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The Use of Multifactor Dimensionality Reduction to Detect Epistasis 
Among Potential Causal Genes of Alcoholism 

by Laura Mustavich 
 

Epistasis, the interaction among genes, is ubiquitous among common, complex, and multifactorial diseases. 
Therefore it has become necessary to develop methods to detect epistasis, the motivation for one such method, 
multifactor dimensionality reduction (MDR). We introduce the algorithm of MDR, its strengths and weaknesses, 
and finally illustrate the results of applying MDR to alcoholism. We compare these results to those from logistic 
regression, a commonly used alternative to MDR, and discuss methodological issues of MDR, and future work 
centered around these issues.  
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Introduction 
 
Complex Diseases and Epistasis 
 
 Most common, hereditary diseases are complex; caused by multiple genes, often 
interacting with one another. This interaction, termed epistasis, occurs when an allele at one 
locus masks the effect of an allele at another locus, and is illustrated with the example of hair 
color in mice, determined by the two-locus system depicted in the table below1: 
 

 
As you can see from the table,  considering locus B 

individually (column 3 of the table),  allele B is dominant to 
allele b, since it confers Black hair color, even if only one 
copy of the B allele is present. Similarly, allele G is dominant 
to allele g at locus G, since it confers Grey hair color, even if 
only one copy of the G allele is present (row 3 of the table). If 
you consider both loci simultaneously, however,  you can see 
that all mice who possess at least one copy of the G allele at 
locus G are Grey, despite their genotype at locus B. Allele B 
of locus B, is then said to be epistatic to allele G at locus G, 
and thus do not act independently of one another. 

 
Failure of Traditional Approaches 
 
 Although traditional gene-hunting approaches, such as linkage and association analyses, 
have been very successful in discovering the genes responsible for rare Mendelian diseases, 
caused by a single gene, they have proven unsuccessful in determining the causal gene networks 
of complex, multifactorial diseases. This is largely due to the fact that, since so many genes 
interact to cause complex diseases, the effect of any single individually is so negligible that it is 
difficult to detect, for traditional methods were not designed to take interactions into account, but 
rather to detect strong, single-effects. As the emphasis in human genetics has shifted away from 
rare Mendelian disorders, to common complex diseases such as cancer, cardiovascular, 
metabolic, and  psychiatric diseases, it has become apparent that we must develop methods 
specifically aimed at targeting the epistasis which is so ubiquitous among genes causing these 
diseases, if we are to uncover their genetic etiology, and ultimately, cure them.  
 
Multifactor Dimensionality Reduction 
 
Algorithm 
 
 Multifactor Dimensionality Reduction (MDR) is a data mining approach, developed by 
Marylyn D. Ritchie and colleagues from Vanderbilt University, to identify interactions among 
discrete variables that influence a binary outcome. It is a non-parametric alternative to traditional 
statistical methods such as logistic regression. While it was driven by the need to improve the 
power to detect gene-gene interactions, it can be applied to any set of discrete variables which 
may predict class. It is used to determine the optimal kth order model (the interaction of the set 
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of k variables that best predict the class) among the N possible variables. The algorithm is as 
follows3:           

0) First, divide the records into 10 distinct subsets for later cross-
validation. 

1) Select a set of k variables from the total set of N variables. 
2) Form a k-dimensional contingency table, where li is the length 

of the ith dimension, and is the number of levels of the ith 
variable, where i = 1, 2, …, k. (eg. for a second order model 
with 3 levels for one variable, and 4 levels for another, this 
process would form a 3 x 4 contingency table.) In each cell of 
the table (with the corresponding values for each of the k 
variables), record the number of records in each class (cases 
or controls) in the training set. 

3) Calculate the ratio of the two classes in each cell  
4) Label each cell as “high-risk” or “low-risk”, according to 

whether the case-control ratio is above a pre-specified 
threshold. (This is the dimensionality reduction step, since it 
reduces k-dimensional space to 1 dimension with 2 levels.) 

5) Use these labels to classify individuals as cases or controls in 
the testing set, and calculate the misclassification rate. 

6) Repeat steps 1 – 5 across all training and testing sets. 
7) Repeat steps 1 – 6 for all possible sets of k variables. There 

are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
N

 of them. 

8) Repeat steps 1-7 for any desired value of k for k = 1, 2,…,N. 
 

The best model is the one which minimizes the prediction error; the 
average misclassification rate across all 10 cross-validation subsets, and 
which maximizes the cross-validation consistency; the number of times a 
particular model had the lowest prediction error across cross-validation 
subsets. The significance of both these estimates can be assessed by 
permutation testing3. 
 
Strengths 
 

In terms of multifactorial diseases, the original area of application for MDR, the main 
strength of the algorithm is that it facilitates the simultaneous detection and characterization of 
multiple genetic loci associated with a clinical trait by reducing the dimensionality of the 
multilocus data. MDR not only identifies genes which interact epistatically to cause a disease, 
but also indicates which variants of each gene interact to cause the clinical outcome. MDR is 
also non-parametric, since no parameters are estimated, which eliminates the uncertainty 
introduced by the parameter estimates of parametric methods, such as logistic regression. 
Furthermore, it assumes no particular genetic model, which is extremely useful when there is no 
a priori knowledge of the genetic system. Lastly, the false-positive rate, which is often a problem 
in traditional gene-hunting approaches, is minimized due to multiple testing4. 
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Weaknesses 
 

 One major weakness of MDR, however, is that, like many methods, MDR suffers from 
the curse of dimensionality. Predictive ability decreases as the dimensionality increases due to a 
decreasing number of samples for each combination of attributes. No search method is explicitly 
incorporated into the algorithm, but instead, an exhaustive search is implied and used in the 
implementation, rendering the computational intensity of MDR its most serious downfall. This 
computational intensity is not largely affected by sample size, but is largely a function of the 
number of attributes, N, and the order of the model, k. For biallelic loci, there are 3 possible 

genotypes for each locus, and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
N

 possible kth order models, totalling k

k
N

3⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ comparisons. The 

computational complexity is therefore tremendous when there are greater than 10 loci4. 
  
Application to Alcoholism 
 
Background 
  
 Alcoholism is a complex disease, with which many genes have been found to be 
associated, including several classes of ADH (alcohol dehydrogenase), as well as ALDH2 
(acetaldehyde dehodrogenase 2).  These genes encode enzymes of the same name which 
catalyze the steps from alcohol to acetaldehyde, and from acetaldehyde to acetate, respectively, 
in the metabolism of alcohol.  
 

 
 
 
 

 
 

 
 The gene TAS2R38, on the other hand, encodes a bitter taste receptor which confers the 
ability to taste the compound phenylthiocarbamide (PTC), which tastes bitter to those that can 
taste it. The ability to taste PTC is correlated with one’s willingness to drink alcohol: non-tasters 
of PTC tend to perceive alcohol as sweet, and therefore tend to drink more alcohol, while tasters 
of PTC tend to perceive alcohol as bitter, and therefore tend to drink less alcohol. Since one must 
be willing to drink alcohol in order to become an alcoholic, the variant of TAS2R38 is related to 
risk of alcoholism, however, no direct link has been found.  

We hope to establish a genetic association between TAS2R38 and alcoholism, by showing 
that the risk of alcoholism can be predicted by the form of TAS2R38, genes already found to be 
associated with alcoholism, and other taste receptor genes. 
 
Results 
 
 In order to do this, I used Multifactor Dimensionality Reduction software2, an 
implementation of the MDR algorithm, found on www.sourceforge.net, to analyze a sample of 
cases (alcoholics) and controls (non-alcoholics) from three East Asian populations: the Ami, 

alcohol  acetaldehyde acetate 

ADH 
alcohol  dehydrogenase ALDH2 

acetaldehyde dehydrogenase 2
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Atayal, and Taiwanese. The 120 individuals were genotyped for 98 markers (single nucleotide 
polymorphisms) within several genes: ALDH2, all ADH genes, and 2 taste receptor genes, 
TAS2R16 and TAS2R38 (PTC). Due to extensive computation time, I was forced to restrict the 
number of markers, and was advised to use markers solely within the ADH1C gene, and the 2 
taste receptor genes, leaving me with 36 attributes, and considered models only up to order 4. 
After dropping incomplete records, I was left with 79 individuals. 
 I initially ran MDR on all three populations combined. The table below shows the results 
of the best model for each order model, from 1 to 4, along with its classification accuracy, cross-
validation consistency, and significance, as evaluated by the sign test.  
 

Order Model 
Training Bal. 
Acc. 

Testing Bal. 
Acc. Sign Test (p) CV Consistency 

1 X.04..ADH1C.dwstrm.Te 0.6049 0.4278 0 (1.0000) 5/10 

2 X.07..TAS2R16.C_11431 
X.04..ADH1C.dwstrm.Te 0.7076 0.4438 3 (0.9453) 6/10 

3 
X.07..TAS2R16.C_11431 
X.04..ADH1C.dwstrm.Te 
X.04..ADH1C.rs3762896 

0.785 0.3186 1 (0.9990) 4/10 

4 

X.07..TAS2R16.C_11431 
X.07..PTC.C_8876291_1 
X.07..PTC.C_8876482_1 
X.04..ADH1C.dwstrm.Te 

0.8453 0.3564 2 (0.9893) 6/10 

 
As you can see, none of the models were significant, as they performed worse in terms of testing 
accuracy, than if the individuals were classified randomly. Thus, I did not explore these models 
further.  
 Instead, I considered the populations separately, in the event that my poor results above 
were due to population admixture. I obtained similar results for the Atayal and Taiwanese, but 
more interesting results for the 30 Ami individuals, depicted below: 
 
Order Model Training Bal. 

Acc. 
Testing Bal. 
Acc. Sign Test (p) CV Consistency 

1 X.07..TAS2R16.C_11431 0.7331 0.4598 5 (0.6230) 5/10 

2 X.07..TAS2R16.C_11431 
X.04..ADH1C.C_2688508 0.8284 0.3476 2 (0.9893) 3/10 

3 
X.07..TAS2R16.C_11431 
X.07..PTC.C_8876467_1 
X.04..ADH1C.C_2688508 

0.9688 0.9545 10 (0.0010) 10/10 

4 

X.07..TAS2R16.C_11431 
X.07..TAS2R16.C_11431.1 
X.07..PTC.C_8876467_1 
X.04..ADH1C.C_2688508 

0.9722 0.8712 8 (0.0547) 9/10 

 
While the first and second order models performed quite poorly, the fourth order model was 
much better, with the third order model indisputably the best, with its 95% accuracy, 10/10 
cross-validation consistency, and significance by the sign test. This indicates that TAS2R16, 
TAS2R38(PTC), and ADH1C, may all interact to effect alcoholism susceptibility, at least in the 
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Ami population. The positions of the three markers involved in the model, may give us clues to 
how these genes might be interacting. 
 
Logistic Regression 
 
 Because MDR has been posited as a much stronger alternative to other methods to detect 
epistasis, especially logistic regression, I decided to analyze the same data set with logistic 
regression in order to see if this method would confer similar results. My initial attempt at an 
exhaustive search algorithm for logistic regression, took way too much computation time in R 
(much longer than MDR), even for models only up to order 4. Therefore, I incorporated a greedy 
algorithm to find the best kth order model for each k = 1,2,…,N, where each model only 
considered the interaction term of the selected attribute from the previous order model, with one 
additional attribute. I chose this search method over a genetic programming method since each 
subsequent order model in the MDR results included the attributes of the previous model. 
Because this algorithm proved much faster than the exhaustive search used in the MDR software, 
I was able to find the best model for each possible order. The results are shown below: 
Model.Order Additional.Attribute AIC 

1 X.07..TAS2R16.C_11431 38.68188593
2 X.07..TAS2R16.C_11431.1 37.59538615
3 X.07..PTC.C_8876482_1 36.67571859
4 X.07..TAS2R16.C_75402 36.67571859
5 X.07..PTC.C_9506256_1 36.67571859
6 X.04..ADH1C..EcoRI.In 36.67571859
7 X.04..ADH1C..TATAAA 36.67571859
8 X.04..ADH1C.66bp.InDe 36.67571859
9 X.04..ADH1C.C_2645744 36.67571859

10 X.04..ADH1C.C_2688487 36.67571859
11 X.04..ADH1C.C_2688509 36.67571859
12 X.04..ADH1C.C_2688511 36.67571859
13 X.04..ADH1C.C_2688547 36.67571859
14 X.04..ADH1C.dws.InDel 36.67571859
15 X.04..ADH1C.ex6.fn.RF 36.67571859
16 X.04..ADH1C.ex8.fn.RF 36.67571859
17 X.04..ADH1C.new.Ex8.f 36.67571859
18 X.04..ADH1C.rs1789920 36.67571859
19 X.04..ADH1C.rs1789924 36.67571859
20 X.04..ADH1C.rs2165671 36.67571859
21 X.07..TAS2R16.C_32911 37.44732682
22 X.07..TAS2R16.C_29144 37.50110886
23 X.04..ADH1C.rs1583977 37.17992136
24 X.04..ADH1C.rs1042026 38.2315879
25 X.07..PTC.C_8876467_1 38.75680141
26 X.04..ADH1C.rs1051643 39.58595557
27 X.04..ADH1C.rs1001713 37.00813606
28 X.04..ADH1C.C_2688508 37.6020125
29 X.04..ADH1C.rs3762896 35.88084916
30 X.04..ADH1C.rs2646012 36.3481602
31 X.07..PTC.C_9506826_1 35.91206284
32 X.04..ADH1C.rs4513578 35.15543197
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33 X.07..PTC.C_8876291_1 35.51478143
34 X.04..ADH1C.dwstrm.Te 36.36629911
35 X.04..ADH1C.Ex5.HaeII 36.96935466
36 X.07..PTC.C_9506827_1 38.26345394

 
Discussion  
 

According to the Akaike Information Criterion (AIC), the third order model is a local 
optimim, relative to other order models, similar to the MDR results. Many subsequent order 
models have the same AIC, however, we select the most parsimonious model. Additionally, like 
the MDR results, the X.07..TAS2R16.C_11431 marker is included in the model, and is also the first 
selected attribute. Logistic regression and MDR, however, converged upon different attributes 
for the other two markers in the model. Future simulations must be done to determine which 
method is most powerful, and gives the most accurate results, in addition to comparisons with 
other methods. 

As you can see from the results, however, the 32nd order model is the best, according to 
AIC, although I doubt how realistic this model is. With 3 different genes involved, it is 
improbable that these genes physically interact at 32 different locations among the genes. 
However, this is something that would have to be verified experimentally. Not surprisingly, all 
three markers implicated by the MDR results are included in this 32nd order model. 

While future work should initially focus on simulation comparisons between MDR and 
other methods, to determine whether this new method is worth any further attention, subsequent 
work should focus on appropriate search methods, such as greedy algorithms and genetic 
programming, which I could not test here due to time constraints, since this is the main weakness 
of the MDR implementation. While genetic programming search methods have been very 
successful, and should definitely be compared with greedy algorithms, as applied to MDR, I 
hypothesize that greedy algorithms will outperform genetic programming methods due to the fact 
that lower order models are subsumed by higher order models in the MDR results. As MDR still 
shows promise as a method useful in detecting epistasis, I will surely explore the incorporation 
of greedy algorithms into MDR in the future, to improve a potentially invaluable method in the 
world of human disease. 
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