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ABSTRACT  
We compare several supervised learning methods to Support Vector Machine 
method to expression microarray data. Four different kernel functions for SVM 
are tested as well as Decision Tree, Neural Networks and Naïve Bayes 
methods. Techniques used in SVM training by Brown et al. are used and the 
results are compared. Best performed SVMs are then used to predict 
functional roles for previously un-annotated ORFs based on their expression 
data, and some of them are verified by recent available experimental results.  
 

INTRODUCTION 

DNA microarray 
A DNA microarray is a collection of microscopic DNA spots. Commonly, each spot is 
a single strand DNA sequence, representing a single gene, printed on a glass by 
covalent attachment. Quantitative measurements of the concentration of DNA 
sequences in a solution could be obtained by DNA-DNA or DNA-RNA hybridization 
under high-stringent conditions and fluorescence based detection. Thus, biologists 
could use DNA microarrays to measure the expression level of thousands of interested 
genes in a single experiment. This is called the expression profile, which gives 
expression levels under a certain biological condition for a whole set of genes. 
Expanding this by testing expression levels under a series of biological conditions 
could generate a matrix of data that monitors expression profiles through time.  
 
Data description 
Systematic experiments of gene expression profiles of yeast S. cerevisiae are 
performed by using DNA microarrays. 6221 genes with clear ORFs (Open Reading 
Frames) are tested in the experiments, and 81 biological conditions are used for 
diverse expression profiles, including different time points after exposing the 
organism to a certain environment. One biological condition is used as a reference 
condition, so that expression levels under all other conditions could be presented by 
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the ratio of the actual expression level to the reference expression level. Thus, the 
whole dataset is a 6221 by 80 matrix, with each data point representing the expression 
level ratio of a certain gene under a certain condition. Biological meaning of the ratio 
represents the regulation of gene expression. If the ratio is larger than 1, then it is 
up-regulated compared to the reference condition; if it is smaller than 1, then it is 
down-regulated.  
 
Instead of using the ratio, which is always larger than zero, normalized logarithm is 
used for analysis suggested by Eisen et al. It then makes down-regulated expressions 
with ratio in (0,1) to (-∞,0), and up-regulated expressions with ratio in (1,+∞) to 
(0,+∞), in order to maintain symmetry. Define Xi to be the logarithm of the ratio of 
expression level Ei for gene X in experiment i to the expression level Ri of gene X in 

the reference state, normalized so that the expression vector ( )801 ,..., XXX =  has 

Euclidean length 1: 
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The natural basis for organizing gene expression data is that genes involved in the 
same biological process or carrying out closely related functions should have similar 
patterns of expression. Thus, genes could be clustered according to the similarity of 
expression patterns, and a function-unknown gene with a similar expression pattern 
with a function-known gene, could be predicted with certain confidence to be 
involved in the same biological process or to have a related function.  
 
Supervised learning 
Having samples that we will try to learn the pattern from, there are two general 
classes of learning methods. Eisen et al. used unsupervised learning method to cluster 
the microarray expression data. Without any biological knowledge of the function or 
biological process labels of those genes, they did clustering analysis solely based on 
similarities between two samples.  
 
Although unsupervised clustering seems to successfully uncover some underlying 
gene clusters, the biological significance of those clustering are not clear. Thus, it is 
always useful to incorporate known biological knowledge into the learning process. 
Here, we use the biological knowledge to label the samples for the training set, and 
building our models upon that.  
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METHODS 

We will use several supervised learning methods in this paper applying to this 
particular dataset, and compare the performances of each method.  
 
Brown et al. suggested that SVM outperforms other supervised learning methods on 
this dataset. Here, we will try to reproduce the result they provided, and also try some 
other supervised learning methods to compare the performance. This paper does not 
aim to find a best model for this dataset, yet to understand the nature of those 
commonly used supervised learning methods.  
 
We have downloaded the whole microarray expression dataset from the Stanford 
website (http://rana.stanford.edu/clustering). Format is adjusted to fit our analysis. 
2467 genes with good annotations are selected to form the training set as Eisen et al. 
suggested. Among the rest 3754 genes, 186 genes without clear expression profiles 
are discarded, which results in a 3568-gene test set.  
 
Class labels for the training set are obtained from GO (Gene Ontology, 
http://www.geneontology.org). Six classes are selected for classification and 
prediction. Four are biological processes: respiration, tricarboxylic acid cycle (TCA), 
meiosis and proteolysis; two are cellular components: histone and ribosome. Classes 
are selected such that biologically, the possibility of being classified to two or more 
classes is small.  
 
Additional dataset pre-processing is required for performing SVM. Individual dataset 
is needed for each of the six classes, so that the genes within the class will be labeled 
positive, and all others negative. Thus, the SVM method could be evaluated for each 
class.  
 
Three-fold cross validation is used for model evaluation. The training set is split into 
three parts, and models are training using every combination of two parts, and making 
the prediction for the third part. Model evaluation is based on the fitness of predicted 
labels and the actual labels.  
 
Other supervised learning methods are also used to test their performance, which 
include Decision tree, Naïve Bayes, and Neural networks. Principle component 
analysis is also performed, trying to reduce the dimension of feature space.  
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The performance of a learning method is evaluated by the index of savings, as 

suggested by Brown et al. We define the cost function by ( ) ( ) ( )MfnMfpC ⋅+ 2M ＝ , 

where ( )Mfp  and ( )Mfn  are the numbers of false positives and false negatives for 

method M. Also define ( )NC  to be the cost value such that all samples are classified 

as negative. And define save function ( )MS  as ( ) ( ) ( )MCNCM −=S . Thus, larger 

value of the save function indicates a better model.  
 
Predictions of unknown functions for the test set are made by SVM alone. Top 
predictions are examined in detail for biological verification.  
 

RESULTS 

1. SVM (Support Vector Machines) 
We use the software GIST for performing SVM in this paper, developed by Noble et 
al. (http://bioinformatics.ubc.ca/gist/). It is installed in Linux system and performed 
SVM training locally.  
 

Four kernel functions are used for SVM: linear kernel ( ) 1, +⋅= YXYXK , 2-power 

polynomial kernel ( ) ( )21, +⋅= YXYXK , 3-power polynomial kernel 

( ) ( )31, +⋅= YXYXK  and radial kernel ( ) ( )2||||exp, YXYXK −−= σ . However, for 

each class, samples labeled to this class are only a small fraction of the whole dataset, 
which leads to an imbalance in the number of positive and negative training examples. 
Thus, the positive samples are more likely to be considered as noise, which cause the 
SVM to make incorrect classifications. Brown et al. suggested adding to the diagonal 
of the kernel matrix a constant so that avoiding the positive sample to be considered 

as noises. For positive samples iX , ( ) ( ) ( )NniiKiiK ++= λ,,' ; for negative 

samples iX , ( ) ( ) ( )NniiKiiK −+= λ,,' , where N is the total number of samples, and 

n+ and n- are the number of positive samples and negative samples, respectively. λ  
is set to 0.1.  
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We first use all the samples in the training set without cross validation to train the 
SVM, in order to check the fitness of the kernel functions. And the models are then 
used to the test set for prediction.  
 
Table 1: Fitness of kernel functions to the dataset.  
Class Method FP FN TP TN S(M)

Linear SVM 8 0 14 2445 20
Power-2 SVM 0 0 14 2453 28
Power-3 SVM 0 0 14 2453 28

TCA 

Radial SVM 0 0 14 2453 28
Linear SVM 29 0 8 2430 -13
Power-2 SVM 0 0 8 2459 16
Power-3 SVM 0 0 8 2459 16

Proteolysis 

Radial SVM 0 0 8 2459 16
Linear SVM 123 0 17 2327 -89
Power-2 SVM 0 0 17 2450 34
Power-3 SVM 0 0 17 2450 34

Meiosis 

Radial SVM 0 0 17 2450 34
Linear SVM 199 0 35 2233 -129
Power-2 SVM 5 0 35 2427 65
Power-3 SVM 0 0 35 2432 70

Respiration 

Radial SVM 0 0 35 2432 70
Linear SVM 261 1 26 2179 -209
Power-2 SVM 0 0 27 2440 54
Power-3 SVM 0 0 27 2440 54

Histone 

Radial SVM 0 0 27 2440 54
Linear SVM 118 2 170 2177 222

Power-2 SVM 10 0 172 2285 334

Power-3 SVM 2 0 172 2293 342

Ribosome 

Radial SVM 0 0 172 2295 344
 
Table 1 indicates the training fitness of kernel function to the dataset. And Power-3 
and Radial kernels are both good performers. 
 
We then used Power-3 polynomial kernel to test the performance of SVM by 3-fold 
cross validation.  
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Table 2: Prediction performance comparison of Power-3 SVM to Brown et al. 
(Meiosis class are not used by Brown et al.) 
Class Power-3 SVM FP FN TP TN S(M)

Chong 2 13 1 2451 0TCA 
Brown et al. 4 9 8 2446 12
Chong 0 8 0 2459 -6Proteolysis 
Brown et al. 3 8 27 2429 51

Chong 4 17 0 2456 -4Meiosis 
Brown et al. / / / / /

Chong 18 30 5 2414 -8Respiration 
Brown et al. 6 8 22 2431 38

Chong 5 27 0 2435 -5Histone 
Brown et al. 0 2 9 2456 18

Chong 33 41 131 2262 229Ribosome 
Brown et al. 7 3 118 2339 229

 
The performance of SVM is not very good for sparse positive-sample datasets, even if 
we have modified traditional kernel function and kernel matrix. For the class 
Ribosome, it has 172 positive labels within 2467 samples, the faction of positive 
samples is larger, thus the performance of SVM is the best. However, other classes do 
not have a large positive sample fraction, which makes the performance not satisfied.  
 
2. Decision Tree 
Decision tree method is a classic classification method. We use the function J48 in 
software Weka to build the model (http://www.cs.waikato.ac.nz/ml/weka/). 3-fold 
cross validation is also performed to the training set. The tree ended up with 44 
leaves.  
 
Table 3: Confusion matrix of 3-fold cross validation of Decision Tree method.  
Classified 
as  

TCA Proteolysis Meiosis Respiration Histone Ribosome Other

TCA 1 0 1 3 0 0 9 
Proteolysis 0 0 0 0 0 0 8 
Meiosis 0 0 1 0 0 0 16 
Respiration 0 0 0 1 0 2 32 
Histone 0 0 0 0 0 0 27 
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Ribosome 0 0 0 0 0 114 58 
Other 9 3 3 13 1 35 2130
 
Still, the class Ribosome with larger fraction of positive labels is better predicted than 
other classes. And compared to SVM, Decision tree method is not a good performer, 
either.  
 
3. Naïve Bayes 
Naïve Bayes is a simple probabilistic classifier based on applying Bayes’ theorem 
with naïve independence assumptions. It has the form as the following:  

( ) ( ) ( )∏
=

n

i
in CFpCp

Z
FFp

1
1 |1

＝,...,|C , where Z is a constant scaling factor based on 

the features Fi, ( )ni ,1∈ ; and C is the dependent class variable. Thus the classifier is 

defined to maximize this conditional probability.  
 
Naïve Bayes has an advantage of dealing with high dimension feature space, since it 
assumes that features are independent, and the conditional probability is just a product 
concerning all features. Model is trained in Weka, using NaiveBayes function.  
 
Table 4: Confusion matrix of 3-fold cross validation of Naïve Bayes method.  
Classified 
as  

TCA Proteolysis Meiosis Respiration Histone Ribosome Other

TCA 9 0 0 2 0 0 3 
Proteolysis 0 0 0 0 1 0 7 
Meiosis 0 0 5 1 4 0 7 
Respiration 6 0 1 10 2 2 16 
Histone 0 0 4 1 7 0 15 
Ribosome 0 0 0 36 0 120 16 
Other 22 8 76 159 365 92 1472
 
Classification by Naïve Bayes has more true positives while also has more false 
positives, compared to SVM and Decision Tree methods.  
 
4. Feature selection and PCA (Principle Component Analysis) 
Because the dimension of the feature space is high, we try to reduce the dimension by 
feature selection. Greedy forward and backward stepwise feature selection is 
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performed to the training set. We use Weka data preprocessing function, and choose 
the supervised attribute selection, greedy stepwise method to perform the task. 22 
features are selected out of 80 features.  
 
Figure 1: PCA: Standard deviation of principle components and cumulative 
proportion of variation of ranked principle components.  

 
In fact, 80 conditions used in the original dataset are of different time points when the 
organism is exposed to 8 different environments. And within the same environment, 
the conditions may have some redundancy, and depend on its previous time point 
condition in a certain extent. Thus, feature selection could reduce the dimension of the 
feature space while maintaining a majority of variation.  
 
We also tried to use PCA to the whole dataset, using the “svd” function in R. Seen 
from Figure 1, first 30 PCs are responsible for about 90% of variation of the dataset. 
And the standard deviation tends to be linearly decreasing after 30 PCs.  
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Figure 2: Class spread according to pairs of three top-ranked principle 
components, and comparison of top two principle components.  

 
We also looked into the first two PCs, and try to identify some useful patterns 
indicating the differences between them. Shown in Figure 2, one dense area is at the 
(0,0) centered area, indicating the majority of PC values are similar in two PCs. 
However, some other features in PC do have large variations, indicating large 
variations within the data points for these features.  
 
Colored plots are shown, indicating how data points of 7 classes (6 functional classes 
and 1 class for all other functions) spread according to the pairs of first 3 PCs. Yellow 
points are labeled with “other functions”. The problem remains that the labeled points 
are only a few with respect to the great amount of data points. Thus the pattern is not 
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clear.  
 
5. Neural Networks 
We also tried Neural Networks method to the dataset. Because the learning time is 
extremely long if using the whole dataset with 80 features, we only use 22 features 
that are selected after feature selection. The Neural Network is training by the 
function “Multilayer Perceptron” in Weka, which uses Backpropagation algorithm.  
 
The network does not have feedback loops, and it has many layers during the 
information flow. Each neuron is a linear combination of the 22 features, and it has a 
threshold for output. Within iteration, the algorithm calculates the error using 
mean-square error, and tries to minimize the error according to the labels. The 
confusion matrix after 3-fold cross validation is shown in Table 5.  
 
Table 5: Confusion matrix of 3-fold cross validation of Neural Networks method.  
Classified 
as  

TCA Proteolysis Meiosis Respiration Histone Ribosome Other

TCA 5 0 0 1 0 0 8 
Proteolysis 0 0 0 0 0 0 8 
Meiosis 0 0 0 0 0 0 17 
Respiration 5 0 1 1 2 6 23 
Histone 0 0 0 0 0 1 26 
Ribosome 0 0 0 1 0 137 34 
Other 8 1 2 12 2 29 2140
 
The performance of Neural networks is close to that of decision tree. It is not capable 
to find a small fraction of positive samples out of an extremely large sample space, e.g. 
for the class Proteolysis. However, it fits well if the positive sample size is large 
enough to improve the prediction stability and accuracy, e.g. for the class Ribosome.  
 

DISCUSSIONS 

1. Models evaluation 
We first tried to reproduce the result by Brown et al. of SVM model, however, our 
model is not good enough to identify small fraction of positive samples out of the 
large dataset. Table 2 shows that for the Histone class in Brown et al., 11 samples are 
labeled as positive out of 2467 samples in total. The SVM model successfully 



 11

identified 9 samples while missing only 2 samples, and without any false positives. 
The reason might be that we are missing some important parameters that should be 
adjusted, which did not implied by the original paper.  
 
Among the four supervised learning methods that we used for this analysis, none of 
them successfully identified the majority of positive samples when the positive 
sample size is small. SVM is a little better than the other three methods, Naïve Bayes, 
Decision Tree and Neural Networks in finding more true positives while maintaining 
a relatively low false positive rate. Naïve Bayes method is better to find positive 
samples, however, it also increases false positives while reduce false negatives. 
Decision tree and Neural networks are neither good performers for this dataset.  
 
Principle component analysis does not discover clustering of classes. Figure 2 shows 
that the positive data points are primarily spread out in the dataset; although principle 
components give the data points a normalized shape.  
 
2. Function prediction 
3-power polynomial kernel and radial kernel SVM models trained by the whole 
training set are used to predict function labels for the test set. Table 6 lists the genes 
that are predicted to be class members by both SVMs, and the objective function 
value from both models are larger than 0.1. For Ribosome class, the threshold is set to 
be 1.0 to select top hits. The objective function measures the Soft Margin distance, 
which indicates the goodness of separation.  
 
Table 6: Predicted functional classifications of ORFs 
Class Gene ID Gene 

Name 
Description 

YOR135C  IRC14 Decreased metabolite accumulation 
(glycogen) 

TCA 

YPR002W PDH1 Mitochondrial protein that participates in 
respiration, induced by diauxic shift 

YOL131W  Putative protein of unknown function Meiosis 
YHR157W REC104 Protein involved in early stages of meiotic 

recombination; required for meiotic crossing 
over 
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YPR020W ATP20 Subunit of the mitochondrial F1F0 ATP 
synthase, which is a large enzyme complex 
required for ATP synthesis 

YGR182C  Dubious ORF unlikely to encode a protein 
YBL100C  Exhibits growth defect on a non-fermentable 

(respiratory) carbon source 

Respiration 

YDR077W SED1 Major stress-induced structural GPI-cell wall 
glycoprotein in stationary-phase cells, 
associates with translating ribosomes, 
possible role in mitochondrial genome 
maintenance 

YLR062C BUD28 Dubious ORF, 98% ORF overlaps RPL22A, 
which codes protein component of the large 
(60S) ribosomal subunit 

YGL102C  Dubious ORF, overlaps 3’ end of essential 
RPL28 gene encoding a large subunit 
ribosomal protein 

YLL044W  Dubious ORF, partially overlaps RPL8 coding 
for protein in large ribosomal subunit 

YLR339C  Dubious ORF, partially overlaps the essential 
gene RPP0, which is a conserved ribosomal 
protein 

YDR417C  Dubious ORF 
YNL119W NCS2 Protein involved in invasive growth; 

ribosomal biogenesis and assembly 
YLR076C  Dubious ORF, partially overlaps the essential 

gene RPL10 encoding the ribosomal protein 
L10 

Ribosome 

YFR031C-
A 

RPL2A Protein component of the large ribosomal 
subunit 

 
Histone and Proteolysis classes do not have any outstanding predictions. And for the 
listed prediction, some of them have definitive annotations, which exactly match the 
predicted classification, such as YHR157W; some others has possible functions that 
matches our prediction, such as YLR062C; and the others do not have any useful 
annotations, which could be investigated later in detail by experiments, such as 
YGR182C.  
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3. Future Direction 
The main problem in this analysis is that the positive samples are only a small fraction 
of the whole dataset. This prohibits supervised learning methods to be trained 
efficiently with high accuracy for prediction. However, we could incorporate 
un-supervised learning methods, such as k-nearest neighbors clustering method, into 
our supervised learning methods. Semi-supervised learning is an emerging category of 
learning methods that typically deals with a small amount of labeled data with a large 
amount of unlabeled data. It is possible to use un-supervised clustering methods to 
find density based clusters first, and then use known annotations to label a few 
positive samples, and modify previous clustering results to accommodate the labels. 
This could be of great practical value to our dataset.  
 

CONCLUSIONS 

We have demonstrated that support vector machine can classify genes into some 
functional categories based on experimental microarray expression data, although the 
accuracy is not satisfied compared to the result from Brown et al. High power 
polynomial and radial kernel SVMs are best performers than linear or lower power 
polynomial kernel SVMs, Decision Tree, Naïve Bayes and Neural Networks methods. 
Prediction by 3-power polynomial SVM model gives reasonable results for the test set. 
Some predictions are verified by recent experiment results of their function labels, and 
some of our top predictions still do not have experimental supports, which could be 
valuable for experimental designs.  
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