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Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

T T
& 1-H 1H
& 1 . € = . . - ]

=
m

Hepatitis C Viral Dynamics in
Vivo and the Antiviral Efficacy

of Interferon-a Therapy

Avidan U. Heumann,*{ Mancy P. Lam,* { Harel Drahari,
David AL Gretch, Thelma E. Wiley, Thomas . Layden,
Alam 5. Perelson

Lo HOW RMNA &g ml
.

SCIEMCE WOL 282 2 OCTOBER 1998

Logg

HCW BNA eqml

o -4

!
- -

-

: .
-
. ]
i L ] -
N =}

Logg HCW RNA eqiml

T
days days

Short delay followed by biphasic decline in viral load l



Model of Hepatitis C Viral Dynamics

~Includes virus along with target (T) and infected (I) cells

Infaction rate

Target Cells dT/dt
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Virus (HCV RNA) dvidt = pl — cV (3)

Before therapy, virus load is approximately constant l



Model of Interferon-o. Therapy

Includes virus along with target (T) and infected (I) cells

Target Cells dT/dt = s —dT — Bl={)

Infected Cells dl/dt

BVT — B (2)

Virus (HCV RNA) adV/dt

pl - el (5)

Therapy can reduce the rate of infection, or production of virions l



Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

Infected cell death

: : IniEti.al \.-'.L Delay Virien clearance (c) Efficacy (=) (5] F'r-:-:-:.luv:riu?n
Regimen Patient (10% copies hours) (10% copies
per millilier] (1 day ) + error Percent + error (1 day) =+ error per day)
1 A 5.6 a8 5.9 1.1 79 4.0% [} o 445
1 E 1.9 g .4 1.8 75 T.0% 0.2 ooz 290
1 C 14.2 MR ME MR MR MR
1 o 7.1 MR MR MR MR MR
1 E 1.1 11 7.0 0.6 =ad 1% 032 004 125
1 F 6.5 T 5.0 0.8 B B0 0 g | G
1 L 3.3 MR MR MR MR MR
1 H 4.1 10 6.9 0.2 75 1.0% 0 001 448
1: Mean +ED 5540 9+ 1.5 62+ 08 81X+ 8% 0.0 + 0,14 402 + 191
2 A 6.1 7 3.6 0.2 BG 0.5% 0.12 00 410
2 B 16.7 ] 6.0 0.3 Qg 049 RE 1409
2 C 8.5 g 6.8 0.8 aG 1.0% om 003 1085
2 D 1.0 7 5.6 0.5 a5 1.0% 0.16 Qo4 Q2
2 E 59.0 10 11.2 0.6 Q9.7 O01% 0.07 Qo2 12191
2 F 10.9 7 4.4 0.1 aG 09% 0.04 001 1
2 G 23.8 7 4.8 0.1 Q2 0.8% RE 1780
2 H 27 ] 7.9 1.0 Q9.3 0.2% ML 324
2: Mean +5D 16.1* 189 g+1 63+ 24 95 + 4% 01 005 2282 *+ 4045
3 Fy 6.7 8 37 0.3 90,7 0.4% 0.12 0.04 405
3 B 4.1 11 9.5 3.7 a1 2.0% 0.11 0.03 761
3 C 5.8 13 57 0.7 ag 0.5% FC 523
3 o 0.4 5 G0 0.8 Q9.0 0.2% 0.4 Qs 42
3 E 18.3 7 6.0 0.9 Q7.5 1.6% RE 2136
3 F 1.1 14 5.8 0.6 ad 03% 0.33 003 112
3 o 6.0 MR MR MR MR MR
3: Mean + 5D GO+59 a5+35 6.1+ 19 G5+ 4% 024 + 0,15 663 + 769
All: Mean +5D 04+ 124 87 +23 6.2+ 1.8 i 0.14 + 0,13 1276 + 408

Average virion production rate of 1.3x10!? virions per day




Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)
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Patients with undetectable HCV after 3 months of therapy
(filled symbols) had significantly faster cell death rates



Immune System Adapts to Pathogenic Challenge

Secondary responses are quantitatively and qualitatively different

Faster kinetics,

) Increased affinity
greater magnitude
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Figure 10-31 Immunobiology, 6/e. (© Garland Science 2005)

Affinity Maturation 1s Fundamental to Adaptive Immunity l



Germinal Centers are Site of Affinity Maturation

oo Foreign Pathogen
B °° (Antigen)

Effector cells fight Germinal Center
current infection

Hypermutation Selection & Expansion

14
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Affinity maturation accomplished through somatic hypermutation of
B cell receptor, followed by expansion of rare higher-affinity mutants




How does affinity impact cell-fate decisions?

Follow fate of higher and lower affinity B cells using transgenic mice

Canonical anti-NP Cu polyA polyA
s m
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Is selection driven by a proliferative vs. survival advantage?




Basic Model of BrdU Labeling

Many experiments stop administering label after some time

A) Before BrdU B) During BrdU C) After BrdU

|
|
administration i administration administration
’ O ' oY
proliferation : S. d : ST d
O =
| I : p
S d . p .
— T = : O
source death - . ,
Sy d Sy d

We can express these as sets of ordinary differential equations l



How do proliferation and death depend on affinity?

B Higher Affinity Transgenic (B1-8) @ Lower Affinity Transgenic (V23)

Flow cytometry used to look at antigen-specific germinal center B cells...
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Caspase label tracks
dying cells

1r-

0
T

Day 13
[IR=R S

)
2

IR

07 F

N
T

06F

N
2

0ar

04r

—
i

% BrdU+ of GC lambda+ B cells

03F

m
n
N

02F

% Casp-Glow+ of GC >+ B cells

o
]

01k

0

o

0 1ID ZID 3ID 4ID slu EID T T T T
Hours post BrdU injection 8 10 12 14 16 18
Days post Immunization

Updates to basic BrdU model: caspase compartment, BrdU pulse l



The ABC Model

A: Dividing (S/G,/M); B: Non-Dividing (G,/G,); C: CaspGLOW+ cells

Unlabeled Labeled di:sm + 1B, —(|O+dA+ L’;)AU
(Brdu-) (Brdu+) dt
d
Slin d;.tU:szJ _(r+dB+Sout)BU
v
L, d;:tu —d,A, +d;B, —aC,
S/G2/M " Ay A 0A
ot B+ LA —(p+d,y)A
I p p T dB
4 4 dtL=2pAL—(r+dB+sout)BL
-------- B B, —--.
Go/Gl S . Y . ' S 1c, =d,A +dgB —aC,
out: out dt
v v
'dB i dB
Loif T << (T + L)
Casp+ CU CL Li =4 for some BrdU injection T;
0 otherwise
o l o .
o 3 L+BL+CL o
l /oBrdU+ = Ay +By +Cy +A +BL+CL x100%
%4 CaspGLOW+ = Cu+CL 100%
oCasp = x 0

Ay +By +Cy +AL+BL+CLL



Model estimates proliferation and death rates

B Higher Affinity Transgenic (B1-8) @ Lower Affinity Transgenic (V23)

S/G2/M

G0/G1

Casp+

A

I (0.05,0.11)

P (0.04,0.12)
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The Journal of Immunology

Taking Advantage: High-Affinity B Cells in the Germinal
Center Have Lower Death Rates, but Similar Rates of
Division, Compared to Low-Affinity Cells'

Shannon M. Anderson,* Ashraf Khalil," Mohamed Uduman,** Uri Hershberg,*'
Yoram Louzoun,” Ann M. Haberman,' Steven H. Kleinstein," and Mark J. Shlomchik*'
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Lower affinity cells have intrinsically higher death rate, AND increased proliferation




Immune response as optimization problem

Affinity class framework groups B cells with similar on/off-rates

Cyclic re-entry of germinal center B cells and
the efficiency of affinity maturation

3 1000 Thomas B. Kepler and Alan S. Perelson
2 100 % =b8{-k,(1-5,)+ kb (2m, 1)} +2kp§ m,bh 0
[ 10 : — |
Germline| 0 % | ol e s
-1 1/10 W RN A |
@ 2 1/100 | ’

Optimal mutation schedule 1s phasic (on-off cycles) l



But, what should we optimize?

Antibody affinity
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Figure 10-31 Immunobiology, 6/e. (© Garland Science 2005)

Tmmunology and Celf Biology (1998) T6, 373-381

Theoretical Article

Predicted and inferred waiting times for key mutations in the
germinal centre reaction: Evidence for stochasticity in selection

MICHAEL D RADMACHER,' GARNETT KELSOE® and THOMAS B KEPLER'

! Biomathematics Graduate Program, Department of Statistics, North Carolina State University, Raleigh, Narth Caralina,
and 2Department of Microbiology and Immunology, University of Marviand School of Medicine, Baltimore, Marvland,
US54

How efficient 1s affinity maturation? Optimal?




Quantitative Affinity Maturation

Consider well-studied antigen NP: (4-hydroxy-3-nitrophenyl)acetyl

Similar
Affinity

@ ...CACTTGATG...
Initial Sequence High.er
...TACTGGATG... Affinity
... TACTTGATG...

Key Mutation

Key Mutation increases affinity 10-fold

( majority of high-affinity antibodies observed in the anti-NP response contains this mutation)




Mean waiting time for key mutations

The position 33 mutation, a transversion from G to T 1n the second nucleotide of
the codon, produces a 10-fold increase in binding affinity of the Ig for NP

Number of dividing cells
Division rate

Each division creates two daughter cells

! I )
r =(2300%3.43x2x107 x0.19x0.145) ' =23 days

AN

} Cold spot (TGT)

Bias (G —T transversion)

Average mutation rate

Predicted waiting time for key mutations 1s 2.3 days l



Appearance time for key mutations

Experimental sequence data from germinal center microdissections

GC Strain Day Ig Position 33
sequences* mutations

61 AMA40 BL/6 8 8 0
61AM41 BL/6 8 10 0
61AM14 BL/6 8 12 0
61AMI16 BL/6 8 12 0
L1ABO1 BL/6.Ipr 10 9 0
L1ABO02 BL/6.Ipr 10 10 10
L1ABO03 BL/6.Ipr 10 3 0
L1AB04 BL/6.1Ipr 10 7 0
61ABOS BL/6 10 4 0
L1ADOI BL/6.Ipr 14 12 0
L1ADO2 BL/6.Ipr 14 11 11
L1ADO03 BL/6.Ipr 14 10 8
L1ADO5 BL/6.lpr 14 11 0
61ADO1 BL/6 14 8 3
61ADO02 BL/6 14 10 0
61AA02 BL/6 16 8 8

*Sequences are available from EMBL/Gen Bank/DDBJ under
accession numbers DS813953 and X67341-X67391.

How does this compare with predicted waiting of 2.3 days l



Arrival time of founder key mutant

Two-stage model of B cell mutation and clonal expansion

Stage 0: 1 (@) - -
Mutation begins ~ day 6.5 A ; [
Stage I: |
. . . . . o
Arrival times are exponentially distributed () © . ’
E, 1=0.0 1::10'.0:' T:E‘D.D}
Stage 11: i .
Growth of the key mutant clone 1s logistic 5
dp ) ‘%
E—kp[]—p]. fﬂrz}i g
Arrival time
of key mutant
| I | I I I
0 5 10 15 20 25 30

Days post-immunization

Estimate T and k by fitting to experimental data l



Maximum likelithood parameter estimates

Give average appearance time (1) and proliferation rate (k). ..

Observation Fraction of key mutants at t. if first appear at time t."
time
\ Probability to NOT appear by time t.
AN

A 4 N

!f / \ ! .

E E d
L= H f |B(x: | iy py(Ky 77, 8)) - (17 | T)|de; +1(x; =0) n:::-'.p(— —) :

i 0 o y L

t v
7 Probability to first appear at time t1*

Binomial probability (finding x; key mutants when sampling n. sequences)

Appearance time of founder key mutant

Maximize likelithood (L) over T and k l



First key mutant produced earlier than founder

Appearance of founder key mutant 1s 8.3 days vs. 2.3 days for first key mutant
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The SIR Model of Epidemics

Model for many infectious diseases including measles

000

c Susceptible
ds = Removed
— =—3l 3
dt 2
d| 2
— = S| — ul =
e :
drR £ Infectious
M
at

Time

Other versions allow recovered individual to be re-infected l



The basic reproductive ratio: R,

average number of secondary cases caused by an infectious
individual in a totally susceptible population

L M — .

ﬂ _ 1) O\ N Susceptible

RO =L xS (O) 5 08 R N Infectious
U 2og N\ "
E 0_4: R0=10: -. .Rﬂ=.5.ll \\.
R, < I: disease dies out E s AN N\ o
. . fORAN, O e Sl
R, > 1: disease can invade 1V XN > =
| o Time

‘The value of Rg for some well-known diseases

‘ Disease ‘ Ro

L s _ 1 owps_ _ |
I Smallpox 3tos R
T Measles | 16to18

\ Malaria \ > 100

R, indicates whether population at risk from disease l



ODEs are deterministic

Predicts epidemic even with non-zero chance that disease dies out

6 stochastic epidemics Probability of disease

with R,=3. extinction following
. introduction of 1 case.
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Stochasticity =2 risk of disease extinction when number of cases
is small, even if R>1.

Simulate using stochastic approach — Gillepsie Method l



Random Numbers

Starting with the same seed will give you equivalent stream

Uniform deviates: [0,1)

Fast, but sequential calls can be
Linear congruential generator

correlated, so not used much
Mersenne Twister

liii —al: tec (mod m) (period 219%7-1)
I, 1s the seed (common to use system clock) A MILLION
Random Digits
IJ+1 - 31] —|—7 (mOd 10) nnumu‘l‘\i“(i)rmal Deviates
Produces: 6,5,2,3
Period: time before stream repeats itself RAND 1955
(maximum m)

Be careful on computer clusters (streams can be correlated) l



Simulating from other distributions

Transformation Method: indefinite integral of p(y) must be known and invertible

mmform & . ... ool Lo

: (v
deviate n Ry)=)op(y)dy

X

€«— p(y)

Y
transformed
deviate out
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Exponential(a) = - 1 In [Uniform(O, 1 )]
a

Transformation to generate exponential distribution (Poisson process) I



For more information. . .

OPEN 8 ACCESS Freely available online PLG.S COMPUTATIONAL BIOLOGY

Getting Started in Computational Immunology

Steven H. Kleinstein*

Interdepartmental Program in Computational Biclogy and Bioinformatics, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut,
United States of America

Feel free to email me with any questions!
steven.kleinstein@yale.edu




