|Ci)P (Ci) > P (X|Cj)P (Cj) for 1 ≤ j ≤ m, j 6= i. (6.15)

In other words, the predicted class label is the class Ci for which P (X|Ci)P (Ci) is the maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this classifier in comparison to decision
tree and neural network classifiers have found it to be comparable in some domains. In theory, Bayesian classifiers
have the minimum error rate in comparison to all other classifiers. However, in practice this is not always the case
owing to inaccuracies in the assumptions made for its use, such as class conditional independence, and the lack of
available probability data.



24 CHAPTER 6. CLASSIFICATION AND PREDICTION

Bayesian classifiers are also useful in that they provide a theoretical justification for other classifiers that do not
explicitly use Bayes’ theorem. For example, under certain assumptions, it can be shown that many neural network
and curve-fitting algorithms output the maximum posteriori hypothesis, as does the naive Bayesian classifier.

Example 6.4 Predicting a class label using naive Bayesian classification. We wish to predict the class
label of a tuple using naive Bayesian classification, given the same training data as in Example 6.1 for decision
tree induction. The training data are in Table 6.1. The data tuples are described by the attributes age, income,
student, and credit rating. The class label attribute, buys computer, has two distinct values (namely, {yes, no}).
Let C1 correspond to the class buys computer = yes and C2 correspond to buys computer = no. The tuple we wish
to classify is

X = (age = youth, income = medium, student = yes, credit rating = fair)

We need to maximize P (X|Ci)P (Ci), for i = 1, 2. P (Ci), the prior probability of each class, can be computed
based on the training tuples:

P (buys computer = yes) = 9/14 = 0.643
P (buys computer = no) = 5/14 = 0.357

To compute P (X|Ci), for i = 1, 2, we compute the following conditional probabilities:

P (age = youth | buys computer = yes) = 2/9 = 0.222
P (age = youth | buys computer = no) = 3/5 = 0.600
P (income = medium | buys computer = yes) = 4/9 = 0.444
P (income = medium | buys computer = no) = 2/5 = 0.400
P (student = yes | buys computer = yes) = 6/9 = 0.667
P (student = yes | buys computer = no) = 1/5 = 0.200
P (credit rating = fair | buys computer = yes) = 6/9 = 0.667
P (credit rating = fair | buys computer = no) = 2/5 = 0.400

Using the above probabilities, we obtain

P (X|buys computer = yes) = P (age = youth | buys computer = yes) ×
P (income = medium | buys computer = yes) ×
P (student = yes | buys computer = yes) ×
P (credit rating = fair | buys computer = yes)

= 0.222× 0.444× 0.667× 0.667 = 0.044.

Similarly,

P (X|buys computer = no) = 0.600× 0.400× 0.200× 0.400 = 0.019.

To find the class, Ci, that maximizes P (X|Ci)P (Ci), we compute

P (X|buys computer = yes)P (buys computer = yes) = 0.044× 0.643 = 0.028
P (X|buys computer = no)P (buys computer = no) = 0.019× 0.357 = 0.007

Therefore, the naive Bayesian classifier predicts buys computer = yes for tuple X.

“What if I encounter probability values of zero?” Recall that in Equation (6.12), we estimate P (X|Ci) as
the product of the probabilities P (x1|Ci), P (x2|Ci), . . . , P (xn|Ci), based on the assumption of class conditional
independence. These probabilities can be estimated from the training tuples (step 4). We need to compute
P (X|Ci) for each class (i = 1, 2, . . . ,m) in order to find the class Ci for which P (X|Ci)P (Ci) is the maximum
(step 5). Let’s consider this calculation. For each attribute-value pair (i.e., Ak = xk, for k = 1, 2, . . . , n) in tuple X,
we need to count the number of tuples having that attribute-value pair, per class (i.e., per Ci, for i = 1, . . . ,m). In
Example 6.4, we have two classes (m = 2), namely buys computer = yes and buys computer = no. Therefore, for the
attribute-value pair student = yes of X, say, we need two counts—the number of customers who are students and
for which buys computer = yes (which contributes to P (X|buys computer = yes)), and the number of customers
who are students and for which buys computer = no (which contributes to P (X|buys computer = no)). But
what if, say, there are no training tuples representing students for the class buys computer = no, resulting in
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P (student = yes|buys computer = no) = 0? In other words, what happens if we should end up with a probability
value of zero for some P (xk|Ci)? Plugging this zero value into Equation (6.12) would return a zero probability for
P (X|Ci), even though, without the zero probability, we may have ended up with a high probability, suggesting
that X belonged to class Ci! A zero probability cancels the effects of all of the other (posteriori) probabilities (on
Ci) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training database, D, is so large so that
adding one to each count that we need would only make a negligible difference in the estimated probability value,
yet would conveniently avoid the case of probability values of zero. This technique for probability estimation is
known as the Laplacian correction or Laplace estimator, named after Pierre Laplace, a French mathematician
who lived from 1749-1827. If we have, say, q counts to which we each add one, then we must remember to add q
to the corresponding denominator used in the probability calculation. We illustrate this technique in the following
example.

Example 6.5 Using the Laplacian correction to avoid computing probability values of zero. Suppose
that for the class buys computer = yes in some training database, D, containing 1,000 tuples, we have 0 tuples with
income = low, 990 tuples with income = medium, and 10 tuples with income = high. The probabilities of these
events, without the Laplacian correction, are 0, 0.990 (from 999/1000), and 0.010 (from 10/1,000), respectively.
Using the Laplacian correction for the three quantities, we pretend that we have 1 more tuple for each income-value
pair. In this way, we instead obtain the following probabilities (rounded up to three decimal places):

1

1, 003
= 0.001,

991

1, 003
= 0.988, and

11

1, 003
= 0.011,

respectively. The “corrected” probability estimates are close to their “uncorrected” counterparts, yet the zero
probability value is avoided.

6.4.3 Bayesian Belief Networks

The naive Bayesian classifier makes the assumption of class conditional independence, that is, given the class
label of a tuple, the values of the attributes are assumed to be conditionally independent of one another. This
simplifies computation. When the assumption holds true, then the naive Bayesian classifier is the most accurate
in comparison with all other classifiers. In practice, however, dependencies can exist between variables. Bayesian
belief networks specify joint conditional probability distributions. They allow class conditional independencies to
be defined between subsets of variables. They provide a graphical model of causal relationships, on which learning
can be performed. Trained Bayesian belief networks can be used for classification. Bayesian belief networks are
also known as belief networks, Bayesian networks, and probabilistic networks. For brevity, we will refer
to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a set of conditional probability
tables (Figure 6.11). Each node in the directed acyclic graph represents a random variable. The variables may
be discrete or continuous-valued. They may correspond to actual attributes given in the data or to “hidden
variables” believed to form a relationship (e.g., in the case of medical data, a hidden variable may indicate a
syndrome, representing a number of symptoms that, together, characterize a specific disease). Each arc represents
a probabilistic dependence. If an arc is drawn from a node Y to a node Z, then Y is a parent or immediate
predecessor of Z, and Z is a descendent of Y . Each variable is conditionally independent of its nondescendents
in the graph, given its parents.

Figure 6.11 is a simple belief network, adapted from [RBKK95] for six Boolean variables. The arcs in Fig-
ure 6.11(a) allow a representation of causal knowledge. For example, having lung cancer is influenced by a person’s
family history of lung cancer, as well as whether or not the person is a smoker. Note that the variable PostiveXRay
is independent of whether the patient has a family history of lung cancer or is a smoker, given that we know the
patient has lung cancer. In other words, once we know the outcome of the variable LungCancer, then the variables
FamilyHistory and Smoker do not provide any additional information regarding PositiveXRay. The arcs also show
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Figure 6.11: A simple Bayesian belief network: (a) A proposed causal model, represented by a directed acyclic
graph. (b) The conditional probability table for the values of the variable LungCancer (LC) showing each pos-
sible combination of the values of its parent nodes, FamilyHistory (FH) and Smoker (S). Figure is adapted from
[RBKK95]. [to editor Please italicize the text in each node as they are attribute names, along with their
corresponding abbreviations (LC, FH, etc.).]

that the variable LungCancer is conditionally independent of Emphysema, given its parents, FamilyHistory and
Smoker.

A belief network has one conditional probability table (CPT) for each variable. The CPT for a variable Y
specifies the conditional distribution P (Y |Parents(Y )), where Parents(Y ) are the parents of Y . Figure 6.11(b)
shows a CPT for the variable LungCancer. The conditional probability for each known value of LungCancer is
given for each possible combination of values of its parents. For instance, from the upper leftmost and bottom
rightmost entries, respectively, we see that

P (LungCancer = yes | FamilyHistory =yes Smoker = yes”) = 0.8
P (LungCancer = no | FamilyHistory = no, Smoker = no”) = 0.9

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes Y1, . . . , Yn, respectively. Recall
that each variable is conditionally independent of its nondescendents in the network graph, given its parents. This
allows the network to provide a complete representation of the existing joint probability distribution with the
following equation:

P (x1, . . . , xn) =

n
∏

i=1

P (xi|Parents(Yi)), (6.16)

where P (x1, . . . , xn) is the probability of a particular combination of values of X, and the values for P (xi|Parents(Yi))
correspond to the entries in the CPT for Yi.

A node within the network can be selected as an “output” node, representing a class label attribute. There
may be more than one output node. Various algorithms for learning can be applied to the network. Rather
than returning a single class label, the classification process can return a probability distribution that gives the
probability of each class.

6.4.4 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of a belief network, a number of scenarios
are possible. The network topology (or “layout” of nodes and arcs) may be given in advance or inferred from the
data. The network variables may be observable or hidden in all or some of the training tuples. The case of hidden
data is also referred to as missing values or incomplete data.
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Several algorithms exist for learning the network topology from the training data given observable variables.
The problem is one of discrete optimization. For solutions, please see the bibliographic notes at the end of this
chapter. Human experts usually have a good grasp of the direct conditional dependencies that hold in the domain
under analysis, which helps in network design. Experts must specify conditional probabilities for the nodes that
participate in direct dependencies. These probabilities can then be used to compute the remaining probability
values.

If the network topology is known and the variables are observable, then training the network is straightforward.
It consists of computing the CPT entries, as is similarly done when computing the probabilities involved in naive
Bayesian classification.

When the network topology is given and some of the variables are hidden, there are various methods to choose
from for training the belief network. We will describe a promising method of gradient descent. For those without
an advanced math background, the description may look rather intimidating with its calculus-packed formulae.
However, packaged software exists to solve these equations and the general idea is easy to follow.

Let D be a training set of data tuples, X1, X2, . . ., X|D|. Training the belief network means that we must
learn the values of the CPT entries. Let wijk be a CPT entry for the variable Yi = yij having the parents Ui = uik,
where wijk ≡ P (Yi = yij |Ui = uik). For example, if wijk is the upper leftmost CPT entry of Figure 6.11(b), then
Yi is LungCancer ; yij is its value, “yes”; Ui lists the parent nodes of Yi, namely, {FamilyHistory, Smoker}; and
uik lists the values of the parent nodes, namely, {“yes”, “yes”}. The wijk are viewed as weights, analogous to the
weights in hidden units of neural networks (Section 6.6). The set of weights is collectively referred to as W . The
weights are initialized to random probability values. A gradient descent strategy performs greedy hill-climbing. At
each iteration, the weights are updated and will eventually converge to a local optimum solution.

A gradient descent strategy is used to search for the wijk values that best model the data, based on the
assumption that each possible setting of wijk is equally likely. Such a strategy is iterative. It searches for a
solution along the negative of the gradient (i.e., steepest descent) of a criterion function. We want to find the set of
weights, W , that maximize this function. To start with, the weights are initialized to random probability values.
The gradient descent method performs greedy hill-climbing in that, at each iteration or step along the way, the
algorithm moves towards what appears to be the best solution at the moment, without backtracking. The weights
are updated at each iteration. Eventually, they converge to a local optimum solution.

For our problem, we maximize Pw(D) =
∏|D|

d=1 Pw(Xd). This can be done by following the gradient of lnPw(S),
which makes the problem simpler. Given the network topology and initialized wijk, the algorithm proceeds as
follows:

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)

∂wijk
=

|D|
∑

d=1

P (Yi = yij , Ui = uik|Xd)

wijk
(6.17)

The probability in the right-hand side of Equation (6.17) is to be calculated for each training tuple, Xd, in
D. For brevity, let’s refer to this probability simply as p. When the variables represented by Yi and Ui are
hidden for some Xd, then the corresponding probability p can be computed from the observed variables of
the tuple using standard algorithms for Bayesian network inference such as those available in the commercial
software package HUGIN (http://www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

wijk ← wijk + (l)
∂lnPw(D)

∂wijk
, (6.18)

where l is the learning rate representing the step size and ∂lnPw(D)
∂wijk

is computed from Equation (6.17). The

learning rate is set to a small constant and helps with convergence.
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3. Renormalize the weights: Because the weights wijk are probability values, they must be between 0.0 and
1.0, and

∑

j wijk must equal 1 for all i, k. These criteria are achieved by renormalizing the weights after they
have been updated by Equation (6.18).

Algorithms that follow this form of learning are called Adaptive Probabilistic Networks. Other methods for
training belief networks are referenced in the bibliographic notes at the end of this chapter. Belief networks are
computationally intensive. Because belief networks provide explicit representations of causal structure, a human
expert can provide prior knowledge to the training process in the form of network topology and/or conditional
probability values. This can significantly improve the learning rate.

6.5 Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is represented as a set of IF-THEN rules.
We first examine how such rules are used for classification. We then study ways in which they can be extracted,
either from a decision tree or directly from the training data.

6.5.1 Using IF-THEN Rules For Classification

Rules are a good way of representing information or bits of knowledge. A rule-based classifier uses a set of
IF-THEN rules for classification. An IF-THEN rule is an expression of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys computer = yes.

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or precondition. The “THEN”-part
(or right-hand side) is the rule consequent. In the rule antecedent, the condition consists of one or more attribute
tests (such as age = youth, and student = yes) that are logically ANDed. The rule’s consequent contains a class
prediction (in this case, we are predicting whether a customer will buy a computer). R1 can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys computer = yes).

If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a given tuple, we say that
the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-labeled data set, D, let
ncovers be the number of tuples covered by R; ncorrect be the number of tuples correctly classified by R; and |D|
be the number of tuples in D. We can define the coverage and accuracy of R as

coverage(R) =
ncovers
|D| (6.19)

accuracy(R) =
ncorrect
ncovers

. (6.20)

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., whose attribute values hold
true for the rule’s antecedent). For a rule’s accuracy, we look at the tuples that it covers and see what percentage
of them the rule can correctly classify.

Example 6.6 Rule accuracy and coverage. Let’s go back to our data of Table 6.1. These are class-labeled
tuples from the AllElectronics customer database. Our task is to predict whether or not a customer will buy a
computer. Consider rule R1 above, which covers 2 of the 14 tuples. It can correctly classify both tuples. Therefore,
coverage(R1) = 2/14 = 14.28% and accuracy(R1) = 2/2 = 100%.
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Let’s see how we can use rule-based classification to predict the class label of a given tuple, X. If a rule is
satisfied by X, the rule is said to be triggered. For example, suppose we have:

X = (age = youth, income = medium, student = yes, credit rating = fair).

We would like to classify X according to buys computer. X satisfies R1, which triggers the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X. Note that triggering
does not always mean firing because they may be more than one rule that is satisfied! If more than one rule is
triggered, we have a potential problem. What if they each specify a different class? Or what if no rule is satisfied
by X?

We tackle the first question. If more than one rule is triggered, we need a conflict resolution strategy to
figure out which rule gets to fire and assign its class prediction to X. There are many possible strategies. We look
at two, namely size ordering and rule ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has the “toughest” require-
ments, where toughness is measured by the rule antecedent size. That is, the triggering rule with the most attribute
tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or rule-based.
With class-based ordering, the classes are sorted in order of decreasing “importance”, such as by decreasing
order of prevalence. That is, all of the rules for the most prevalent (or most frequent) class come first, the rules for
the next prevalent class come next, and so on. Alternatively, they may be sorted based the misclassification cost
per class. Within each class, the rules are not ordered—they don’t have to be since they all predict the same class
(and so there can be no class conflict!) With rule-based ordering, the rules are organized into one long priority
list, according to some measure of rule quality such as accuracy, coverage, or size (number of attribute tests in the
rule antecedent), or based on advice from domain experts. When rule-ordering is used, the rule set is known as a
decision list. With rule-ordering, the triggering rule that appears earliest in the list has highest priority, and so
it gets to fire its class prediction. Any other rule that satisfies X is ignored. Most rule-based classification systems
use a class-based rule ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in any order when classifying
a tuple. That is, a disjunction (logical OR) is implied between each of the rules. Each rule represents a stand-alone
nugget or piece of knowledge. This is in contrast to the rule-ordering (decision list) scheme for which rules must
be applied in the prescribed order so as to avoid conflicts. Each rule in a decision list implies the negation of the
rules that come before it in the list. Hence, rules in a decision list are more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario where there is no rule satisfied
by X. How, then, can we determine the class label of X? In this case, a fallback or default rule can be set up
to specify a default class, based on a training set. This may be the class in majority, or the majority class of the
tuples that were not covered by any rule. The default rule is evaluated at the end, if and only if no other rule
covers X. The condition in the default rule is empty. In this way, the rule fires when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

6.5.2 Rule Extraction from a Decision Tree

In Section 6.3, we learned how to build a decision tree classifier from a set of training data. Decision tree classifiers
are a popular method of classification—it is easy to understand how decision trees work and they are known for
their accuracy. Decision trees can become large and difficult to interpret. In this subsection, we look at how to
build a rule-based classifier by extracting IF-THEN rules from a decision tree. In comparison with a decision tree,
the IF-THEN rules may be easier for humans to understand, particularly if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node. Each
splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF” part). The leaf node
holds the class prediction, forming the rule consequent (“THEN” part).
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Example 6.7 Extracting classification rules from a decision tree. The decision tree of Figure 6.2 can be
converted to classification IF-THEN rules by tracing the path from the root node to each leaf node in the tree.
The rules extracted from Figure 6.2 are

R1: IF age = youth AND student = no THEN buys computer = no
R2: IF age = youth AND student = yes THEN buys computer = yes
R3: IF age = middle aged THEN buys computer = yes
R4: IF age = senior AND credit rating = excellent THEN buys computer = yes
R5: IF age = senior AND credit rating = fair THEN buys computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Since the rules are extracted directly
from the tree, they are mutually exclusive and exhaustive. By mutually exclusive, this means that we cannot
have rule conflicts here because no two rules will be triggered for the same tuple. (We have one rule per leaf, and
any tuple can map to only one leaf). By exhaustive, there is one rule for each possible attribute-value combination,
so that this set of rules does not require a default rule. Therefore, the order of the rules does not matter—they
are unordered.

[from MK: Changes made in this and next paragraph:] Since we end up with one rule per leaf, the set
of extracted rules is not much simpler than the corresponding decision tree! The extracted rules may be even
more difficult to interpret than the original trees in some cases. As a example, Figure 6.7 showed decision trees
that suffer from subtree repetition and replication. The resulting set of rules extracted can be large and difficult
to follow, since some of the attribute tests may be irrelevant or redundant. So, the plot thickens. Although it is
easy to extract rules from a decision tree, we may need to do some more work by pruning the resulting rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does not improve the
estimated accuracy of the rule can be pruned (i.e., removed), thereby generalizing the rule. C4.5 extracts rules
from an unpruned tree, and then prunes the rules using a pessimistic approach similar to its tree pruning method.
The training tuples and their associated class labels are used to estimate rule accuracy. However, since this would
result in an optimistic estimate, alternatively, the estimate is adjusted to compensate for the bias, resulting in a
pessimistic estimate. In addition, any rule that does not contribute to the overall accuracy of the entire rule set
can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be mutually exclusive and
exhaustive. For conflict resolution, C4.5 adopts a class-based ordering scheme. It groups all rules for a
single class together, and then determines a ranking of these class rule sets. Within a rule set, the rules are not
ordered. C4.5 orders the class rule sets so as to minimize the number of false positive errors (i.e., where a rule
predicts a class, C, but the actual class is not C). The class rule set with the least number of false positives is
examined first. Once pruning is complete, a final check is done to remove any duplicates. When choosing a default
class, C4.5 does not choose the majority class, since this class will likely have many rules for its tuples. Instead, it
selects the class that contains the most training tuples that were not covered by any rule.

6.5.3 Rule Extraction from the Training Data

IF-THEN rules can be extracted directly from the training data (that is, without having to generate a decision
tree first) using a sequential covering algorithm. The name comes from the notion that the rules are learned
sequentially (one at a time), where each rule for a given class will ideally cover many of the tuples of that class (and
hopefully none of the tuples of other classes). Sequential covering algorithms are the most widely-used approach
to mining disjunctive sets of classification rules.

There are many sequential covering algorithms. Popular variations include AQ, CN2, and the more recent,
RIPPER. The general strategy is as follows. Rules are learned one at a time. Each time a rule is learned, the tuples
covered by the rule are removed, and the process repeats on the remaining tuples. This sequential learning of rules
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is in contrast to decision tree induction. Since the path to each leaf in a decision tree corresponds to a rule, we
can consider decision tree induction as learning a set of rules simultaneously.

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

• D, a data set class-labeled tuples;

• Att-vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:

(1) Rule set = {}; // initial set of rules learned is empty
(2) for each class c do
(3) repeat
(4) Rule = Learn One Rule(D,Att− vals, c);
(5) remove tuples covered by Rule from D;
(6) until terminating condition;
(7) Rule set = Rule set+Rule // add new rule to rule set
(8) endfor
(9) return Rule Set;

Figure 6.12: Basic sequential covering algorithm.

A basic sequential covering algorithm is shown in Figure 6.12. Here, rules are learned for one class at a time.
Ideally, when learning a rule for a class, Ci, we would like the rule to cover all (or many) of the training tuples
of class C and none (or few) of the tuples from other classes. In this way, the rules learned should be of high
accuracy. The rules need not necessarily be of high coverage. This is because we can have more than one rule for
a class, so that different rules many cover different tuples within the same class. The process continues until the
terminating condition is met, such as when there are no more training tuples, or the quality of a rule returned is
below a user-specified threshold. The Learn One Rule procedure finds the “best” rule for the current class, given
the current set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner (Figure 6.13). We can
think of this as a beam search, where we start off with an empty rule and then gradually keep appending attribute
tests to it. We append by adding the attribute test as a logical conjunct to the existing condition of the rule
antecedent. Suppose our training set, D, consists of loan application data. Attributes regarding each applicant
include their age, income, education level, residence, credit rating, and the term of the loan. The classifying
attribute is loan decision, which indicates whether a loan is accepted (considered safe) or rejected (considered
risky). To learn a rule for the class “accept”, we start off with the most general rule possible, that is, the condition
of the rule antecedent is empty. The rule is:

IF THEN loan decision = accept.

We then consider each possible attribute-test that may be added to the rule. These can be derived from the
parameter Att-vals, which contains a list of attributes with their associated values. For example, for an attribute-
value pair (att, val), we can consider attribute tests such as att = val, att ≤ val, att > val, and so on. Typically,
the training data will contain many attributes, each of which may have several possible values. Finding an optimal
rule set becomes computationally explosive. Instead, Learn One Rule adopts a greedy depth-first strategy. Each
time it is faced with adding a new attribute test (conjunct) to the current rule, it picks the one that most improves
the rule quality, based on the training samples. We will say more about rule quality measures in a minute. For
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IF

THEN
 loan_decision = accept


IF
 loan_term = short

THEN
 loan_decision = accept


IF
 loan_term = long

THEN
 loan_decision = accept


IF
 income = high

THEN
 loan_decision = accept


IF
 income = medium

THEN
 loan_decision = accept


IF
 income = high
 AND

age = youth

THEN
 loan_decision = accept


IF
 income = high
 AND

age = middle_age

THEN
 loan_decision = accept


IF
 income = high
 AND

credit_rating = excellent

THEN
 loan_decision = accept


IF
 income = high
 AND

credit_rating = fair

THEN
 loan_decision = accept


...


...
...


Figure 6.13: A general-to-specific search through rule space.

the moment, let’s say we use rule accuracy as our quality measure. Getting back to our example with Figure 6.13,
suppose Learn One Rule finds that the attribute test income = high best improves the accuracy of our current
(empty) rule. We append it to the condition, so that the current rule becomes

IF income = high THEN loan decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover more of the “accept” tuples. During
the next iteration, we again consider the possible attribute tests and end up selecting credit rating = excellent.
Our current rule grows to become

IF income = high AND credit rating = excellent THEN loan decision = accept.

The process repeats, where at each step, we continue to greedily grow rules until the resulting rule meets an
acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what appears to be the
best choice at the moment. What if we unknowingly made a poor choice along the way? To lessen the chance of
this happening, instead of selecting the best attribute test to append to the current rule, we can select the best
k attribute tests. In this way, we perform a beam search of width k wherein we maintain the k best candidates
overall at each step, rather than a single best candidate.

Rule Quality Measures

Learn One Rule needs a measure of rule quality. Every time it considers an attribute test, it must check to see if
appending such a test to the current rule’s condition will result in an improved rule. Accuracy may seem like an
obvious choice at first, but consider the following example.

Example 6.8 Choosing between two rules based on accuracy. Consider the two rules as illustrated in
Figure 6.14. Both are for the class loan decision = accept. We use “a” to represent the tuples of class “accept”
and “r” for the tuples of class “reject”. Rule R1 correctly classifies 38 of the 40 tuples it covers. Rule R2 covers
only 2 tuples, which it correctly classifies. Their respective accuracies are 95% and 100%. Thus, R2 has greater
accuracy than R1, however, it is not the better rule because of its small coverage.
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Figure 6.14: Rules rules for the class loan decision = accept, showing accept (a) and reject (r) tuples.

From the above example, we see that accuracy on its own is not a reliable estimate of rule quality. Coverage on
its own is not useful either—for a given class we could have a rule that covers many tuples, most of which belong
to other classes! Thus, we seek other measures for evaluating rule quality, which may integrate aspects of accuracy
and coverage. Here we will look at a few, namely entropy, another based on information gain, and a statistical test
that considers coverage. For our discussion, suppose we are learning rules for the class c. Our current rule is R:
IF condition THEN class = c. We want to see if logically ANDing a given attribute test to condition would result
in a better rule. We call the new condition, condition′, where R′: IF condition′ THEN class = c is our potential
new rule. In other words, we want to see if R′ is any better than R.

We have already seen entropy in our discussion of the information gain measure used for attribute selection
in decision tree induction (Section 6.3.2, Equation 6.1). It is also known as the expected information needed to
classify a tuple in data set, D. Here, D is the set of tuples covered by condition′ and pi is the probability of class
Ci in D. The lower the entropy, the better condition′ is. Entropy prefers conditions that cover a large number of
tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL, a sequential covering algorithm
that learns first-order logic rules. Learning first-order rules is more complex because such rules contain variables,
whereas the rules we are concerned with in this section are propositional (that is, variable-free).7 In machine
learning, the tuples of the class for which we are learning rules are called positive tuples, while the remaining
tuples are negative. Let pos (neg) be the number of positive (negative) tuples covered by R. Let pos′ (neg′) be the
number of positive (negative) tuples covered by R′. FOIL assesses the information gained by extending condition
as

FOIL Gain = pos′ ×
(

log2

pos′

pos′ + neg′
− log2

pos

pos+ neg

)

. (6.21)

It favors rules that have high accuracy and cover many positive tuples.

We can also use a statistical test of significance to determine if the apparent effect of a rule is not attributed
to chance but instead indicates a genuine correlation between attribute values and classes. The test compares the
observed distribution among classes of tuples covered by a rule with the expected distribution that would result
if the rule made predictions at random. We want to asses whether any observed differences between these two
distributions may be attributed to chance. We can use the likelihood ratio statistic,

Likelihood Ratio = 2
m
∑

i=1

fi log
(fi
ei

)

, (6.22)

where m is the number of classes. For tuples satisfying the rule, fi is the observed frequency of each class i among
the tuples. ei is what we would expect the frequency of each class i to be if the rule made random predictions. The

7Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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statistic has a χ2 distribution with m − 1 degrees of freedom. The higher the likelihood ratio is, the more likely
that there is a significant difference in the number of correct predictions made by our rule in comparison with a
“random guessor”. That is, the performance of our rule is not due to chance. The ratio helps identify rules with
insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information gain is used by RIPPER.

Rule Pruning

Learn One Rule does not employ a test set when evaluating rules. Assessments of rule quality as described above
are made with tuples from the original training data. Such assessment is optimistic since the rules will likely
overfit the data. That is, the rules may perform well on the training data, but less well on subsequent data. To
compensate for this, we can prune the rules. A rule is pruned by removing a conjunct (attribute test). We choose
to prune a rule, R, if the pruned version of R has greater quality, as assessed on an independent set of tuples. As
in decision tree pruning, we refer to this set as a pruning set. Various pruning strategies can be used, such as the
pessimistic pruning approach described in the previous section. FOIL uses a simple yet effective method. Given a
rule, R,

FOIL Prune(R) =
pos− neg
pos+ neg

, (6.23)

where pos and neg are the number of positive and negative tuples covered by R, respectively. This value will
increase with the accuracy of R on a pruning set. Therefore, if the FOIL Prune value is higher for the pruned
version of R, then we prune R. By convention, RIPPER starts with the most recently added conjunct when
considering pruning. Conjuncts are pruned one at a time as long as this results in an improvement.

6.6 Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algorithm. The field of neural networks
was originally kindled by psychologists and neurobiologists who sought to develop and test computational analogues
of neurons. Roughly speaking, a neural network is a set of connected input/output units where each connection
has a weight associated with it. During the learning phase, the network learns by adjusting the weights so as
to be able to predict the correct class label of the input tuples. Neural network learning is also referred to as
connectionist learning due to the connections between units.

Neural networks involve long training times and are therefore more suitable for applications where this is
feasible. They require a number of parameters that are typically best determined empirically, such as the network
topology or “structure.” Neural networks have been criticized for their poor interpretability. For example, it is
difficult for humans to interpret the symbolic meaning behind the learned weights and of “hidden units” in the
network. These features initially made neural networks less desirable for data mining.

Advantages of neural networks, however, include their high tolerance to noisy data as well as their ability to
classify patterns on which they have not been trained. They can be used when you may have little knowledge of
the relationships between attributes and classes. They are well-suited for continuous-valued inputs and outputs,
unlike most decision tree algorithms. They have been successful on a wide array of real-world data, ranging
from handwritten character recognition, pathology and laboratory medicine, to training a computer to pronounce
English text. Neural network algorithms are inherently parallel; parallelization techniques can be used to speed up
the computation process. In addition, several techniques have recently been developed for the extraction of rules
from trained neural networks. These factors contribute towards the usefulness of neural networks for classification
and prediction in data mining.

There are many different kinds of neural networks and neural network algorithms. The most popular neural
network algorithm is backpropagation, which gained repute in the 1980s. In Section 6.6.1 you will learn about
multilayer feed-forward networks, the type of neural network on which the backpropagation algorithm performs.
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Figure 6.15: A multilayer feed-forward neural network:

Section 6.6.2 discusses defining a network topology. The backpropagation algorithm is described in Section 6.6.3.
Rule extraction from trained neural networks is discussed in Section 6.6.4.

6.6.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural network. It iteratively learns
a set of weights for prediction of the class label of tuples. A multilayer feed-forward neural network consists of
an input layer, one or more hidden layers, and an output layer. An example of a multilayer feed-forward network
is shown in Figure 6.15.

Each layer is made up of units. The inputs to the network correspond to the attributes measured for each
training tuple. The inputs are fed simultaneously into the units making up the input layer. These inputs pass
through the input layer, and are then weighted and fed simultaneously to a second layer of “neuronlike” units,
known as a hidden layer. The outputs of the hidden layer units can be input to another hidden layer, and so
on. The number of hidden layers is arbitrary, although in practice, usually only one is used. The weighted outputs
of the last hidden layer are input to units making up the output layer, which emits the network’s prediction for
given tuples.

The units in the input layer are called input units. The units in the hidden layers and output layer are
sometimes referred to as neurodes, due to their symbolic biological basis, or as output units. The multilayer
neural network shown in Figure 6.15 has two layers of output units. Therefore, we say that it is a two-layer
neural network. (The input layer is not counted since it serves only to pass the input values to the next layer.)
Similarly, a network containing two hidden layers is called a three-layer neural network, and so on. The network
is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer.
It is fully connected in that each unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the previous layer (Figure 6.17).
It applies a nonlinear (activation) function to the weighted input. Multilayer feed-forward neural networks are
able to model the class prediction as a nonlinear combination of the inputs. From a statistical point of view, they
perform nonlinear regression. Multilayer feed-forward networks, given enough hidden units and enough training
samples, can closely approximate any function.

6.6.2 Defining a Network Topology

“How can I design the topology of the neural network?” Before training can begin, the user must decide on the
network topology by specifying the number of units in the input layer, the number of hidden layers (if more than
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one), the number of units in each hidden layer, and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will help speed up the learning
phase. Typically, input values are normalized so as to fall between 0.0 and 1.0. Discrete-valued attributes may
be encoded such that there is one input unit per domain value. For example, if an attribute A has three possible
or known values, namely {a0, a1, a2}, then we may assign three input units to represent A. That is, we may have,
say, I0, I1, I2 as input units. Each unit is initialized to 0. If A = a0, then I0 is set to 1. If A = a1, I1 is set to
1, and so on. Neural networks can be used for both classification (to predict the class label of a given tuple) or
prediction (to predict a continuous-valued output). For classification, one output unit may be used to represent
two classes (where the value 1 represents one class, and the value 0 represents the other). If there are more than
two classes, then one output unit per class is used.

There are no clear rules as to the “best” number of hidden layer units. Network design is a trial-and-error
process and may affect the accuracy of the resulting trained network. The initial values of the weights may also
affect the resulting accuracy. Once a network has been trained and its accuracy is not considered acceptable, it
is common to repeat the training process with a different network topology or a different set of initial weights.
Cross-validation techniques for accuracy estimation (described in Section 6.13) can be used to help decide when
an acceptable network has been found. A number of automated techniques have been proposed that search for a
“good” network structure. These typically use a hill-climbing approach that starts with an initial structure that
is selectively modified.

6.6.3 Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a data set of training tuples,
comparing the network’s prediction for each tuple with the actual known target value. The target value may be the
known class label of the training tuple (for classification problems) or a continuous value (for prediction). For each
training tuple, the weights are modified so as to minimize the mean squared error between the network’s prediction
and the actual target value. These modifications are made in the “backwards” direction, that is, from the output
layer, through each hidden layer down to the first hidden layer (hence the name backpropagation). Although it
is not guaranteed, in general the weights will eventually converge, and the learning process stops. The algorithm
is summarized in Figure 6.16. The steps involved are expressed in terms of inputs, outputs, and errors, and may
seem awkward if this is your first look at neural network learning. However, once you become familiar with the
process, you will see that each step is inherently simple. The steps are described below.

Initialize the weights: The weights in the network are initialized to small random numbers (e.g., ranging from
−1.0 to 1.0, or −0.5 to 0.5). Each unit has a bias associated with it, as explained below. The biases are similarly
initialized to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the input layer of the network. The inputs
pass through the input units, unchanged. That is, for an input unit, j, its output, Oj is equal to its input value,
Ij . Next, the net input and output of each unit in the hidden and output layers are computed. The net input to
a unit in the hidden or output layers is computed as a linear combination of its inputs. To help illustrate this, a
hidden layer or output layer unit is shown in Figure 6.17. Each such unit has a number of inputs to it that are,
in fact, the outputs of the units connected to it in the previous layer. Each connection has a weight. To compute
the net input to the unit, each input connected to the unit is multiplied by its corresponding weight, and this is
summed. Given a unit j in a hidden or output layer, the net input, Ij , to unit j is

Ij =
∑

i

wijOi + θj , (6.24)

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi is the output of unit i
from the previous layer; and θj is the bias of the unit. The bias acts as a threshold in that it serves to vary the
activity of the unit.
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Algorithm: Backpropagation. Neural network learning for classification or prediction, using the backpropagation
algorithm.

Input:

• D, a data set consisting of the training tuples and their associated target values;

• l, the learning rate;

• network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

(1) Initialize all weights and biases in network ;
(2) while terminating condition is not satisfied {
(3) for each training tuple X in D {
(4) // Propagate the inputs forward:
(5) for each input layer unit j {
(6) Oj = Ij ; // output of an input unit is its actual input value
(7) for each hidden or output layer unit j {
(8) Ij =

∑

i
wijOi + θj ; //compute the net input of unit j with respect to the previous layer, i

(9) Oj =
1

1+e
−Ij

; } // compute the output of each unit j

(10) // Backpropagate the errors:
(11) for each unit j in the output layer
(12) Errj = Oj(1−Oj)(Tj −Oj); // compute the error
(13) for each unit j in the hidden layers, from the last to the first hidden layer
(14) Errj = Oj(1−Oj)

∑

k
Errkwjk; // compute the error with respect to the next higher layer, k

(15) for each weight wij in network {
(16) ∆wij = (l)ErrjOi; // weight increment
(17) wij = wij +∆wij ; } // weight update
(18) for each bias θj in network {
(19) ∆θj = (l)Errj ; // bias increment
(20) θj = θj +∆θj ; } // bias update
(21) } }

Figure 6.16: Backpropagation algorithm.

Each unit in the hidden and output layers takes its net input and then applies an activation function to it,
as illustrated in Figure 6.17. The function symbolizes the activation of the neuron represented by the unit. The
logistic, or sigmoid, function is used. Given the net input Ij to unit j, then Oj , the output of unit j, is computed
as

Oj =
1

1 + e−Ij
. (6.25)

This function is also referred to as a squashing function, since it maps a large input domain onto the smaller range
of 0 to 1. The logistic function is nonlinear and differentiable, allowing the backpropagation algorithm to model
classification problems that are linearly inseparable.

We compute the output values, Oj , for each hidden layer, up to and including the output layer, which gives the
network’s prediction. In practice, it is a good idea to cache (i.e., save) the intermediate output values at each unit
as they are required again later, when backpropagating the error. This trick can substantially reduce the amount
of computation required.

Backpropagate the error: The error is propagated backwards by updating the weights and biases to reflect the
error of the network’s prediction. For a unit j in the output layer, the error Errj is computed by

Errj = Oj(1−Oj)(Tj −Oj) (6.26)

where Oj is the actual output of unit j, and Tj is the known target value of the given training tuple. Note that
Oj(1−Oj) is the derivative of the logistic function.
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Figure 6.17: A hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These are
multiplied by their corresponding weights in order to form a weighted sum, which is added to the bias associated
with unit j. A nonlinear activation function is applied to the net input. (For ease of explanation, the inputs to
unit j are labeled y1, y2, . . . , yn. If unit j were in the first hidden layer, then these inputs would correspond to the
input tuple (x1, x2, . . . , xn).)

To compute the error of a hidden layer unit j, the weighted sum of the errors of the units connected to unit j
in the next layer are considered. The error of a hidden layer unit j is

Errj = Oj(1−Oj)
∑

k

Errkwjk, (6.27)

where wjk is the weight of the connection from unit j to a unit k in the next higher layer, and Errk is the error
of unit k.

The weights and biases are updated to reflect the propagated errors. Weights are updated by the following
equations, where ∆wij is the change in weight wij :

∆wij = (l)ErrjOi (6.28)

wij = wij +∆wij (6.29)

“What is the ‘l’ in Equation (6.28)?” The variable l is the learning rate, a constant typically having a value
between 0.0 and 1.0. Backpropagation learns using a method of gradient descent to search for a set of weights that
fits the training data so as to minimize the mean squared distance between the network’s class prediction and the
known target value of the tuples.8 The learning rate helps to avoid getting stuck at a local minimum in decision
space (i.e., where the weights appear to converge, but are not the optimum solution) and encourages finding the
global minimum. If the learning rate is too small, then learning will occur at a very slow pace. If the learning rate
is too large, then oscillation between inadequate solutions may occur. A rule of thumb is to set the learning rate
to 1/t, where t is the number of iterations through the training set so far.

Biases are updated by the following equations below, where ∆θj is the change in bias θj :

∆θj = (l)Errj (6.30)

θj = θj +∆θj (6.31)

8A method of gradient descent was also used for training Bayesian belief networks, as described in Section 6.4.4.
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Note that here we are updating the weights and biases after the presentation of each tuple. This is referred to
as case updating. Alternatively, the weight and bias increments could be accumulated in variables, so that the
weights and biases are updated after all of the tuples in the training set have been presented. This latter strategy
is called epoch updating, where one iteration through the training set is an epoch. In theory, the mathematical
derivation of backpropagation employs epoch updating, yet in practice, case updating is more common since it
tends to yield more accurate results.

Terminating condition: Training stops when

• all ∆wij in the previous epoch were so small as to be below some specified threshold, or

• the percentage of tuples misclassified in the previous epoch is below some threshold, or

• a prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights will converge.

“How efficient is backpropagation?” The computational efficiency depends on the time spent training the net-
work. Given |D| tuples and w weights, then each epoch requires O(|D| × w) time. However, in the worst case
scenario, the number of epochs can be exponential in n, the number of inputs. In practice, the time required for
the networks to converge is highly variable. A number of techniques exist that help speed up the training time.
For example, a technique known as simulated annealing can be used, which also assures convergence to a global
optimum.

Example 6.9 Sample calculations for learning by the backpropagation algorithm. Figure 6.18 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values of the
network are given in Table 6.3, along with the first training tuple, X=(1, 0, 1), whose class label is 1.
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Figure 6.18: An example of a multilayer feed-forward neural network.

Table 6.3: Initial input, weight, and bias values.
x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 θ4 θ5 θ6
1 0 1 0.2 −0.3 0.4 0.1 −0.5 0.2 −0.3 −0.2 −0.4 0.2 0.1

This example shows the calculations for backpropagation, given the first training tuple, X. The tuple is fed
into the network, and the net input and output of each unit are computed. These values are shown in Table 6.4.
The error of each unit is computed and propagated backwards. The error values are shown in Table 6.5. The
weight and bias updates are shown in Table 6.6.
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Table 6.4: The net input and output calculations.

Unit j Net input, Ij Output, Oj

4 0.2 + 0− 0.5− 0.4 = −0.7 1/(1 + e0.7) = 0.332
5 −0.3 + 0 + 0.2 + 0.2 = 0.1 1/(1 + e−0.1) = 0.525
6 (−0.3)(0.332)− (0.2)(0.525) + 0.1 = −0.105 1/(1 + e0.105) = 0.474

Table 6.5: Calculation of the error at each node.

Unit j Errj
6 (0.474)(1− 0.474)(1− 0.474) = 0.1311
5 (0.525)(1− 0.525)(0.1311)(−0.2) = −0.0065
4 (0.332)(1− 0.332)(0.1311)(−0.3) = −0.0087

Several variations and alternatives to the backpropagation algorithm have been proposed for classification in
neural networks. These may involve the dynamic adjustment of the network topology and of the learning rate or
other parameters, or the use of different error functions.

6.6.4 Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation network has learned?”
A major disadvantage of neural networks lies in their knowledge representation. Acquired knowledge in the form
of a network of units connected by weighted links is difficult for humans to interpret. This factor has motivated
research in extracting the knowledge embedded in trained neural networks and in representing that knowledge
symbolically. Methods include extracting rules from networks and sensitivity analysis.

Various algorithms for the extraction of rules have been proposed. The methods typically impose restrictions
regarding procedures used in training the given neural network, the network topology, and the discretization of
input values.

Fully connected networks are difficult to articulate. Hence, often the first step towards extracting rules from
neural networks is network pruning. This consists of simplifying the network structure by removing weighted
links that have the least effect on the trained network. For example, a weighted link may be deleted if such removal
does not result in a decrease in the classification accuracy of the network.

Table 6.6: Calculations for weight and bias updating.
Weight or bias New value
w46 −0.3 + (0.9)(0.1311)(0.332) = −0.261
w56 −0.2 + (0.9)(0.1311)(0.525) = −0.138
w14 0.2 + (0.9)(−0.0087)(1) = 0.192
w15 −0.3 + (0.9)(−0.0065)(1) = −0.306
w24 0.4 + (0.9)(−0.0087)(0) = 0.4
w25 0.1 + (0.9)(−0.0065)(0) = 0.1
w34 −0.5 + (0.9)(−0.0087)(1) = −0.508
w35 0.2 + (0.9)(−0.0065)(1) = 0.194
θ6 0.1 + (0.9)(0.1311) = 0.218
θ5 0.2 + (0.9)(−0.0065) = 0.194
θ4 −0.4 + (0.9)(−0.0087) = −0.408
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Once the trained network has been pruned, some approaches will then perform link, unit, or activation value
clustering. In one method, for example, clustering is used to find the set of common activation values for each
hidden unit in a given trained two-layer neural network (Figure 6.19). The combinations of these activation values
for each hidden unit are analyzed. Rules are derived relating combinations of activation values with corresponding
output unit values. Similarly, the sets of input values and activation values are studied to derive rules describing
the relationship between the input and hidden unit layers. Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M -of-N rules (where M out of a
given N conditions in the rule antecedent must be true in order for the rule consequent to be applied), decision
trees with M -of-N tests, fuzzy rules, and finite automata.

I1

H1 H2 H3

O2O1

I2 I3 I4 I5 I6 I7

Identify sets of common activation values for

each hidden node, Hi:

   for H1: (–1,0,1)

   for H2: (0.1)

   for H3: (–1,0.24,1)



Derive rules relating common activation values

with output nodes, Oj:

   IF (H2 = 0 and H3 = –1) OR

      (H1 = –1 and H2 = 1 and H3 = –1) OR

      (H1 = –1 and H2 = 0 and H3 = 0.24)

   THEN O1 = 1,O2 = 0

   ELSE O1 = 0, O2 = 1



Derive rules relating input nodes, Ii, to

output nodes, Oj:

   IF (I2 = 0 AND I7 = 0) THEN H2 = 0

   IF (I4) = 1 AND I6 = 1) THEN H3 = –1

   IF (I5 = 0) THEN H3 = –1



Obtain rules relating inputs and output classes:

   IF (I2 = 0 AND I7 = 0 AND I4 = 1 AND

   I6 = 1) THEN class = 1

   IF (I2 = 0 AND I7 = 0 and I5 = 0) THEN

   class = 1 

Figure 6.19: Rules can be extracted from training neural networks. [to editor For consistency (for logic terms),
please replace all 5 incidences of lower case “and” (i.e., in second box) by upper case“AND”. In addition, all
O1, H1, I1, etc. should be italicized.] Adapted from [LSL95].

Sensitivity analysis is used to assess the impact that a given input variable has on a network output. The
input to the variable is varied while the remaining input variables are fixed at some value. Meanwhile, changes in
the network output are monitored. The knowledge gained from this form of analysis can be represented in rules
such as “IF X decreases 5% THEN Y increases 8%”.
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6.7 Support Vector Machines

In this section, we study Support Vector Machines, a promising new method for the classification of both linear
and nonlinear data. In a nutshell, a support vector machine (or SVM) is an algorithm that works as follows. It uses
a nonlinear mapping to transform the original training data into a higher dimension. Within this new dimension,
it searches for the linear optimal separating hyperplane (that is, a “decision boundary” separating the tuples of
one class from another). With an appropriate nonlinear mapping to a sufficiently high dimension, data from two
classes can always be separated by a hyperplane. The SVM finds this hyperplane using support vectors (“essential”
training tuples) and margins (defined by the support vectors). We will delve more into these new concepts further
below.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first paper on support vector
machines was presented in 1992 by Vladimir Vapnik and colleagues Bernhard Boser and Isabelle Guyon, although
the groundwork for them has been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs can be extremely slow, they
are highly accurate owing to their ability to model complex nonlinear decision boundaries. They are much less
prone to overfitting than other methods. The support vectors found also provide a compact description of the
learned model. SVMs can be used for prediction as well as classification. They have been applied to a number
of areas, including handwritten digit recognition, object recognition, speaker identification, as well as benchmark
time series prediction tests.

6.7.1 The Case When the Data are Linearly Separable
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Figure 6.20: The 2-D training data are linearly separable. There are an infinite number of (possible) separating
hyperplanes or “decision boundaries”. Which one is best?

To explain the mystery of SVMs, let’s first have a look at the simplest case—a two-class problem where the
classes are linearly separable. Let the data set D be given as (X1, y1), (X2, y2), . . ., (X|D|, y|D|), where Xi is
the set of training tuples with associated class labels, yi. Each yi can take one of two values, either +1 or −1
(i.e., yi ∈ {+1,−1}), corresponding to the classes buys computer = yes and buys computer = no, respectively. To
aid in visualization, let’s consider an example based on two input attributes, A1 and A2, as shown in Figure 6.20.
From the graph, we see that the 2-D data are linearly separable (or “linear”, for short) since a straight line
can be drawn to separate all of the tuples of class +1 from all of the tuples of class −1. There are an infinite
number of separating lines that could be drawn. We want to find the “best” one, that is, one that (we hope) will
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have the minimum classification error on previously unseen tuples. How can we find this best line? Note that if
our data were 3-D (i.e., with three attributes), we would want to find the best separating plane. Generalizing to
n dimensions, we want to find the best hyperplane. We will use the term “hyperplane” to refer to the decision
boundary that we are seeking, regardless of the number of input attributes. So, in other words, how can we find
the best hyperplane?
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Figure 6.21: Here we see just two possible separating hyperplanes and their associated margins. Which one is
better? The one with the larger margin should have greater generalization accuracy.

An SVM approaches this problem by searching for the maximum marginal hyperplane. Consider Fig-
ure 6.21, which shows two possible separating hyperplanes and their associated margins. Before we get into the
definition of margins, let’s take an intuitive look at this figure. Both hyperplanes can correctly classify all of the
given data tuples. Intuitively, however, we expect the hyperplane with the larger margin to be more accurate at
classifying future data tuples than the hyperplane with the smaller margin. This is why (during the learning or
training phase), the SVM searches for the hyperplane with the largest margin, that is, the maximum marginal
hyperplane (MMH). The associated margin gives the largest separation between classes. Getting to an informal
definition of margin, we can say that the shortest distance from a hyperplane to one side of its margin is equal
to the shortest distance from the hyperplane to the other side of its margin, where the “sides” of the margin are
parallel to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest distance from the
MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W ·X + b = 0, (6.32)

where W is a weight vector, namely, W= {w1, w2, . . . , wn}; n is the number of attributes; and b is a scalar, often
referred to as a bias. To aid in visualization, let’s consider two input attributes, A1 and A2, as in Figure 6.21(b).
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Training tuples are 2-D, e.g., X = (x1, x2), where x1 and x2 are the values of attributes A1 and A2, respectively,
for X. If we think of b as an additional weight, w0, we can rewrite the above separating hyperplane as

w0 + w1x1 + w2x2 = 0. (6.33)

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (6.34)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (6.35)

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin can be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, and (6.36)

H2 : w0 + w1x1 + w2x2 ≤ −1 for yi = −1. (6.37)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls on or below H2 belongs
to class −1. Combining the two inequalities of Equations (6.36) and (6.37), we get

yi(w0 + w1x1 + w2x2) ≥ 1, ∀i. (6.38)
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Figure 6.22: Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with maximum
distance between the nearest training tuples. The support vectors are shown with a thicker border.

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the margin) satisfy Equa-
tion (6.38) and are called support vectors. That is, they are equally close to the (separating) MMH. In Fig-
ure 6.22, the support vectors are shown encircled with a thicker border. Essentially, the support vectors are the
most difficult tuples to classify and give the most information regarding classification.
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From the above, we can obtain a formulae for the size of the maximal margin. The distance from the separating
hyperplane to any point on H1 is 1

||W || , where ||W || is the Euclidean norm of W , that is
√

W ·W . By definition,

this is equal to the distance from any point on H2 to the separating hyperplane. Therefore, the maximal margin
is 2

||W ||
.

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy math tricks”, we can rewrite
Equation (6.38) so that it becomes what is known as a constrained (convex) quadratic optimization problem. Such
“fancy math tricks” are beyond the scope of this book. Advanced readers may be interested to note that the
“tricks” involve rewriting Equation (6.38) using a Lagrangian formulation, and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in references at the end of this chapter. If the data
are small (say, less than 2,000 training tuples), any optimization software package for solving constrained convex
quadratic problems can then be used to find the support vectors and MMH. For larger data, special and more
efficient algorithms for training SVMs can be used instead, the details of which exceed the scope of this book.
Once we’ve found the support vectors and MMH (note that the support vectors define the MMH!), we have a
trained support vector machine. The MMH is a linear class boundary and so the corresponding SVM can be used
to classify linearly separable data. We refer to such a trained SVM as a linear SVM.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?” Based on
the Lagrangian formulation mentioned above, the maximum marginal hyperplane can be rewritten as the decision
boundary

d(XT ) =
l
∑

i=1

yiαiXiX
T + b0, (6.39)

where yi is the class label of support vector Xi, XT is a test tuple, αi and b0 are numeric parameters that were
determined automatically by the optimization or SVM algorithm above, and l is the number of support vectors.

Interested readers may note that the αi are Lagrangian multipliers. For linearly separable data, the support
vectors are a subset of the actual training tuples (although there will be a slight twist regarding this when dealing
with nonlinearly separable data, as we shall see below!).

Given a test tuple, XT , we plug it into Equation (6.39), and then check to see the sign of the result. This tells
us on which side of the hyperplane the test tuple falls. If the sign is positive, then XT falls on or above the MMH
and so the SVM predicts that XT belongs to class +1 (representing buys computer = yes, in our case). If the sign
is negative, then XT falls on or below the MMH and the class prediction is −1 (representing buys computer =
no).

Notice that the Lagrangian formulation of our problem (Equation (6.39)) contains a dot product between
support vector Xi and test tuple XT . This will prove very useful for finding the MMH and support vectors for
the case when the given data are nonlinearly separable, as described further below.

Before we move on to the nonlinear case, there are two more important things to note. The complexity of the
learned classifier is characterized by the number of support vectors rather than the dimensionality of the data.
Hence, SVMs tend to be less prone to overfitting than some other methods. The support vectors are the essential
or critical training tuples—they lie closest to the decision boundary (MMH). If all other training tuples were
removed and training were repeated, the same separating hyperplane would be found. Furthermore, the number of
support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier,
which is independent of the data dimensionality. An SVM with a small number of support vectors can have good
generalization, even when the dimensionality of the data is high.

6.7.2 The Case When the Data Are Linearly Inseparable

In Section 6.7.1 above we learned about linear SVMs for classifying linearly separable data. But what if the data
are not linearly separable, as in Figure 6.23? In such cases, there is no straight line that can be found that would
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Figure 6.23: A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of Figure 6.20,
here it is not possible to draw a straight line to separate the classes. Instead, the decision boundary is nonlinear.

separate the classes. The linear SVMs we studied above would not be able to find a feasible solution here. Now
what?

The good news is that the approach described above for linear SVMs can be extended to create nonlinear
SVMs for the classification of linearly inseparable data (also called nonlinearly separable data, or nonlinear data,
for short). Such SVMs are capable of finding nonlinear decision boundaries (that is, nonlinear hypersurfaces) in
input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear SVM by extending the
approach for linear SVMs as follows. There are two main steps. In the first step, we transform the original input
data into a higher dimensional space using a nonlinear mapping. Several common nonlinear mappings can be used
in this step, as we will describe further below. Once the data have been transformed into the new higher space,
the second step searches for a linear separating hyperplane in the new space. We again end up with a quadratic
optimization problem that can be solved using the linear SVM formulation. The maximal marginal hyperplane
found in the new space corresponds to a nonlinear separating hypersurface in the original space.

Example 6.10 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3D input vector X = (x1, x2, x3) is mapped into a 6D space, Z, using the
mappings φ1(X) = x1, φ2(X) = x2, φ3(X) = x3, φ4(X) = (x1)

2, φ5(X) = x1x2, and φ6(X) = x1x3. A decision
hyperplane in the new space is d(Z)= WZ + b, where W and Z are vectors. This is linear. We solve for W and
b and then substitute back so that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear
second order polynomial in the original 3-D input space,

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b

But there are some problems. First, how do we choose the nonlinear mapping to a higher dimensional space?
Second, the computation involved will be costly. Refer back to Equation (6.39) for the classification of a test
tuple, XT . Given the test tuple, we have to compute its dot product with each and every one of the support
vectors.9 In training, we have to compute a similar dot product several times in order to find the maximal marginal
hypersurface. This is especially expensive. Hence, the dot product computation required is very heavy and costly.
We need another trick!

Luckily, there is another math trick that we can use. It so happens that in solving the quadratic optimization
problem of the linear SVM (i.e., when searching for a linear SVM in the new higher dimensional space), the training

9The dot product of two vectors, XT = (xT
1 , xT

2 , . . . , xT
n ) and Xi = (xi,1, xi,2, . . . , xi,n) is xT

1 xi,1 + xT
2 xi,2 + . . . + xT

n xi,n. Note
that this involves one multiplication and one addition for each of the n dimensions.
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tuples appear only in the form of dot products, φ(Xi)·φ(Xj), where φ(X) is simply the nonlinear mapping function
applied to transform the training tuples. Instead of computing the dot product on the transformed data tuples, it
turns out that it is mathematically equivalent to instead apply a kernel function, K(Xi,Xj), to the original input
data. That is,

K(Xi, Xj) = φ(Xi) · φ(Xj), (6.40)

In other words, everywhere that φ(Xi)·φ(Xj) appears in the training algorithm, we can replace it withK(Xi, Xj).
In this way, all calculations are made in the original input space, which is of potentially much lower dimensionality!
We can safely avoid the mapping—it turns out that we don’t even have to know what the mapping is! We will
talk more later about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyperplane. The procedure is
similar to that described in Section 6.7.1, although it involves placing a user-specified upper bound, C, on the
Lagrange multipliers, αi, above. This upper bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of kernel functions that
could be used to replace the dot product scenario described above have been studied. Three admissible kernel
functions include:

Polynomial kernel of degree h : K(Xi,Xj) = (Xi ·Xj + 1)h (6.41)

Gaussian radial basis function kernel : K(Xi,Xj) = e−‖Xi−Xj‖
2
/2σ2

(6.42)

Sigmoid kernel : K(Xi,Xj) = tanh (κXi ·Xj − δ) (6.43)

Each of these results in a different nonlinear classifier in (the original) input space. Neural network aficionados will
be interested to note that the resulting decision hyperplanes found for nonlinear SVMs are the same type as those
found by other well-known neural network classifiers. For instance, a SVM with a Gaussian radial basis function
(RBF) gives the same decision hyperplane as a type of neural network known as a radial basis function (RBF)
network. A SVM with a sigmoid kernel is equivalent to a simple 2-layer neural network known as a multilayer
perceptron (with no hidden layers). There are no “golden rules” for determining which admissible kernel will result
in the most accurate SVM. In practice, the kernel chosen does not generally make a large difference in resulting
accuracy. SVM training always find a global solution, unlike neural networks such as backpropagation, where many
local minima usually exist (Section 6.6.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) classification. SVM classifiers
can be combined for the multiclass case. A simple and effective approach, given m classes, trains m classifiers, one
for each class (where classifier j learns to return a positive value for class j and a negative value for the rest). A
test tuple is assigned the class corresponding to the largest positive distance.

Aside from classification, SVMs can also be designed for linear and nonlinear regression. Here, instead of
learning to predict discrete class labels (like the yi ∈ {+1,−1} above), SVMs for regression attempt to learn the
input-output relationship between input training tuples, Xi, and their corresponding continuous-valued outputs,
yi ∈ R. An approach similar to SVMs for classification is followed. Additional user-specified parameters are
required.

A major research goal regarding SVMs is to improve the speed in training and testing so that SVMs may
become a more feasible option for very large data sets (e.g., of millions of support vectors). Other issues include
determining the best kernel for a given data set, and finding more efficient methods for the multiclass case.
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6.8 Associative Classification: Classification by Association Rule Anal-
ysis

Frequent patterns and their corresponding association or correlation rules characterize interesting relationships
between attribute conditions and class labels, and thus have been recently used for effective classification. Associ-
ation rules show strong associations between attribute-value pairs (or items) that occur frequently in a given data
set. Association rules are commonly used to analyze the purchasing patterns of customers in a store. Such analysis
is useful in many decision making processes, such as product placement, catalog design, and cross-marketing. The
discovery of association rules is based on frequent itemset mining. Many methods for frequent itemset mining and
the generation of association rules were described in Chapter 5. In this section, we look at associative classification,
where association rules are generated and analyzed for use in classification. The general idea is that we can search
for strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels. Since
association rules explore highly confident associations among multiple attributes, this approach may overcome
some constraints introduced by decision-tree induction, which considers only one attribute at a time. In many
studies, associative classification has been found to be more accurate than some traditional classification methods,
such as C4.5. In particular, we study three main methods: CBA, CMAR, and CPAR.

Before we begin, let’s take a look at association rule mining, in general. Association rules are mined in a two-
step process consisting of frequent itemset mining, followed by rule generation. The first step searches for patterns
of attribute-value pairs that occur repeatedly in a data set, where each attribute-value pair is considered an item.
The resulting attribute-value pairs form frequent itemsets. The second step analyzes the frequent itemsets in
order to generate association rule. All association rules must satisfy certain criteria regarding their “accuracy” (or
confidence) and the proportion of the data set that they actually represent (referred to as support). For example,
the following is an association rule mined from a data set, D, shown with its confidence and support.

age = youth ∧ credit = OK ⇒ buys computer = yes [support = 20%, confidence = 93%] (6.44)

where “∧” represents a logical “AND”. We will say more about confidence and support in a minute.

More formally, let D be a data set of tuples. Each tuple in D is described by n attributes, A1, A2, .., An, and
a class label attribute, Aclass. All continuous attributes are discretized and treated as categorical attributes. An
item, p, is an attribute-value pair of the form (Ai, v), where Ai is an attribute taking a value, v. A data tuple
X = (x1, x2, . . . , xn) satisfies an item, p = (Ai, v), if and only if xi = v, where xi is the value of the ith attribute
of X. Association rules can have any number of items in the rule antecedent (left-hand side) and any number of
items in the rule consequent (right-hand side). However, when mining association rules for use in classification,
we are only interested in association rules of the form p1 ∧ p2 ∧ . . . pl → Aclass = C where the rule antecedent is
a conjunction of items, p1, p2, . . . , pl (l ≤ n), associated with a class label, C. For a given rule, R, the percentage
of tuples in D satisfying the rule antecedent that also have the class label C is called the confidence of R. For
example, a confidence of 93% for Association Rule (6.44) means that 93% of the customers in D who are young and
have an OK credit rating belong to the class buys computer = yes. The percentage of tuples in D satisfying the
rule antecedent and having class label C is called the support of R. A support of 20% for Association Rule (6.44)
means that 20% of the customers in D are young, have an OK credit rating, and belong to the class buys computer
= yes.

Methods of associative classification differ primarily in the approach used for frequent itemset mining and in
how the derived rules are analyzed and used for classification. We now look at some of the various methods for
associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Classification-Based Asso-
ciation). CBA uses an iterative approach to frequent itemset mining, similar to that described for Apriori in
Section 5.2.1, where multiple passes are made over the data and the derived frequent itemsets are used to generate
and test longer itemsets. In general, the number of passes made is equal to the length of the longest rule found.
The complete set of rules satisfying minimum confidence and minimum support thresholds are found and then
analyzed for inclusion in the classifier. CBA uses a heuristic method to construct the classifier, where the rules
are organized according to decreasing precedence based on their confidence and support. If a set of rules have the
same antecedent, then the rule with the highest confidence is selected to represent the set. When classifying a
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new tuple, the first rule satisfying the tuple is used to classify it. The classifier also contains a default rule, having
lowest precedence, which specifies a default class for any new tuple that is not satisfied by any other rule in the
classifier. In this way, the set of rules making up the classifier form a decision list. In general, CBA was empirically
found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its strategy for frequent itemset
mining and its construction of the classifier. It also employs several rule pruning strategies with the help of a tree-
structure for efficient storage and retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find
the complete set of rules satisfying the minimum confidence and minimum support thresholds. FP-growth was
described in Section 5.2.4. FP-growth uses a tree structure, called an FP-tree, to register all of the frequent itemset
information contained in the given data set, D. This requires only two scans of D. The frequent itemsets are then
mined from the FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of class labels among
tuples satisfying each frequent itemset. In this way, it is able to combine rule generation together with frequent
itemset mining in a single step.

CMAR also employs a different tree structure to store and retrieve rules efficiently, and to prune rules based on
confidence, correlation, and database coverage. Rule pruning strategies are triggered whenever a rule is inserted
into the tree. For example, given two rules, R1 and R2, if the antecedent of R1 is more general than that of R2
and conf(R1) ≥ conf(R2), then R2 is pruned. The rationale is that highly specialized rules with low confidence
can be pruned if a more generalized version with higher confidence exists. CMAR also prunes rules for which the
rule antecedent and class are not positively correlated, based on a χ2 test of statistical significance.

As a classifier, CMAR operates differently than CBA. Suppose that we are given a tuple X to classify and that
only one rule satisfies or matches X.10 This case is trivial—we simply assign the class label of the rule. Suppose,
instead, that more than one rule satisfies X. These rules form a set, S. Which rule would we use to determine
the class label of X? CBA would assign the class label of the most confident rule among the rule set, S. CMAR
instead considers multiple rules when making its class prediction. It divides the rules into groups according to class
labels. All rules within a group share the same class label and each group has a distinct class label. CMAR uses
a weighted χ2 measure to find the “strongest” group of rules, based on the statistical correlation of rules within a
group. It then assigns X the class label of the strongest group. In this way it considers multiple rules, rather than
a single rule with highest confidence, when predicting the class label of a new tuple. On experiments, CMAR had
slightly higher average accuracy in comparison with CBA. Its runtime, scalability, and use of memory was found
to be more efficient.

CBA and CMAR adopt methods of frequent itemset mining to generate candidate association rules, which
include all conjunctions of attribute-value pairs (items) satisfying minimum support. These rules are then exam-
ined, and a subset is chosen to represent the classifier. However, such methods generate quite a large number of
rules. CPAR takes a different approach to rule generation, based on a rule generation algorithm for classification
known as FOIL (First Order Inductive Learner) proposed in Quinlan and Cameron-Jones. FOIL builds rules to
distinguish positive tuples (say, having class buys computer = yes) from negative tuples (such as buys computer
= no). For multiclass problems, FOIL is applied to each class. That is, for a class, C, all tuples of class C are
considered positive tuples, while the rest are considered negative tuples. Rules are generated to distinguish C
tuples from all others. Each time a rule is generated, the positive samples it satisfies (or covers) are removed until
all the positive tuples in the data set are covered. CPAR relaxes this step by allowing the covered tuples to remain
under consideration, but reducing their ‘weight’. The process is repeated for each class. The resulting rules are
merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule strategy than CMAR. If more than one
rule satisfies a new tuple, X, the rules are divided into groups according to class, similar to CMAR. However, CPAR
uses the best k rules of each group to predict the class label of X, based on expected accuracy. By considering the
best k rules rather than all of the rules of a group, it avoids the influence of lower ranked rules. The accuracy of
CPAR on numerous data sets was shown to be close to that of CMAR. However, since CPAR generates far fewer
rules than CMAR, it shows much better efficiency with large sets of training data.

In summary, associative classification offers a new alternative to classification schemes by building rules based

10If the antecedent of a rule satisfies or matches X, then we say that the rule satisfies X.
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on conjunctions of attribute-value pairs that occur frequently in data.

6.9 Lazy Learners (or Learning from Your Neighbors)

The classification methods discussed so far in this chapter—decision tree induction, Bayesian classification, rule-
based classification, classification by backpropagation, support vector machines, and classification based on asso-
ciation rule mining—are all examples of eager learners. Eager learners, when given a set of training tuples, will
construct a generalization (i.e., classification) model before receiving new (e.g., test) tuples to classify. We can
think of the learned model as being ready and eager to classify previously unseen tuples.

Imagine a contrasting “lazy” approach, in which the learner instead waits until the last minute before doing
any model contruction in order to classify a given test tuple. That is, when given a training tuple, a lazy learner
simply stores it (or does only a little minor processing) and waits until it is given a test tuple. Only when it sees the
test tuple does it perform generalization in order to classify the tuple based on its similarity to the stored training
tuples. Unlike eager learning methods, lazy learners do less work when a training tuple is presented and more work
when making a classification or prediction. Because lazy learners store the training tuples or “instances”, they are
also referred to as instance-based learners, even though all learning is essentially based on instances.

When making a classification or prediction, lazy learners can be quite computationally expensive. They require
efficient storage techniques and are well-suited to implementation on parallel hardware. They offer little explanation
or insight into the structure of the data. Lazy learners, however, naturally support incremental learning. They
are able to model complex decision spaces having hyper-polygonal shapes that may not be as easily describable by
other learning algorithms (such as hyper-rectangular shapes modeled by decision trees). In this section, we look
at two examples of lazy learners: k-nearest-neighbor classifiers and case-based reasoning classifiers.

6.9.1 k-Nearest Neighbor Classifiers

The k-nearest neighbor method was first described in the early 1950s. The method is labor intensive when given
large training sets, and did not gain popularity until the 1960s when increased computing power became available.
It has since been widely used in the area of pattern recognition.

Nearest neighbor classifiers are based on learning by analogy, that is, by comparing a given test tuple with
training tuples that are similar to it. The training tuples are described by n attributes. Each tuple represents
a point in an n-dimensional space. In this way, all of the training tuples are stored in an n-dimensional pattern
space. When given an unknown tuple, a k-nearest neighbor classifier searches the pattern space for the k
training tuples that are closest to the unknown tuple. These k training tuples are the k “nearest neighbors” of the
unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The Euclidean distance between
two points or tuples, say, X1=(x11, x12, . . . , x1n) and X2=(x21, x22, . . . , x2n), is

dist(X1,X2) =

√

√

√

√

n
∑

i=1

(x1i − x2i)2. (6.45)

In other words, for each numeric attribute, we take the difference between the corresponding values of that attribute
in tuple X1 and in tuple X2, square this difference, and accumulate it to the square of the distance count,
dist(X1, X2). Typically, we normalize the values of each attribute, prior to using Equation (6.45). This helps
prevent attributes with initially large ranges (such as income) from outweighing attributes with initially smaller
ranges (such as binary attributes). Min-max normalization, for example, can be used to transform a value v of a
numeric attribute A to v′ in the range [0, 1] by computing

v′ =
v −minA

maxA −minA
, (6.46)
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where minA and maxA are the minimum and maximum values of attribute A. Chapter 2 describes also other
methods for data normalization as a form of data transformation.

For k-nearest neighbor classification, the unknown tuple is assigned the most common class among its k nearest
neighbors. When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to it in pattern
space. Nearest neighbor classifiers can also be used for prediction, that is, to return a real-valued prediction for a
given unknown tuple. In this case, the classifier returns the average value of the real-valued labels associated with
the k nearest neighbors of the unknown tuple.

“But how can distance be computed for attributes that not numeric, but categorical, such as color?” The above
discussion assumes that the attributes used to describe the tuples are all numeric. For categorical attributes, one
simple method is to compare the corresponding value of the attribute in tuple X1 with that in tuple X2. If the
two are identical (e.g., tuples X1 and X2 both have the color blue), then the difference between the two is taken
as 0. If the two are different (e.g., tuple X1 is blue but tuple X2 is red), then the difference is considered to be 1.
Other methods may incorporate more sophisticated schemes for differential grading, e.g., where a larger difference
score is assigned, say, for blue and white than for blue and black.

“What about missing values?” In general, if the value of a given attribute A is missing in tuple X1 and/or in
tuple X2, we assume the maximum possible difference. Suppose that each of the attributes have been mapped
to the range [0, 1]. For categorical attributes, we take the difference value to be 1 if either one or both of the
corresponding values of A are missing. If A is numeric and missing from both tuples X1 and X2, then the
difference is also taken to be 1. If only one value is missing and the other (which we’ll call v ′) is present and
normalized, then we can take the difference to be either |1− v′| or |0− v′| (i.e., 1− v′ or v′), whichever is greater.
“How can I determine a good value for k, the number of neighbors?” This can be determined experimentally.

Starting with k = 1, we use a test set to estimate the error rate of the classifier. This process can be repeated, each
time by incrementing k to allow for one more neighbor. The k giving the minimum error rate may be selected.
In general, the larger the number of training tuples is, the larger the value of k will be (so that classification
and prediction decisions can be based on a larger portion of the stored tuples). As the number of training tuples
approaches infinity and k = 1, the error rate can be no worse then twice the Bayes error rate (the latter being the
theoretical minimum). If k also approaches infinity, the error rate approaches the Bayes error rate.

Nearest neighbor classifiers use distance-based comparisons that intrinsically assign equal weight to each at-
tribute. They therefore can suffer from poor accuracy when given noisy or irrelevant attributes. The method,
however, has been modified to incorporate attribute weighting and the pruning of noisy data tuples. The choice
of a distance metric can be critical. The Manhattan (city block) distance (Section 7.2.1) or other distance mea-
surements, may also be used.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a training database of |D|
tuples and k = 1, then O(|D|) comparisons are required in order to classify a given test tuple. By presorting and
arranging the stored tuples into search trees, the number of comparisons can be reduced to O(log(|D|). Parallel
implementation can reduce the running time to a constant, that is O(1), which is independent of |D|. Other
techniques to speed up classification time include the use of partial distance calculations and editing the stored
tuples. In the partial distance method, we compute the distance based on a subset of the n attributes. If this
distance exceeds a threshold then further computation for the given stored tuple is halted, and the process moves
on to the next stored tuple. The editing method removes training tuples that prove “useless”. This method is
also referred to as pruning or condensing since it reduces the total number of tuples stored.

6.9.2 Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new problems. Unlike
nearest neighbor classifiers, which store training tuples as points in Euclidean space, CBR stores the tuples or
“cases” for problem-solving as complex symbolic descriptions. Business applications of CBR include problem
resolution for customer service help desks, where cases describe product-related diagnostic problems. CBR has
also been applied to areas such as engineering and law, where cases are either technical designs or legal rulings,
respectively. Medical education is another area for CBR, where patient case histories and treatments are used to
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help diagnose and treat new patients.

When given a new case to classify, a case-based reasoner will first check if an identical training case exists.
If one is found, then the accompanying solution to that case is returned. If no identical case is found, then the
case-based reasoner will search for training cases having components that are similar to those of the new case.
Conceptually, these training cases may be considered as neighbors of the new case. If cases are represented as
graphs, this involves searching for subgraphs that are similar to subgraphs within the new case. The case-based
reasoner tries to combine the solutions of the neighboring training cases in order to propose a solution for the new
case. If incompatibilities arise with the individual solutions, then backtracking to search for other solutions may
be necessary. The case-based reasoner may employ background knowledge and problem-solving strategies in order
to propose a feasible combined solution.

Challenges in case-based reasoning include finding a good similarity metric (e.g., for matching subgraphs) and
suitable methods for combining solutions. Other challenges include the selection of salient features for indexing
training cases and the development of efficient indexing techniques. A trade-off between accuracy and efficiency
evolves as the number of stored cases becomes very large. As this number increases, the case-based reasoner
becomes more intelligent. After a certain point, however, the efficiency of the system will suffer as the time
required to search for and process relevant cases increases. As with nearest neighbor classifiers, one solution is to
edit the training database. Cases that are redundant or that have not proved useful may be discarded for the sake
of improved performance. These decisions, however, are not clear-cut and their automation remains an active area
of research.

6.10 Other Classification Methods

In this section, we give a brief description of a number of other classification methods. These methods include
genetic algorithms, rough set, and fuzzy set approaches. In general, these methods are less commonly used for
classification in commercial data mining systems than the methods described earlier in this chapter. However,
these methods do show their strength in certain applications, and hence it is worthwhile to include them here.

6.10.1 Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general, genetic learning starts as
follows. An initial population is created consisting of randomly generated rules. Each rule can be represented by
a string of bits. As a simple example, suppose that samples in a given training set are described by two Boolean
attributes, A1 and A2, and that there are two classes, C1 and C2. The rule “IF A1 AND NOT A2 THEN C2” can
be encoded as the bit string “100”, where the two leftmost bits represent attributes A1 and A2, respectively, and
the rightmost bit represents the class. Similarly, the rule “IF NOT A1 AND NOT A2 THEN C1” can be encoded
as “001”. If an attribute has k values, where k > 2, then k bits may be used to encode the attribute’s values.
Classes can be encoded in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to consist of the fittest rules in the
current population, as well as offspring of these rules. Typically, the fitness of a rule is assessed by its classification
accuracy on a set of training samples.

Offspring are created by applying genetic operators such as crossover and mutation. In crossover, substrings
from pairs of rules are swapped to form new pairs of rules. In mutation, randomly selected bits in a rule’s string
are inverted.

The process of generating new populations based on prior populations of rules continues until a population, P ,
“evolves” where each rule in P satisfies a prespecified fitness threshold.

Genetic algorithms are easily parallelizable and have been used for classification as well as other optimization
problems. In data mining, they may be used to evaluate the fitness of other algorithms.
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6.10.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within imprecise or noisy data.
It applies to discrete-valued attributes. Continuous-valued attributes must therefore be discretized prior to its use.

C

Upper approximation of C
Lower approximation of C

Figure 6.24: A rough set approximation of the set of tuples of the class C using lower and upper approximation
sets of C. The rectangular regions represent equivalence classes.

Rough set theory is based on the establishment of equivalence classes within the given training data. All
of the data tuples forming an equivalence class are indiscernible, that is, the samples are identical with respect to
the attributes describing the data. Given real-world data, it is common that some classes cannot be distinguished
in terms of the available attributes. Rough sets can be used to approximately or “roughly” define such classes.
A rough set definition for a given class, C, is approximated by two sets—a lower approximation of C and an
upper approximation of C. The lower approximation of C consists of all of the data tuples that, based on the
knowledge of the attributes, are certain to belong to C without ambiguity. The upper approximation of C consists
of all of the tuples that, based on the knowledge of the attributes, cannot be described as not belonging to C. The
lower and upper approximations for a class C are shown in Figure 6.24, where each rectangular region represents
an equivalence class. Decision rules can be generated for each class. Typically, a decision table is used to represent
the rules.

Rough sets can also be used for attribute subset selection (or feature reduction, where attributes that do not
contribute towards the classification of the given training data can be identified and removed) and relevance analysis
(where the contribution or significance of each attribute is assessed with respect to the classification task). The
problem of finding the minimal subsets (reducts) of attributes that can describe all of the concepts in the given
data set is NP-hard. However, algorithms to reduce the computation intensity have been proposed. In one method,
for example, a discernibility matrix is used that stores the differences between attribute values for each pair of
data tuples. Rather than searching on the entire training set, the matrix is instead searched to detect redundant
attributes.

6.10.3 Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cutoffs for continuous attributes.
For example, consider the following rule for customer credit application approval. The rule essentially says that
applications for customers who have had a job for two or more years and who have a high income (i.e., of at least
$50K) are approved:

IF (years employed ≥ 2) AND (income ≥ 50K) THEN credit = approved. (6.47)

By Rule (6.47), a customer who has had a job for at least two years will receive credit if her income is, say, $50K,
but not if it is $49K. Such harsh thresholding may seem unfair. Instead, we can discretize income into categories
such as {low income, medium income, high income}, and then apply fuzzy logic to allow “fuzzy” thresholds or
boundaries to be defined for each category (Figure 6.25). Rather than having a precise cutoff between categories,
fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership that a certain value has in
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a given category. Each category then represents a fuzzy set. Hence, with fuzzy logic, we can capture the notion
that an income of $49K is, more or less, high, although not as high as an income of $50K. Fuzzy logic systems
typically provide graphical tools to assist users in converting attribute values to fuzzy truth values.

1.0
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Figure 6.25: Fuzzy truth values for income, representing the degree of membership of income values with respect
to the categories {low, medium, high}. Each category represents a fuzzy set. Note that a given income value, x,
can have membership in more than one fuzzy set. The membership values of x in each fuzzy set do not have to
total to 1. [to editor The figure must be redone: 1) The two upwards sloping lines (i.e., leading the ‘medium’
and ‘high’ curves) must be AS THICK as the rest of the lines defining ‘medium’ and ‘high’. 2) Remove the dashed
lines (4 curved ones and 1 vertical one). 3) Show ticks and labels for the value 0 on both axes. 4) Remove labels
‘somewhat low’ and ‘borderline high’. 5) Please italicize income. ]

Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh in 1965 as an alternative
to traditional two-value logic and probability theory. It lets us work at a high level of abstraction and offers a
means for dealing with imprecise measurement of data. Most importantly, fuzzy set theory allows us to deal with
vague or inexact facts. For example, being a member of a set of high incomes is inexact (e.g., if $50K is high,
then what about $49K? Or $48K?) Unlike the notion of traditional “crisp” sets where an element either belongs
to a set S or its complement, in fuzzy set theory, elements can belong to more than one fuzzy set. For example,
the income value $49K belongs to both the medium and high fuzzy sets, but to differing degrees. Using fuzzy set
notation and following Figure 6.25, this can be shown as

mmedium income($49K) = 0.15 and mhigh income($49K) = 0.96,

where m denotes the membership function, operating on the fuzzy sets of medium income and high income, re-
spectively. In fuzzy set theory, membership values for a given element, x, (e.g., such as for $49K) do not have to
sum to 1. This is unlike traditional probability theory, which is constrained by a summation axiom.

Fuzzy set theory is useful for data mining systems performing rule-based classification. It provides operations
for combining fuzzy measurements. Suppose that in addition to the fuzzy sets for income, we defined the fuzzy
sets junior employee and senior employee for the attribute years employed. Suppose also that we have a rule that,
say, tests high income and senior employee in the rule antecedent (IF part) for a given employee, x. If these two
fuzzy measures are ANDed together, the minimum of their measure is taken as the measure of the rule. In other
words,

m(high income AND senior employee)(x) = min(mhigh income(x),msenior employee(x)).

This is akin to saying that a chain is as strong as its weakest link. If the two measures are ORed, the maximum
of their measure is taken as the measure of the rule. In other words,

m(high income OR senior employee)(x) = max(mhigh income(x),msenior employee(x)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.

Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule contributes a vote for
membership in the categories. Typically, the truth values for each predicted category are summed, and these sums
are combined. Several procedures exist for translating the resulting fuzzy output into a defuzzified or crisp value
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that is returned by the system.

Fuzzy logic systems have been used in numerous areas for classification, including market research, finance,
health care, and environmental engineering.

6.11 Prediction

“What if we would like to predict a continuous value, rather than a categorical label?” Numeric prediction is the
task of predicting continuous (or ordered) values for given input. For example, we may like to predict the salary
of college graduates with 10 years of work experience, or the potential sales of a new product given its price. By
far, the most widely used approach for numeric prediction (hereafter referred to as prediction) is regression, a
statistical methodology that was developed by Sir Frances Galton (1822-1911), a mathematician who was also a
cousin of Charles Darwin. In fact, many texts use the terms “regression” and “numeric prediction” synonymously.
However, as we have seen, some classification techniques (such as backpropagation, support vector machines and
k-nearest neighbor classifiers) can be adapted for prediction. In this section, we discuss the use of regression
techniques for prediction.

Regression analysis can be used to model the relationship between one or more independent or predictor
variables and a dependent or response variable (which is continuous-valued). In the context of data mining, the
predictor variables are the attributes of interest describing the tuple (i.e., making up the attribute vector). In
general, the values of the predictor variables are known. (Techniques exist for handling cases where such values
may be missing.) The response variable is what we want to predict—it is what we referred to in Section 6.1 as the
predicted attribute. Given a tuple described by predictor variables, we want to predict the associated value of the
response variable. Regression analysis is a good choice when all of the predictor variables are continuous-valued as
well. Many problems can be solved by linear regression, and even more can be tackled by applying transformations
to the variables so that a nonlinear problem can be converted to a linear one. For reasons of space, we cannot
give a fully detailed treatment of regression. Instead, this section provides an intuitive introduction to the topic.
Section 6.11.1 discusses straight-line regression analysis (which involves a single predictor variable) and multiple
linear regression analysis (which involves two or more predictor variables). Section 6.11.2 provides some pointers
on dealing with nonlinear regression. Section 6.11.3 mentions other regression-based methods such as generalized
linear models, Poisson regression, log-linear models, and regression trees.

Several software packages exist to solve regression problems. Examples include SAS (http://www.sas.com),
SPSS (http://www.spss.com), and S-Plus (http://www.insightful.com). Another useful resource is the book Nu-
merical Recipes in C by Press, Flannery, Teukolsky, and Vetterling and its associated source code.

6.11.1 Linear Regression

Straight-line regression analysis involves a response variable, y, and a single predictor variable, x. It is the
simplest form of regression, and models y as a linear function of x. That is,

y = b+ wx, (6.48)

where the variance of y is assumed to be constant, and b and w are regression coefficients specifying the Y-
intercept and slope of the line, respectively. The regression coefficients, w and b, can also be thought of as weights,
so that we can equivalently write,

y = w0 + w1x. (6.49)

These coefficients can be solved for by themethod of least squares, which estimates the best-fitting straight line
as the one that minimizes the error between the actual data and the estimate of the line. Let D be a training set
consisting of values of predictor variable, x, for some population and their associated values for response variable, y.
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The training set contains |D| data points of the form (x1, y1), (x2, y2), . . . , (x|D|, y|D|).
11 The regression coefficients

can be estimated using this method with the following equations:

w1 =

|D|
∑

i=1

(xi − x̄)(yi − ȳ)

|D|
∑

i=1

(xi − x̄)2
(6.50)

w0 = ȳ − w1x̄ (6.51)

where x̄ is the mean value of x1, x2, . . . , x|D|, and ȳ is the mean value of y1, y2, . . . , y|D|. The coefficients w0 and
w1 often provide good approximations to otherwise complicated regression equations.

x y
years experience salary (in $1000s)
3 30
8 57
9 64
13 72
3 36
6 43
11 59
21 90
1 20
16 83

Table 6.7: Salary data.
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Figure 6.26: Plot of the data in Table 6.7 for Example 6.11. Although the points do not fall on a straight line,
the overall pattern suggests a linear relationship between x (years experience) and y (salary). [to editor Italicize
years experience and salary. Change vertical axis to read “salary (in 1000s)”, i.e., add“s”after“1000” to match
heading in associated table.]

Example 6.11 Straight-line regression using the method of least squares. Table 6.7 shows a set of
paired data where x is the number of years of work experience of a college graduate and y is the corresponding
salary of the graduate. The 2-D data can be graphed on a scatter plot, as in Figure 6.26. The plot suggests a

11Note that earlier, we had used the notation (Xi, yi) to refer to training tuple i having associated class label yi, where Xi was
an attribute (or feature) vector (that is, Xi was described by more than one attribute). Here, however, we are dealing with just one
predictor variable. Since the Xi here are 1-dimensional, we use the notation xi over Xi in this case.
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linear relationship between the two variables, x and y. We model the relationship that salary may be related to
the number of years of work experience with the equation y = w0 + w1x.

Given the above data, we compute x̄ = 9.1 and ȳ = 55.4. Substituting these values into Equations (6.50) and
6.51), we get

w1 =
(3− 9.1)(30− 55.4) + (8− 9.1)(57− 55.4) + · · ·+ (16− 9.1)(83− 55.4)

(3− 9.1)2 + (8− 9.1)2 + · · ·+ (16− 9.1)2
= 3.5

w0 = 55.4− (3.5)(9.1) = 23.6

Thus, the equation of the least squares line is estimated by y = 23.6 + 3.5x. Using this equation, we can predict
that the salary of a college graduate with, say, 10 years of experience is $58.6K.

Multiple linear regression is an extension of straight-line regression so as to involve more than one predictor
variable. It allows response variable y to be modeled as a linear function of, say, n predictor variables or attributes,
A1, A2, . . . , An, describing a tuple, X. (That is, X=(x1, x2, . . . , xn).) Our training data set, D, contains data of
the form (X1, y1), (X2, y2), . . ., (X|D|, y|D|), where the Xi are the n-dimensional training tuples with associated
class labels, yi. An example of a multiple linear regression model based on two predictor attributes or variables,
A1 and A2, is

y = w0 + w1x1 + w2x2 (6.52)

where x1 and x2 are the values of attributes A1 and A2, respectively, in X. The method of least squares shown
above can be extended to solve for w0, w1, and w2. The equations, however, become long and are tedious to solve
by hand. Multiple regression problems are instead commonly solved with the use of statistical software packages,
such as SAS, SPSS, and S-Plus (see references above.)

6.11.2 Nonlinear Regression

“How can we model data that does not show a linear dependence? For example, what if a given response variable
and predictor variable have a relationship that may be modeled by a polynomial function?” Think back to the
straight-line linear regression case above where dependent response variable, y, is modeled as a linear function of a
single independent predictor variable, x. What if we can get a more accurate model using a nonlinear model, such
as a parabola or some other higher order polynomial? Polynomial regression is often of interest when there is
just one predictor variable. It can be modeled by adding polynomial terms to the basic linear model. By applying
transformations to the variables, we can convert the nonlinear model into a linear one that can then be solved by
the method of least squares.

Example 6.12 Transformation of a polynomial regression model to a linear regression model. Con-
sider a cubic polynomial relationship given by

y = w0 + w1x+ w2x
2 + w3x

3. (6.53)

To convert this equation to linear form, we define new variables:

x1 = x x2 = x2 x3 = x3 (6.54)

Equation (6.53) can then be converted to linear form by applying the above assignments, resulting in the equation
y = w0 + w1x1 + w2x2 + w3x3, which is easily solved by the method of least squares using software for regression
analysis. Note that polynomial regression is a special case of multiple regression. That is, the addition of high-order
terms like x2, x3, and so on, which are simple functions of the single variable, x, can be considered equivalent to
adding new independent variables.
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In Exercise 15, you are asked to find the transformations required to convert a nonlinear model involving a
power function into a linear regression model.

Some models are intractably nonlinear (such as the sum of exponential terms, for example) and cannot be
converted to a linear model. For such cases, it may be possible to obtain least square estimates through extensive
calculations on more complex formulae.

Various statistical measures exist for determining how well the proposed model can predict y. These are
described in Section 6.12.2. Obviously, the greater the number of predictor attributes is, the slower the performance
is. Prior to applying regression analysis, it is common to perform attribute subset selection (Section 2.5.2) to
eliminate attributes that are unlikely to be good predictors for y. In general, regression analysis is quite accurate
for prediction, except when the data contain outliers. Outliers are data points that are highly inconsistent with the
remaining data (e.g., they may be way out of the expected value range). Outlier detection is discussed in Chapter
7. Such techniques must be used with caution, however, so as not to remove data points that are valid although
they may vary greatly from the mean.

6.11.3 Other Regression-Based Methods

Linear regression is used to model continuous-valued functions. It is widely used, owing largely to its simplicity.
“Can it also be used to predict categorical labels?” Generalized linear models represent the theoretical foundation
on which linear regression can be applied to the modeling of categorical response variables. In generalized linear
models, the variance of the response variable, y, is a function of the mean value of y, unlike in linear regression,
where the variance of y is constant. Common types of generalized linear models include logistic regression and
Poisson regression. Logistic regression models the probability of some event occurring as a linear function of a
set of predictor variables. Count data frequently exhibit a Poisson distribution and are commonly modeled using
Poisson regression.

Log-linear models approximate discrete multidimensional probability distributions. They may be used to
estimate the probability value associated with data cube cells. For example, suppose we are given data for the
attributes city, item, year, and sales. In the log-linear method, all attributes must be categorical; hence continuous-
valued attributes (like sales) must first be discretized. The method can then be used to estimate the probability
of each cell in the 4-D base cuboid for the given attributes, based on the 2-D cuboids for city and item, city and
year, city and sales, and the 3-D cuboid for item, year, and sales. In this way, an iterative technique can be used to
build higher-order data cubes from lower-order ones. The technique scales up well to allow for many dimensions.
Aside from prediction, the log-linear model is useful for data compression (since the smaller-order cuboids together
typically occupy less space than the base cuboid) and data smoothing (since cell estimates in the smaller-order
cuboids are less subject to sampling variations than cell estimates in the base cuboid).

Decision tree induction can be adapted so as to predict continuous (ordered) values, rather than class labels.
There are two main types of trees for prediction—regression trees and model trees. Regression trees were
proposed as a component of the CART learning system. (Recall that the acronym CART stands for Classification
and Regression Trees). Each regression tree leaf stores a continuous-valued prediction, which is actually the
average value of the predicted attribute for the training tuples that reach the leaf. Since the terms “regression”
and “numeric prediction” are used synonymously in statistics, the resulting trees were called “regression trees”,
even though they did not use any regression equations. By contrast, in model trees, each leaf holds a regression
model—a multivariate linear equation for the predicted attribute. Regression and model trees tend to be more
accurate than linear regression when the data are not represented well by a simple linear model.

6.12 Accuracy and Error Measures

Now that you may have trained a classifier or predictor, there may be many questions going through your mind. For
example, suppose you used data from previous sales to train a classifier to predict customer purchasing behavior.
You would like an estimate of how accurately the classifier can predict the purchasing behavior of future customers,
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that is, future customer data on which the classifier has not been trained. You may even have tried different methods
to build more than one classifier (or predictor) and now wish to compare their accuracy. But what is accuracy?
How can we estimate it? Are their strategies for increasing the accuracy of a learned model? These questions are
addressed in the next few sections. Section 6.12.1 describes measures for computing classifier accuracy. Predictor
error measures are given in Section 6.12.2. We can use these measures in techniques for accuracy estimation, such
as the holdout, random subsampling, k-fold cross-validation, and bootstrap methods (Section 6.13). In Section 6.14,
we’ll learn some “tricks” for increasing model accuracy, such as bagging and boosting. Finally, Section 6.15 discusses
model selection (i.e., choosing one classifier or predictor over another).

6.12.1 Classifier Accuracy Measures

Using training data to derive a classifier or predictor and then to estimate the accuracy of the resulting learned
model can result in misleading overoptimistic estimates due to overspecialization of the learning algorithm to the
data. (We’ll say more on this in a moment!) Instead, accuracy is better measured on a test set, consisting of
class-labeled tuples that were not used to train the model. The accuracy of a classifier on a given test set is the
percentage of test set tuples that are correctly classified by the classifier. In the pattern recognition literature,
this is also referred to as the overall recognition rate of the classifier, that is, it reflects how well the classifier
recognizes tuples of the various classes.

We can also speak of the error rate or misclassification rate of a classifier, M , which is simply 1−Acc(M),
where Acc(M) is the accuracy of M . If we were to use the training set to estimate the error rate of a model,
this quantity is known as the resubstitution error. This error estimate is optimistic of the true error rate (and
similarly, the corresponding accuracy estimate is optimistic) because the model is not tested on any samples that
it has not already seen.

Classes buys computer = yes buys computer = no Total Recognition (%)
buys computer = yes 6,954 46 7,000 99.34
buys computer = no 412 2,588 3,000 86.27

Total 7,366 2,634 10,000 95.52

Figure 6.27: A confusion matrix for the classes buys computer = yes and buys computer = no where an entry is
row i and column j shows the number of tuples of class i that were labeled by the classifier as class j. Ideally, the
non-diagonal entries should be zero or close to zero.

The confusion matrix is a useful tool for analyzing how well your classifier can recognize tuples of different
classes. A confusion matrix for two classes is shown in Figure 6.27. Given m classes, a confusion matrix is a
table of at least size m by m. An entry, CMi,j in the first m rows and m columns indicates the number of tuples
of class i that were labeled by the classifier as class j. For a classifier to have good accuracy, ideally most of the
tuples would be represented along the diagonal of the confusion matrix, from entry CM1,1 to entry CMm,m, with
the rest of the entries being close to zero. The table may have additional rows or columns to provide totals or
recognition rates per class.

C1 C2

C1 true positives false negatives
C2 false positives true negatives

Figure 6.28: A confusion matrix for positive and negative tuples. [to editor Please display ‘actual class’ in bold
to left of C1 and C2 of first column (these are the rows). Please display ‘predicted class’ in bold above the C1 and
C2 of columns 2 and 3 (that is, the columns are the predicted class).]

Given two classes, we can talk in terms of positive tuples (tuples of the main class of interest, e.g., buys computer
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= yes) versus negative tuples (e.g., buys computer = no)12. True positives refer to the positive tuples that were
correctly labeled by the classifier, while true negatives are the negative tuples that were correctly labeled by the
classifier. False positives are the negative tuples that were incorrectly labeled (e.g., tuples of class buys computer
= no for which the classifier predicted buys computer = yes). Similarly, false negatives are the positive tuples that
were incorrectly labeled (e.g., tuples of class buys computer = yes for which the classifier predicted buys computer
= no). These terms are useful when analyzing a classifier’s ability and are summarized in Figure 6.28.

“Are there alternatives to the accuracy measure?” Suppose that you have trained a classifier to classify medical
data tuples as either “cancer” or “not cancer”. An accuracy rate of, say, 90% may make the classifier seem quite
accurate, but what if only, say, 3–4% of the training tuples are actually “cancer”? Clearly, an accuracy rate of
90% may not be acceptable—the classifier could be correctly labelling only the “not cancer” tuples, for instance.
Instead, we would like to be able to access how well the classifier can recognize “cancer” tuples (the positive
tuples) and how well it can recognize “not cancer” tuples (the negative tuples). The sensitivity and specificity
measures can be used, respectively, for this purpose. Sensitivity is also referred to as the true positive (recognition)
rate (that is, the proportion of positive tuples that are correctly identified), while specificity is the true negative
rate (that is, the proportion of negative tuples that are correctly identified). In addition, we may use precision to
access the percentage of tuples labeled as “cancer” that actually are “cancer” tuples. These measures are defined
as

sensitivity =
t pos

pos
(6.55)

specificity =
t neg

neg
(6.56)

precision =
t pos

(t pos+ f pos)
(6.57)

where t pos is the number of true positives (“cancer” tuples that were correctly classified as such), pos is the
number of positive (“cancer”) tuples, t neg is the number of true negatives (“not cancer” tuples that were correctly
classified as such), neg is the number of negative (“not cancer”) tuples, and f pos is the number of false positives
(“not cancer” tuples that were incorrectly labeled as “cancer”). It can be shown that accuracy is a function of
sensitivity and specificity:

accuracy = sensitivity
pos

(pos+ neg)
+ specificity

neg

(pos+ neg)
. (6.58)

The true positives, true negatives, false positives, and false negatives are also useful in assessing the costs and
benefits (or risks and gains) associated with a classification model. The cost associated with a false negative (such
as, incorrectly predicting that a cancerous patient is not cancerous) is far greater than that of a false positive
(incorrectly yet conservatively labeling a noncancerous patient as cancerous). In such cases, we can outweigh
one type of error over another by assigning a different cost to each. These cost may consider the danger to the
patient, financial costs of resulting therapies, and other hospital costs. Similarly, the benefits associated with a true
positive decision may be different than that of a true negative. Up to now, to compute classifier accuracy, we have
assumed equal costs and essentially divide the sum of true positives and true negatives by the total number of test
tuples. Alternatively, we can incorporate costs and benefits by instead computing the average cost (or benefit) per
decision. Other applications involving cost-benefit analysis include loan application decisions and target marketing
mailouts. For example, the cost of loaning to a defaulter greatly exceeds that of the lost business incurred by
denying a load to a nondefaulter. Similarly, in an application that tries to identify households that are likely to
respond to mailouts of certain promotional material, the cost of mailouts to numerous households that do not
respond may outweigh the cost of lost business from not mailing to households that would have responded. Other
costs to consider in the overall analysis include the costs to collect the data and to develop the classification tool.

“Are there other cases where accuracy may not be appropriate?” In classification problems, it is commonly
assumed that all tuples are uniquely classifiable, that is, that each training tuple can belong to only one class.

12In the machine learning and pattern recognition literature, these are referred to as positive samples and negatives samples,
respectively.
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Yet, owing to the wide diversity of data in large databases, it is not always reasonable to assume that all tuples
are uniquely classifiable. Rather, it is more probable to assume that each tuple may belong to more than one
class. How then can the accuracy of classifiers on large databases be measured? The accuracy measure is not
appropriate, since it does not take into account the possibility of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distribution. Accuracy measures
may then use a second guess heuristic, whereby a class prediction is judged as correct if it agrees with the
first or second most probable class. Although this does take into consideration, to some degree, the nonunique
classification of tuples, it is not a complete solution.

6.12.2 Predictor Error Measures

“How can we measure predictor accuracy?” Let DT be a test set of the form (X1, y1), (X2, y2), . . ., (Xd, yd),
where the Xi are the n-dimensional test tuples with associated known values, yi, for a response variable, y, and
d is the number of tuples in DT . Since predictors return a continuous value rather than a categorical label, it is
difficult to say exactly whether the predicted value, y′i, for Xi is correct. Instead of focussing on whether y′i is an
“exact” match with yi, we instead look at how far off the predicted value is from the actual known value. Loss
functions measure the error between yi and the predicted value, y′i. The most common loss functions are:

Absolute error : |yi − y′i| (6.59)

Squared error : (yi − y′i)2 (6.60)

Based on the above, the test error (rate), or generalization error, is the average loss over the test set.
Thus, we get the following error rates.

Mean absolute error :

d
∑

i=1

|yi − y′i|

d (6.61)

Mean squared-error :

d
∑

i=1

(yi − y′i)2

d (6.62)

The mean squared-error exaggerates the presence of outliers, while the mean absolute error does not. If we were
to take the square root of the mean squared error, the resulting error measure is called the root mean-squared
error. This is useful in that it allows the error measured to be of the same magnitude as the quantity being
predicted.

Sometimes, we may want the error to be relative to what it would have been if we had just predicted ȳ, the
mean value for y from the training data, D. That is, we can normalize the total loss by dividing by the total loss
incurred from always predicting the mean. Relative measures of error include:
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Relative absolute error

d
∑

i=1

|yi − y′i|

d
∑

i=1

|yi − ȳ|
(6.63)

Relative squared error :

d
∑

i=1

(yi − y′i)2

d
∑

i=1

(yi − ȳ)2
(6.64)

where ȳ is the mean value of the yi’s of the training data, that is ȳ =
∑t

i=1 yi
d . We can take the root of the relative

squared error to obtain the root relative squared-error so that the resulting error is of the same magnitude as
the quantity predicted.

In practice, the choice of error measure does not greatly affect prediction model selection.

6.13 Evaluating the Accuracy of a Classifier or Predictor

How can we use the above measures to obtain a reliable estimate of classifier accuracy (or predictor accuracy
in terms of error)? Holdout, random subsampling, cross-validation, and the bootstrap are common techniques for
assessing accuracy based on randomly sampled partitions of the given data. The use of such techniques to estimate
accuracy increases the overall computation time, yet is useful for model selection.
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Figure 6.29: Estimating accuracy with the holdout method. [to editor PLEASE CHANGE “Derive classifier”
TO “Derive model”.]

6.13.1 Holdout Method and Random Subsampling

The holdout method is what we have to alluded to so far in our discussions about accuracy. In this method,
the given data are randomly partitioned into two independent sets, a training set and a test set. Typically, two
thirds of the data are allocated to the training set, and the remaining one third is allocated to the test set. The
training set is used to derive the model, whose accuracy is estimated with the test set (Figure 6.29). The estimate
is pessimistic since only a portion of the initial data is used to derive the model.

Random subsampling is a variation of the holdout method in which the holdout method is repeated k
times. The overall accuracy estimate is taken as the average of the accuracies obtained from each iteration. (For
prediction, we can take the average of the predictor error rates.)



6.13. EVALUATING THE ACCURACY OF A CLASSIFIER OR PREDICTOR 63

6.13.2 Cross-validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive subsets or “folds,”
D1, D2, . . . , Dk, each of approximately equal size. Training and testing is performed k times. In iteration i,
partition Di is reserved as the test set, and the remaining partitions are collectively used to train the model. That
is, in the first iteration, subsets D2, . . . , Dk collectively serve as the training set in order to obtain a first model,
which is tested on D1; the second iteration is trained on subsets D1, D3, . . . , Dk and tested on D2; and so on.
[new Unlike the holdout and random subsampling methods above, here, each sample is used the same number of
times for training and once for testing.] For classification, the accuracy estimate is the overall number of correct
classifications from the k iterations, divided by the total number of tuples in the initial data. For prediction, the
error estimate can be computed as the total loss from the k iterations, divided by the total number of initial tuples.

Leave-one-out is a special case of k-fold cross-validation where k set to the number of initial tuples. That is,
only one sample is “left out” at a time for the test set. In stratified cross-validation, the folds are stratified so
that the class distribution of the tuples in each fold is approximately the same as that in the initial data.

In general, stratified 10-fold cross-validation is recommended for estimating accuracy (even if computation
power allows using more folds) due to its relatively low bias and variance.

6.13.3 Bootstrap

Unlike the accuracy estimation methods mentioned above, the bootstrap method samples the given training
tuples uniformly with replacement. That is, each time a tuple is selected, it is equally likely to be selected again
and re-added to the training set. For instance, imagine a machine that randomly selects tuples for our training
set. In sampling with replacement, the machine is allowed to select the same tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap, which works as follows.
Suppose we are given a data set of d tuples. The data set is sampled d times, with replacement, resulting in a
bootstrap sample or training set of d samples. It is very likely that some of the original data tuples will occur more
than once in this sample. The data tuples that did not make it into the training set end up forming the test set.
Suppose we were to try this out several times. As it turns out, on average, 63.2% of the original data tuples will
end up in the bootstrap, and the remaining 36.8% will form the test set (hence, the name, .632 bootstrap.)

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being selected, so the
probability of not being chosen is (1− 1/d). We have to select d times, so the probability that a tuple will not be
chosen during this whole time is (1− 1/d)d. If d is large, the probability approaches e−1 = 0.368.13 Thus, 36.8%
of tuples will not be selected for training and thereby end up in the test set, and the remaining 63.2% will form
the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the current test set to obtain
an accuracy estimate of the model obtained from the current bootstrap sample. The overall accuracy of the model
is then estimated as

Acc(M) =

k
∑

i=1

(0.632×Acc(Mi)test set + 0.368×Acc(Mi)train set), (6.65)

where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i when it is applied to test set
i. Acc(Mi)train set is the accuracy of the model obtained with bootstrap sample i when it is applied to the original
set of data tuples. The bootstrap method works well with small data sets.

13e is the base of natural logarithms, that is, e = 2.718.
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6.14 Ensemble Methods—Increasing the Accuracy

In Section 6.3.3, we saw how pruning can be applied to decision tree induction to help improve the accuracy of
the resulting decision trees. Are there general strategies for improving classifier and predictor accuracy?
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Figure 6.30: Increasing model accuracy: Bagging and boosting each generate a set of classification or prediction
models, M1,M2, . . . ,Mk. Voting strategies are used to combine the predictions for a given unknown tuple. [to

editor PLEASE CHANGE C1, C2, . . . , CT to M1,M2, . . . ,Mk. ALSO CHANGE “Class prediction” TO “Predic-
tion”.]

The answer is yes. Bagging and boosting are two such techniques (Figure 6.30). They are examples of ensemble
methods, or methods that use a combination of models. Each combines a series of k learned models (classifiers
or predictors), M1,M2, . . . ,Mk, with the aim of creating an improved composite model, M∗. Both bagging and
boosting can be used for classification as well as prediction.

6.14.1 Bagging

We first take an intuitive look at how bagging works as a method of increasing accuracy. For ease of explanation,
we will assume at first that our model is a classifier. Suppose that you are a patient and would like to have a
diagnosis made based on your symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any of the others, you may choose this as the final or best diagnosis. That is, the final
diagnosis is made based on a majority vote, where each doctor gets an equal vote. Now replace each doctor by
a classifier, and you have the basic idea behind bagging. Intuitively, a majority vote made by a large group of
doctors may be more reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1, 2, . . . , k), a training set, Di, of
d tuples is sampled with replacement from the original set of tuples, D. Note that the term bagging stands for
bootstrap aggregation. Each training set is a bootstrap sample, as described in Section 6.13.3. Since sampling with
replacement is used, some of the original tuples of D may not be included in Di, while others may occur more than
once. A classifier model, Mi, is learned for each training set, Di. To classify an unknown tuple, X, each classifier,
Mi, returns its class prediction, which counts as one vote. The bagged classifier, M∗, counts the votes and assigns
the class with the most votes to X. Bagging can be applied to the prediction of continuous values by taking the
average value of each prediction for a given test tuple. The algorithm is summarized in Figure 6.31.

The bagged classifier often has significantly greater accuracy that a single classifier derived from D, the original
training data. It will not be considerably worse and is more robust to the effects of noisy data. The increased
accuracy occurs because the composite model reduces the variance of the individual classifiers. For prediction,
it was theoretically proven that a bagged predictor will always have improved accuracy over a single predictor
derived from D.
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Algorithm: Bagging. The bagging algorithm—create an ensemble of models (classifiers or predictors) for a learning
scheme where each model gives an equally-weighted prediction.

Input:

• D, a set of d training tuples;

• k, the number of models in the ensemble;

• a learning scheme (e.g., decision tree algorithm, backpropagation, etc.)

Output: A composite model, M∗.

Method:

(1) for i = 1 to k do // create k models:
(2) create bootstrap sample, Di, by sampling D with replacement;
(3) use Di to derive a model, Mi;
(4) endfor

To use the composite model on a tuple, X:

(1) if classification then

(2) let each of the k models classify X and return the majority vote;
(3) if prediction then

(4) let each of the k models predict a value for X and return the average predicted value;

Figure 6.31: Bagging.

6.14.2 Boosting

We now look at the ensemble method of boosting. As in the previous section, suppose that as a patient, you have
certain symptoms. Instead of consulting one doctor, you choose to consult several. Suppose you assign weights
to the “value” or worth of each doctor’s diagnosis, based on the accuracies of previous diagnoses they have made.
The final diagnosis is then a combination of the weighted diagnoses. This is the essence behind boosting.

In boosting, weights are assigned to each training tuple. A series of k classifiers is iteratively learned. After a
classifier Mi is learned, the weights are updated to allow the subsequent classifier, Mi+1, to “pay more attention”
to the training tuples that were misclassified by Mi. The final boosted classifier, M∗, combines the votes of each
individual classifier, where the weight of each classifier’s vote is a function of its accuracy. The boosting algorithm
can be extended for the prediction of continuous values.

Adaboost is a popular boosting algorithm. Suppose we would like to boost the accuracy of some learning
method. We are given D, a data set of d class-labeled tuples, (X1, y1), (X2, y2), . . ., (Xd, yd), where yi is
the class label of tuple Xi. Initially, Adaboost assigns each training tuple an equal weight of 1/d. Generating k
classifiers for the ensemble requires k rounds through the rest of the algorithm. In round i, the tuples from D
are sampled to form a training set, Di, of the same size. Each tuple’s chance of being selected is based on its
weight. Sampling with replacement is used—the same tuple may be selected more than once. A classifier model,
Mi, is derived from the training tuples of Di. Its error is then calculated using Di as a test set. The weights of
the training tuples are then adjusted according to how they were classified. If a tuple was incorrectly classified, its
weight is increased. If a tuple was correctly classified, its weight is decreased. A tuple’s weight reflects how hard
it is to classify—the higher the weight, the more often it has been misclassified. These weights will be used to
generate the training samples for the classifier of the next round. The basic idea is that when we build a classifier,
we want it to focus more on the misclassified tuples of the previous round. Some classifiers may be better at
classifying some “hard” tuples than others. In this way, we build a series of classifiers that complement each other.
The algorithm is summarized in Figure 6.32.
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Algorithm: Adaboost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

• D, a set of d class-labeled training tuples;

• k, the number of rounds (one classifier is generated per round);

• a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) for i = 1 to k do // for each round:
(3) sample D with replacement according to the tuple weights to obtain Di;
(4) use training set Di to derive a model, Mi;
(5) compute error(Mi), the error rate of Mi (Equation 6.66)
(6) if error(Mi) > 0.5 then

(7) reinitialize the weights to 1/d
(8) go back to step 3 and try again;
(9) endif

(10) for each tuple in Di that was correctly classified do

(11) multiply the weight of the tuple by error(Mi)/(1− error(Mi)); // update weights
(12) normalize the weight of each tuple;
(13) endfor

To use the composite model to classify tuple, X:

(1) initialize weight of each class to 0;
(2) for i = 1 to k do // for each classifier:

(3) wi = log 1−error(Mi)
error(Mi)

; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to weight for class c
(6) endfor

(7) return the class with the largest weight;

Figure 6.32: Adaboost, a boosting algorithm.

Now, let’s look at some of the math that’s involved in the algorithm. To compute the error rate of model Mi,
we sum the weights of each of the tuples in Di that Mi misclassified. That is,

error(Mi) =
d
∑

j

wj × err(Xj), (6.66)

where err(Xj) is the misclassification error of tuple Xj : If the tuple was misclassified, then err(Xj) is 1. Otherwise,
it is 0. If the performance of classifier Mi is so poor that its error exceeds 0.5, then we abandon it. Instead, we
try again by generating a new Di training set, from which we derive a new Mi.

The error rate of Mi affects how the weights of the training tuples are updated. If a tuple in round i was
correctly classified, its weight is multiplied by error(Mi)/(1− error(Mi)). Once the weights of all of the correctly
classified tuples are updated, the weights for all tuples (including the misclassified ones) are normalized so that
their sum remains the same as it was before. To normalize a weight, we multiply it by the sum of the old weights,
divided by the sum of the new weights. As a result, the weights of misclassified tuples are increased and the weights
of correctly classified tuples are decreased, as described above.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label of a tuple, X?”
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Unlike bagging, where each classifier was assigned an equal vote, boosting assigns a weight to each classifier’s vote,
based on how well the classifier performed. The lower a classifier’s error rate, the more accurate it is, and therefore,
the higher its weight for voting should be. The weight of classifier Mi’s vote is

log
1− error(Mi)

error(Mi)
(6.67)

For each class, c, we sum the weights of each classifier that assigned class c to X. The class with the highest sum
is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focusses on the misclassified tuples,
it risks overfitting the resulting composite model to such data. Therefore, sometimes the resulting “boosted”
model may be less accurate than a single model derived from the same data. Bagging is less susceptible to model
overfitting. While both can significantly improve accuracy in comparison to a single model, boosting tends to to
achieve greater accuracy.

6.15 Model Selection

Suppose that we have generated two models, M1 and M2 (for either classification or prediction), from our data.
We have performed 10-fold cross validation to obtain a mean error rate for each. How can we determine which
model is best? It may seem intuitive to select the model with the lowest error rate, however, the mean error rates
are just estimates of error on the true population of future data cases. There can be considerable variance between
error rates within any given 10-fold cross validation experiment. Although the mean error rates obtained for M1

and M2 may appear different, that difference may not be statistically significant. What if any difference between
the two may just be attributed to chance? This section addresses these questions.

6.15.1 Estimating Confidence Intervals

To determine if there is any “real” difference in the mean error rates of two models, we need to employ a test of
statistical significance. In addition, we would like to obtain some confidence limits for our mean error rates so that
we can make statements like “any observed mean will not vary by +/- two standard errors 95% of the time for
future samples”, or, “one model is better than the other by a margin of error of +/- 4%”.

What do we need in order to perform the statistical test? Suppose that for each model, we did 10-fold
cross validation, say, 10 times, each time using a different 10-fold partitioning of the data. Each partitioning is
independently drawn. We can average the 10 error rates obtained each for M1 and M2, respectively, to obtain the
mean error rate for each model. For a given model, the individual error rates calculated in the cross validations
can be considered as different, independent samples from a probability distribution. [old: In this situation, the
means of independently drawn samples][new: In general, they] follow a t distribution with k-1 degrees of freedom
where, here, k = 10. (This distribution looks very similar to a normal, or Gaussian, distribution even though the
functions defining the two are quite different. Both are unimodal, symmetric, and bell-shaped.) This allows us to
do hypothesis testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis is that
the two models are the same, or in other words, that the difference in mean error rate between the two is zero. If
we can reject this hypothesis (referred to as the null hypothesis), then we can conclude that the difference between
the two models is statistically significant, in which case we can select the model with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same test set can be used for both
M1 and M2. In such cases, we do a pairwise comparison of the two models for each 10-fold cross validation
round. That is, for the ith round of 10-fold cross validation, the same cross-validation partitioning is used to obtain
an error rate for M1 and an error rate for M2. Let err(M1)i (or err(M2)i) be the error rate of model M1 (or M2)
on round i. The error rates for M1 are averaged to obtain a mean error rate for M1, denoted err(M1). Similarly,
we can obtain err(M2). The variance of the difference between the two models is denoted var(M1 −M2). The
t-test computes the t-statistic with k − 1 degrees of freedom for k samples. In our example we have k = 10 since,
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here, the k samples are our error rates obtained from 10 10-fold cross validations for each model. The t-statistic
for pairwise comparison is computed as follows:

t =
err(M1)− err(M2)
√

var(M1 −M2)/k
, (6.68)

where

var(M1 −M2) =
1

k

k
∑

i=1

[err(M1)i − err(M2)i − (err(M1)− err(M2))]
2. (6.69)

To determine whether or not M1 and M2 are significantly different, we compute t and select a significance level,
sig. In practice, a significance level of 5% or 1% is typically used. We then consult a table for the t distribution,
available in standard textbooks on statistics. This table is usually shown arranged by degrees of freedom as rows
and significance levels as columns. Suppose we want to ascertain whether the difference between M1 and M2 is
significantly different for 95% of the population, or sig = 5% or 0.05. We need to find the t distribution value
corresponding to k−1 degrees of freedom (or 9 degrees of freedom for our example) from the table. However, since
the t distribution is symmetric, typically only the upper percentage points of the distribution are shown. Therefore,
we look up the table value for z = sig/2, which in this case is 0.025, where z is also referred to as a confidence
limit. If t > z or t < −z, then our value of t lies in the rejection region, within the tails of the distribution. This
means that we can reject the null hypothesis that the means of M1 and M2 are the same and conclude that there
is a statistically significant difference between the two models. Otherwise, if we cannot reject the null hypothesis,
we then conclude that any difference between M1 and M2 can be attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the t-test is used, where
the variance between the means of the two models is estimated as

var(M1 −M2) =

√

var(M1)

k1
+
var(M2)

k2
, (6.70)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross validation rounds) used for
M1 and M2, respectively. When consulting the table of t distribution, the number of degrees of freedom used is
taken as the minimum number of degrees of the two models.

6.15.2 ROC Curves

ROC curves are a useful visual tool for comparing two classification models. The name ROC stands for Receiver
Operating Characteristic. ROC curves come from signal detection theory that was developed during WWII for the
analysis of radar images. An ROC curve shows the trade-off between the true positive rate or sensitivity (proportion
of positive tuples that are correctly identified) and the false positive rate (proportion of negative tuples that are
incorrectly identified as positive) for a given model. That is, given a two class problem, it allows us to visualize
the trade-off between the rate at which the model can accurately recognize ‘yes’ cases versus the rate at which it
mistakenly identifies ‘no’ cases as ‘yes’ for different “portions” of the test set. Any increase in the true positive
rate occurs at the cost of an increase in the false positive rate. The area under the ROC curve is a measure of the
accuracy of the model.

In order to plot an ROC curve for a given classification model,M , the model must be able to return a probability
or ranking for the predicted class of each test tuple. That is, we need to rank the test tuples in decreasing order,
where the one the classifier thinks is most likely to belong to the positive or ‘yes’ class appears at the top of the
list. Naive Bayesian and backpropagation classifiers are appropriate, while others, such as decision tree classifiers,
can easily be modified so as to return a class probability distribution for each prediction. The vertical axis of an
ROC curve represents the true positive rate. The horizontal axis represents to the false positive rate. An ROC
curve for M is plotted as follows. Starting at the bottom left hand corner (where the true positive rate and false
positive rate are both 0), we check the actual class label of the tuple at the top of the list. If we have a true
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positive (that is, a positive tuple that was correctly classified), then on the ROC curve, we move up and plot a
point. If, instead, the tuple really belongs to the ‘no’ class, we have a false positive. On the ROC curve, we move
right and plot a point. This process is repeated for each of the test tuples, each time moving up on the curve for
a true positive or towards the right for a false positive.

0.0
 0.2
 0.4
 0.6
 0.8
 1.0


0.2


0.4


0.6


0.8


1.0


0.0


false positive rate


tru
e p

os
iti

ve
 ra

te


Figure 6.33: The ROC curves of two classification models.

Figure 6.33 shows the ROC curves of two classification models. The plot also shows a diagonal line. The closer
the ROC curve of a model is to the diagonal line, the less accurate is the model. For every true positive of such a
model, we are just as likely to encounter a false positive. If the model is really good, initially we are more likely
to encounter true positives as we move down the ranked list. Thus, the curve would move steeply up from zero.
Later, as we start to encounter fewer and fewer true positives, and more and more false positives, the curve eases
off and becomes more horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several software packages are able
to perform such calculation. The closer the area is to 0.5, the less accurate the corresponding model is. A model
with perfect accuracy will have an area of 1.0.

6.16 Summary

• Classification and prediction are two forms of data analysis that can be used to extract models describing
important data classes or to predict future data trends. While classification predicts categorical labels
(classes), prediction models continuous-valued functions.

• Preprocessing of the data in preparation for classification and prediction can involve data cleaning to reduce
noise or handle missing values, relevance analysis to remove irrelevant or redundant attributes, and data
transformation, such as generalizing the data to higher-level concepts or normalizing the data.

• Predictive accuracy, computational speed, robustness, scalability, and interpretability are five criteria for
the evaluation of classification and prediction methods.

• ID3, C4.5, and CART are greedy algorithms for the induction of decision trees. Each algorithm uses
an attribute selection measure to select the attribute tested for each nonleaf node in the tree. Pruning
algorithms attempt to improve accuracy by removing tree branches reflecting noise in the data. Early
decision tree algorithms typically assume that the data are memory resident—a limitation to data mining
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on large databases. Several scalable algorithms, such as SLIQ, SPRINT, and RainForest, have been
proposed to address this issue.

• Naive Bayesian classification and Bayesian belief networks are based on Bayes theorem of posterior
probability. Unlike naive Bayesian classification (which assumes class conditional independence), Bayesian
belief networks allow class conditional independencies to be defined between subsets of variables.

• A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be extracted from a
decision tree or directly from the training data.

• Backpropagation is a neural network algorithm for classification that employs a method of gradient descent.
It searches for a set of weights that can model the data so as to minimize the mean squared distance between
the network’s class prediction and the actual class label of data tuples. Rules may be extracted from trained
neural networks in order to help improve the interpretability of the learned network.

• A Support Vector Machine (SVM) is an algorithm for the classification of both linear and nonlinear
data. It transforms the original data in a higher dimension, from where it can find a hyperplane for separation
of the data using essential training tuples called support vectors.

• Association mining techniques, which search for frequently occurring patterns in large databases, can be
adapted for classification.

• Decision tree classifiers, Bayesian classifiers, classification by backpropagation, support vector machines, and
classification based on association are all examples of eager learners in they use training tuples to construct
a generalization model and in this way are ready for classifying new tuples. This contrasts with lazy learners
or instance-based methods of classification, such as nearest neighbor classifiers and case-based reasoning
classifiers, which store all of the training tuples in pattern space and wait until presented with a test tuple
before performing generalization. Hence, lazy learners require efficient indexing techniques.

• In genetic algorithms, populations of rules “evolve” via operations of crossover and mutation until all rules
within a population satisfy a specified threshold. Rough set theory can be used to approximately define
classes that are not distinguishable based on the available attributes. Fuzzy set approaches replace “brittle”
threshold cutoffs for continuous-valued attributes with degree of membership functions.

• Linear, nonlinear, and generalized linear models of regression can be used for prediction. Many nonlinear
problems can be converted to linear problems by performing transformations on the predictor variables.
Unlike decision trees, regression trees and model trees are used for prediction. In regression trees, each leaf
stores a continuous-valued prediction. In model trees, each leaf holds a regression model.

• Stratified k-fold cross-validation is a recommended method for accuracy estimation. Bagging and
boosting methods can be used to increase overall accuracy by learning and combining a series of individual
models. For classifiers, sensitivity, specificity, and precision are useful alternatives to the accuracy
measure, particularly when the main class of interest is in the minority. There are many measures of predictor
error, such as the mean squared-error, the mean absolute error, the relative squared-error, and the
relative absolute error. Significance tests and ROC curves are useful for model selection.

• There have been numerous comparisons of the different classification and prediction methods, and the matter
remains a research topic. No single method has been found to be superior over all others for all data sets.
Issues such as accuracy, training time, robustness, interpretability, and scalability must be considered and can
involve trade-offs, further complicating the quest for an overall superior method. Empirical studies show that
the accuracies of many algorithms are sufficiently similar that their differences are statistically insignificant,
while training times may differ substantially. For classification, most neural network and statistical methods
involving splines tend to be more computationally intensive than most decision tree methods.



6.17. EXERCISES 71

6.17 Exercises

1. Briefly outline the major steps of decision tree classification.

2. Why is tree pruning useful in decision tree induction? What is a drawback of using a separate set of tuples
to evaluate pruning?

3. Given a decision tree, you have the option of (a) converting the decision tree to rules and then pruning the
resulting rules, or (b) pruning the decision tree and then converting the pruned tree to rules. What advantage
does (a) have over (b)?

4. It is important to calculate the worst-case computational complexity of the decision tree algorithm. Given
data set D, the number of attributes n, and the number of training tuples |D|, show that the computational
cost of growing a tree is at most n× |D| × log(|D|).

5. Why is naive Bayesian classification called “naive”? Briefly outline the major ideas of naive Bayesian
classification.

6. Given a 5 GB data set with 50 attributes (each containing 100 distinct values) and 512 MB of main memory
in your laptop, outline an efficient method that constructs decision trees in such large data sets. Justify your
answer by rough calculation of your main memory usage.

7. Rainforest is an interesting scalable algorithm for decision-tree induction. Develop a scalable naive Bayesian
classification algorithm that requires just a single scan of the entire data set for most databases. Discuss
whether such an algorithm can be refined to incorporate boosting to further enhance its classification accuracy.

8. Compare the advantages and disadvantages of eager classification (e.g., decision tree, Bayesian, neural net-
work) versus lazy classification (e.g., k-nearest neighbor, case-based reasoning).

9. Design an efficient method that performs effective naive Bayesian classification over an infinite data stream
(i.e., you can scan the data stream only once). If we wanted to discover the evolution of such classification
schemes (e.g., comparing the classification scheme at this moment with earlier schemes, such as one from a
week ago), what modified design would you suggest?

10. What is association-based classification? Why is association-based classification able to achieve higher clas-
sification accuracy than a classical decision-tree method? Explain how association-based classification can
be used for text document classification.

11. The following table consists of training data from an employee database. The data have been generalized.
For example, “31 . . . 35” for age represents the age range of 31 to 35. For a given row entry, count represents
the number of data tuples having the values for department, status, age, and salary given in that row.

department status age salary count
sales senior 31. . . 35 46K. . . 50K 30
sales junior 26. . . 30 26K. . . 30K 40
sales junior 31. . . 35 31K. . . 35K 40
systems junior 21. . . 25 46K. . . 50K 20
systems senior 31. . . 35 66K. . . 70K 5
systems junior 26. . . 30 46K. . . 50K 3
systems senior 41. . . 45 66K. . . 70K 3
marketing senior 36. . . 40 46K. . . 50K 10
marketing junior 31. . . 35 41K. . . 45K 4
secretary senior 46. . . 50 36K. . . 40K 4
secretary junior 26. . . 30 26K. . . 30K 6

Let status be the class label attribute.

(a) How would you modify the ID3 algorithm to take into consideration the count of each generalized data
tuple (i.e., of each row entry)?
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(b) Use your modified version of ID3 to construct a decision tree from the given data.

(c) Given a data tuple having the values “systems”, “26. . . 30”, and “46–50K” for the attributes depart-
ment, age, and salary, respectively, what would a naive Bayesian classification of the status for the
tuple be?

(d) Design a multilayer feed-forward neural network for the given data. Label the nodes in the input and
output layers.

(e) Using the multilayer feed-forward neural network obtained above, show the weight values after one itera-
tion of the backpropagation algorithm given the training instance “(sales, senior, 31. . . 35, 46K. . . 50K)”.
Indicate your initial weight values and biases, and the learning rate used.

12. The support vector machine (SVM) is a highly accurate classification method. However, SVM classifiers
suffer from slow processing when training with a large set of data tuples. Discuss how to overcome this
difficulty and develop a scalable SVM algorithm for efficient SVM classification in large datasets.

13. Write an algorithm for k-nearest neighbor classification given k and n, the number of attributes describing
each tuple.

14. The following table shows the midterm and final exam grades obtained for students in a database course.

x y
Midterm exam Final exam
72 84
50 63
81 77
74 78
94 90
86 75
59 49
83 79
65 77
33 52
88 74
81 90

(a) Plot the data. Do x and y seem to have a linear relationship?

(b) Use the method of least squares to find an equation for the prediction of a student’s final exam grade
based on the student’s midterm grade in the course.

(c) Predict the final exam grade of a student who received an 86 on the midterm exam.

15. Some nonlinear regression models can be converted to linear models by applying transformations to the
predictor variables. Show how the nonlinear regression equation y = αXβ can be converted to a linear
regression equation solvable by the method of least squares.

16. What is boosting? State why it may improve the accuracy of decision tree induction.

17. Show that accuracy is a function of sensitivity and specificity, that is, prove Equation (6.58).

18. Suppose that we would like to select between two prediction models, M1 and M2. We have performed 10
rounds of 10-fold cross validation on each model, where the same data partitioning in round i is used for
both M1 and M2. The error rates obtained for M1 are 30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0.
The error rates for M2 are 22.4, 14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one
model is significantly better than the other considering a significance level of 1%.

19. It is difficult to assess classification accuracy when individual data objects may belong to more than one class
at a time. In such cases, comment on what criteria you would use to compare different classifiers modeled
after the same data.
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6.18 Bibliographic Notes

Classification from machine learning, statistics, and pattern recognition perspectives has been described in many
books, such as Weiss and Kulikowski [WK91], Michie, Spiegelhalter, and Taylor [MST94], Russel and Norvig
[RN95], Langley [Lan96], Mitchell [Mit97], Hastie, Tibshirani, and Friedman [HTF01], Duda, Hart, and Stork
[DHS01], Alpaydin [Alp04], Tan, Steinbach, and Kumar [TSK05], and Witten and Frank [WF05]. Many of these
books describe each of the basic methods of classification discussed in this chapter, as well as practical techniques
for the evaluation of classifier performance. Edited collections containing seminal articles on machine learning can
be found in Michalski, Carbonell, and Mitchell [MCM83, MCM86], Kodratoff and Michalski [KM90], Shavlik and
Dietterich [SD90], and Michalski and Tecuci [MT94]. For a presentation of machine learning with respect to data
mining applications, see Michalski, Bratko, and Kubat [MBK98].

The C4.5 algorithm is described in a book by Quinlan [Qui93]. The CART system is detailed in Classifica-
tion and Regression Trees by Breiman, Friedman, Olshen, and Stone [BFOS84]. Both books give an excellent
presentation of many of the issues regarding decision tree induction. C4.5 has a commercial successor, known as
C5.0, which can be found at www.rulequest.com. ID3, a predecessor of C4.5, is detailed in [Qui86]. It expands on
pioneering work on concept learning systems, described by Hunt, Marin, and Stone [HMS66]. Other algorithms for
decision tree induction include FACT (Loh and Vanichsetakul [LV88]), QUEST (Loh and Shih [LS97]), PUBLIC
(Rastogi and Shim [RS98]), and CHAID (Kass [Kas80] and Magidson [Mag94]). INFERULE (Uthurusamy, Fayyad,
and Spangler [UFS91]) learns decision trees from inconclusive data, where probabilistic rather than categorical clas-
sification rules are obtained. KATE (Manago and Kodratoff [MK91]) learns decision trees from complex structured
data. Incremental versions of ID3 include ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter
of which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremental version of CART is described
in Crawford [Cra89]. BOAT (Gehrke, Ganti, Ramakrishnan, and Loh [GGRL99]), a decision tree algorithm that
addresses the scalabilty issue in data mining, is also incremental. Other decision tree algorithms that address scal-
ability include SLIQ (Mehta, Agrawal, and Rissanen [MAR96]), SPRINT (Shafer, Agrawal, and Mehta [SAM96]),
RainForest (Gehrke, Ramakrishnan, and Ganti [GRG98]), and earlier approaches, such as [Cat91, CS93a, CS93b].
The integration of attribution-oriented induction with decision tree induction is proposed in Kamber, Winstone,
Gong, et al. [KWG+97]. For a comprehensive survey of many salient issues relating to decision tree induction,
such as attribute selection and pruning, see Murthy [Mur98].

For a detailed discussion on attribute selection measures, see Kononenko and Hong [KH97]. Information gain
was proposed by Quinlan [Qui86] and is based on pioneering work on information theory by Shannon and Weaver
[SW49]. The gain ratio, proposed as an extension to information gain, is described as part of C4.5 [Qui93]. The gini
index was proposed for CART [BFOS84]. The G-statistic, based on information theory, is given in Sokal and Rohlf
[SR81]. Comparisons of attribute selection measures include Buntine and Niblett [BN92], Fayyad and Irani [FI92],
Kononenko [Kon95], Loh and Shih [LS97], and Shih [Shi00]. Fayyad and Irani [FI92] show limitations of impurity-
based measures such as information gain and gini index. They propose a class of attribute selection measures called
C-SEP (Class SEParation), which outperform impurity-based measures in certain cases. Kononenko [Kon95] notes
that attribute selection measures based on the minimum description length principle have the least bias towards
multivalued attributes. Martin and Hirschberg [MH95] proved that the time complexity of decision tree induction
increases exponentially with respect to tree height in the worst case, and under fairly general conditions, in the
average case. Fayad and Irani [FI90] found that shallow decision trees tend to have many leaves and higher
error rates for a large variety of domains. Attribute (or feature) construction is described in Liu and Motoda
[LM98, Le98]. Examples of systems with attribute construction include BACON by Langley, Simon, Bradshaw,
Zytkow [LSBZ87], Stagger by Schlimmer [Sch86], FRINGE by Pagallo [Pag89], and AQ17-DCI by Bloedorn and
Michalski [BM98].

There are numerous algorithms for decision tree pruning, including cost complexity pruning (Breiman, Fried-
man, Olshen, and Stone [BFOS84]), reduced error pruning (Quinlan [Qui87]), and pessimistic pruning (Quin-
lan [Qui86]). PUBLIC (Rastogi and Shim [RS98]) integrates decision tree construction with tree pruning. MDL-
based pruning methods can be found in Quinlan and Rivest [QR89], Mehta, Agrawal, and Rissanen [MRA95],
and Rastogi and Shim [RS98]. Other methods include Niblett and Bratko [NB86], and Hosking, Pednault, and
Sudan [HPS97]. For an empirical comparison of pruning methods, see Mingers [Min89] and Malerba, Floriana,
and Semeraro [MFS95]. For a survey on simplifying decision trees, see Breslow and Aha [BA97].
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There are several examples of rule-based classifiers. These include AQ15 (Hong, Mozetic, and Michalski [HMM86]),
CN2 (Clark and Niblett [CN89]), ITRULE (Smyth and Goodman [SG92]), [new RISE (Domingos [Dom94]),
IREP (Furnkranz and Widmer [FW94]), RIPPER (Cohen [Coh95]),] FOIL (Quinlan [new and Cameron-Jones]
[Qui90, QCJ93]), and Swap-1 (Weiss and Indurkhya [WI98]). For the extraction of rules from decision trees, see
Quinlan [Qui87, Qui93]. Rule refinement strategies that identify the most interesting rules among a given rule
set can be found in Major and Mangano [MM95].

Thorough presentations of Bayesian classification can be found in Duda, Hart, and Stork [DHS01], Weiss and
Kulikowski [WK91], and Mitchell [Mit97]. For an analysis of the predictive power of naive Bayesian classifiers when
the class conditional independence assumption is violated, see Domingos and Pazzani [DP96]. Experiments with
kernel density estimation for continuous-valued attributes, rather than Gaussian estimation, have been reported for
naive Bayesian classifiers in John [Joh97]. For an introduction to Bayesian belief networks, see Heckerman [Hec96].
For a thorough presentation of probabilistic networks, see Pearl [Pea88]. Solutions for learning the belief network
structure from training data given observable variables are proposed in [CH92, Bun94, HGC95]. Algorithms for
inference on belief networks can be found in Russell and Norvig [RN95] and Jensen [Jen96]. The method of
gradient descent, described in Section 6.4.4 for training Bayesian belief networks, is given in Russell, Binder,
Koller, and Kanazawa [RBKK95]. The example given in Figure 6.11 is adapted from Russell et al. [RBKK95].
Alternative strategies for learning belief networks with hidden variables include application of Dempster, Laird,
and Rubin’s [DLR77] EM (Expectation Maximization) algorithm (Lauritzen [Lau95]) and methods based on the
minimum description length principle (Lam [Lam98]). Cooper [Coo90] showed that the general problem of inference
in unconstrained belief networks is NP-hard. Limitations of belief networks, such as their large computational
complexity (Laskey and Mahoney [LM97]), have prompted the exploration of hierarchical and composable Bayesian
models (Pfeffer, Koller, Milch, and Takusagawa [PKMT99] and Xiang, Olesen, and Jensen [XOJ00]). These follow
an object-oriented approach to knowledge representation.

The perceptron is a simple neural network, proposed in 1958 by Rosenblatt [Ros58], which became a landmark
in early machine learning history. Its input units are randomly connected to a single layer of output linear threshold
units. In 1969, Minsky and Papert [MP69] showed that perceptrons are incapable of learning concepts that are
linearly inseparable. This limitation, as well as limitations on hardware at the time, dampened enthusiasm for
research in computational neuronal modeling for nearly twenty years. Renewed interest was sparked following
presentation of the backpropagation algorithm in 1986 by Rumelhart, Hinton, and Williams [RHW86], as this
algorithm can learn concepts that are linearly inseparable. Since then, many variations for backpropagation
have been proposed, involving, for example, alternative error functions (Hanson and Burr [HB88]), dynamic
adjustment of the network topology (Mézard and Nadal [MN89], Fahlman and Lebiere [FL90], Le Cun, Denker, and
Solla [LDS90], and Harp, Samad, and Guha [HSG90]), and dynamic adjustment of the learning rate and momentum
parameters (Jacobs [Jac88]). Other variations are discussed in Chauvin and Rumelhart [CR95]. Books on neural
networks include [RM86, HN90, HKP91, Fu94, CR95, Bis95, Rip96, Hay99]. Many books on machine learning, such
as [Mit97, RN95], also contain good explanations of the backpropagation algorithm. There are several techniques
for extracting rules from neural networks, such as [SN88, Gal93, TS93, Fu94, Avn95, LSL95, CS96, LGT97].
The method of rule extraction described in Section 6.6.4 is based on Lu, Setiono, and Liu [LSL95]. Critiques
of techniques for rule extraction from neural networks can be found in Craven and Shavlik [CS97]. Roy [Roy00]
proposes that the theoretical foundations of neural networks are flawed with respect to assumptions made regarding
how connectionist learning models the brain. An extensive survey of applications of neural networks in industry,
business, and science is provided in Widrow, Rumelhart, and Lehr [WRL94].

Support Vector Machines (SVMs) grew out of early work by Vapnik and Chervonenkis on statistical learning
theory [VC71]. The first paper on SVMs was presented by Boser, Guyon and Vapnik [BGV92]. More detailed
accounts can be found in books by Vapnik [Vap95, Vap98]. Good starting points include the tutorial on SVMs by
Burges [Bur98] and textbook coverage by Kecman [Kec01]. For methods for solving optimization problems, see
Fletcher [Fle87] and Nocedal and Wright [NW99]. These references give additional details alluded to as “fancy
math tricks” in our text, such as transformation of the problem to a Lagrangian formulation and subsequent solving
using Karush-Kuhn-Tucker (KKT) conditions. For the application of SVMs to regression, see Schlkopf, Bartlett,
Smola, and Williamson [SBSW99], and Drucker, Burges, Kaufman, Smola, and Vapnik [DBK+97]. Approaches
to SVM for large data include the sequential minimal optimization algorithm by Platt [Pla98], decomposition
approaches such as in Osuna, Freund, and Girosi [OFG97], and CB-SVM, a microclustering based SVM algorithm
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for large data sets, by Yu, Yang and Han [YYH03].

Many algorithms have been proposed that adapt association rule mining to the task of classification. The CBA
algorithm for associative classification was proposed by Liu, Hsu, and Ma [LHM98]. A classifier, using emerging
patterns, was proposed by Dong and Li [DL99] and Li, Dong, and Ramamohanarao [LDR00]. CMAR (Classifi-
cation based on Multiple Association Rules) was presented in Li, Han, and Pei [LHP01]. CPAR (Classification
based on Predictive Association Rules) was proposed in Yin and Han [YH03]. Cong, Tan, Tung, and Xu proposed
a method for mining top-k covering rule groups for classifying gene expression data with high accuracy [CTTX05].
Lent, Swami, and Widom [LSW97] proposed the ARCS system, which was described in Section 5.3 on mining
multidimensional association rules. It combines ideas from association rule mining, clustering, and image process-
ing, and applies them to classification. Meretakis and Wüthrich [MW99] proposed to construct a naive Bayesian
classifier by mining long itemsets.

Nearest-neighbor classifiers were introduced in 1951 by Fix and Hodges [FH51]. A comprehensive collection of
articles on nearest neighbor classification can be found in Dasarathy [Das91]. Additional references can be found in
many texts on classification, such as Duda, Hart, and Stork [DHS01] and James [Jam85], as well as articles by Cover
and Hart [CH67] and Fukunaga and Hummels [FH87]. Their integration with attribute-weighting and the pruning
of noisy instances is described in Aha [Aha92]. The use of search trees to improve nearest neighbor classification time
is detailed in Friedman, Bentley, and Finkel[FBF77]. The partial distance method was proposed by researchers in
vector quantization and compression. It is outlined in Gersho and Gray [GG92]. The editing method for removing
“useless” training tuples was first proposed by Hart [Har68]. The computational complexity of nearest neighbor
classifiers is described in Preparata and Shamos [PS85]. References on case-based reasoning (CBR) include the
texts [RS89, Kol93, Lea96], as well as [AP94]. For a list of business applications, see [All94]. Examples in medicine
include CASEY by Koton [Kot88] and PROTOS by Bareiss, Porter, and Weir [BPW88], while Rissland and Ashley
[RA87] is an example of CBR for law. CBR is available in several commerical software products. For texts on
genetic algorithms, see [Gol89, Mic92, Mit96]. Rough sets were introduced in Pawlak [Paw91]. Concise summaries
of rough set theory in data mining include Ziarko [Zia91], and Cios, Pedrycz, and Swiniarski [CPS98]. Rough sets
have been used for feature reduction and expert system design in many applications, including [Zia91, LP97, Swi98].
Algorithms to reduce the computation intensity in finding reducts have been proposed in [SR92]. Fuzzy set theory
was proposed by Lofti Zadeh in [Zad65, Zad83]. Additional descriptions can be found in [YZ94, Kec01].

There are many good textbooks that cover the techniques of regression. Examples include [Jam85, Dob90,
JW92, Dev95, HC95, NKNW96, Agr96]. The book by Press, Teukolsky, Vetterling, and Flannery [PTVF96] and
accompanying source code contain many statistical procedures, such as the method of least squares for both linear
and multiple regression. Recent nonlinear regression models include projection pursuit and MARS (Friedman
[Fri91]). Log-linear models are also known in the computer science literature as multiplicative models. For log-
linear models from a computer science perspective, see Pearl [Pea88]. Regression trees (Breiman, Friedman, Olshen,
and Stone [BFOS84]) are often comparable in performance with other regression methods, particularly when there
exist many higher-order dependencies among the predictor variables. For model trees, see Quinlan [Qui92].

Methods for data cleaning and data transformation are discussed in Kennedy, Lee, Van Roy, et al. [KLV+98],
Weiss and Indurkhya [WI98], Pyle [Pyl99], and Chapter 2 of this book. Issues involved in estimating classifier
accuracy are described in Weiss and Kulikowski [WK91] [new and Witten and Frank] [WF00]. The use of stratified
10-fold cross-validation for estimating classifier accuracy is recommended over the holdout, cross-validation, leave-
one-out (Stone [Sto74]) and bootstrapping (Efron and Tibshirani [ET93]) methods, based on a theoretical and
empirical study by Kohavi [Koh95]. Bagging is proposed in Breiman [Bre96]. The boosting technique of Freund
and Schapire [FS97] has been applied to several different classifiers, including decision tree induction (Quinlan
[Qui96]) and naive Bayesian classification (Elkan [Elk97]). Sensitivity, specificity, and precision are discussed in
Frakes and Baeza-Yates [FBY92]. For ROC analysis, see Egan [Ega75] and Swets [Swe88].

The University of California at Irvine (UCI) maintains a Machine Learning Repository of data sets, for the
development and testing of classification algorithms, and a Knowledge Discovery in Databases (KDD) Archive, an
online repository of large data sets that encompasses a wide variety of data types, analysis tasks, and application
areas. For information on these two repositories, see http://www.ics.uci.edu/˜mlearn/MLRepository.html and
http://kdd.ics.uci.edu.
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No classification method is superior over all others for all data types and domains. Empirical comparisons of
classification methods include [Qui88, SMT91, BCP93, CM94, MST94, BU95], and [LLS00].
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