Modeling & Simulation (Computational Immunology)

Steven H. Kleinstein

YALE Pathology Informatics

Department of Pathology Yale University School of Medicine

steven.kleinstein@yale.edu

March 29, 2010

Hepatitis C Viral Dynamics and Interferon- α Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

в

5

4

6

5

6

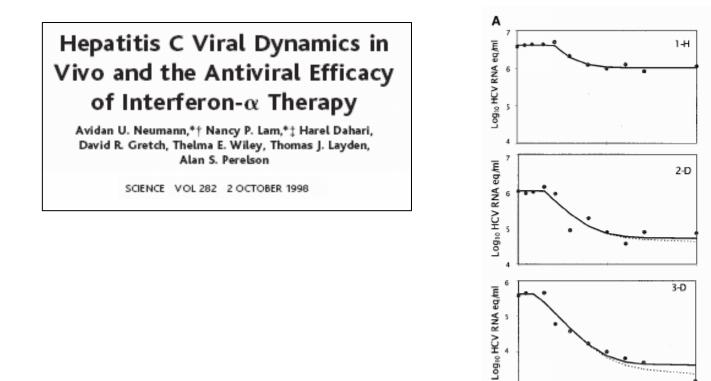
5

4

3

0

7 days

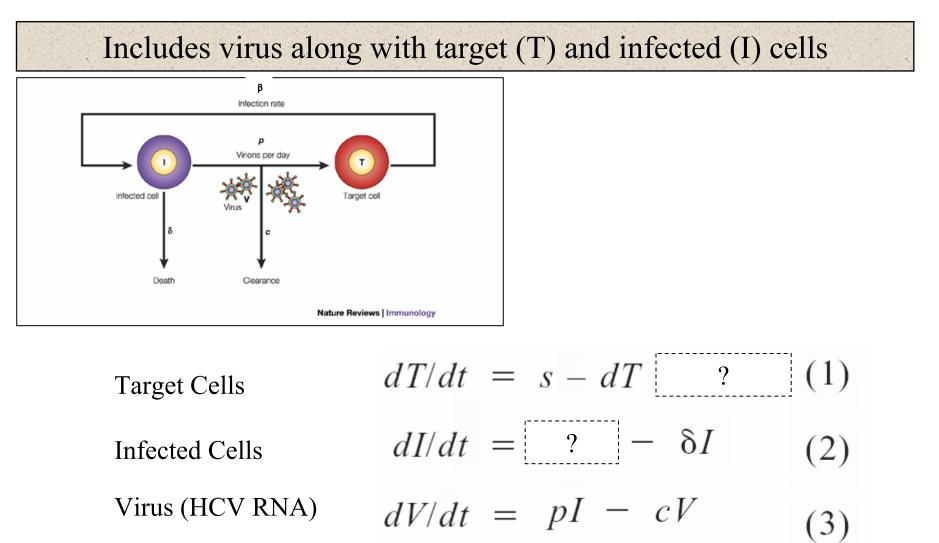

2

1-H

2-D

3-D

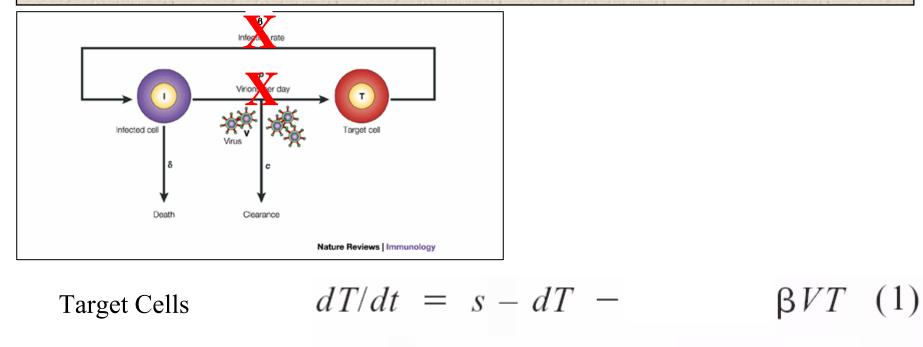
14



Short delay followed by biphasic decline in viral load

0

days


Model of Hepatitis C Viral Dynamics

Before therapy, virus load is approximately constant

Model of Interferon- α Therapy

Includes virus along with target (T) and infected (I) cells

Infected Cells $dI/dt = \beta VT - \delta I$ (2) Virus (HCV RNA) dV/dt = pI - cV (3)

Therapy can reduce the rate of infection, or production of virions

Hepatitis C Viral Dynamics and Interferon- α Therapy

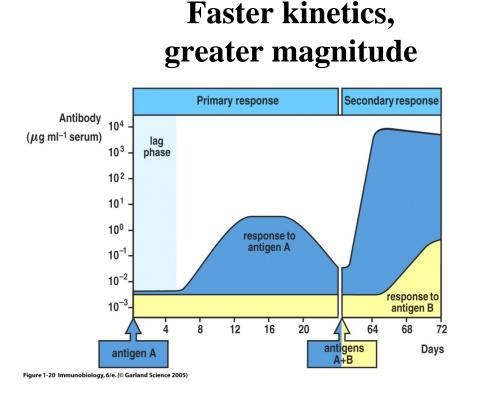
Modeling 23 patients during 14 days of therapy (daily doses)

Regimen	Patient	Initial VL (10 ⁶ copies per milliliter)	Delay (hours)	Virion clearance (c)		Efficacy (ε)		Infected cell death (δ)		Production (10 ⁹ copies
				(1/day)	± error	Percent	± error	(1/day)	± error	per day)
1	А	5.6	8	5.9	1.1	79	4.0%	0	0.01	495
1	В	1.9	8	6.4	1.8	75	7.0%	0.12	0.02	290
1	С	14.2	NR	NR NR		NR		NR		
1	D	7.1	NR	NR		NR		NR		NR
1	E	1.1	11	7.0	0.6	86	0.1%	0.32	0.04	125
1	F	6.5	7	5.0	0.8	89	8.0%	0	0.01	601
1	G	3.3	NR	N	IR	NR		NR		NR
1	н	4.1	10	6.9	0.2	75	1.0%	0	0.01	498
1: Mean	±SD	5.5 ± 4.1	9 ± 1.5	6.2 ± 0.8 81 ± 8%		0.09 ± 0.14		402 ± 191		
2	A	6.1	7	3.6	0.2	86	0.5%	0.12	0.01	410
2	В	16.7	9	6.0	0.3	98	0.4%	F	B	1409
2	с	8.6	8	6.8	0.8	96	1.0%	0.11	0.03	1089
2	D	1.0	7	5.6	0.5	95	1.0%	0.16	0.04	92
2	E	59.0	10	11.2	0.6	99.7	0.01%	0.07	0.02	12191
2	F	10.9	7	4.4	0.1	96	0.9%	0.04	0.01	965
2	G	23.8	7	4.8	0.1	92	0.8%	F	B	1780
2	н	2.7	9	7.9	1.0	99.3	0.2%	٨	1D	324
2: Mean	±SD	16.1 ± 18.9	8 ± 1	6.3 ± 2.4		95 ± 4%		0.1 ± 0.05		2282 ± 4045
3	A	6.7	8	3.7	0.3	99.7	0.4%	0.12	0.04	405
3	в	4.1	11	9.5	3.7	91	2.0%	0.11	0.03	761
3	с	5.8	13	5.7	0.7	98	0.5%	٨	1D	523
3	D	0.4	5	6.0	0.8	99.0	0.2%	0.4	0.05	42
3	E	18.3	7	6.0	0.9	97.5	1.6%	F	B	2136
3	F	1.1	14	5.8	0.6	90	0.3%	0.33	0.03	112
3	G	6.0	NR	NR		NR		NR		NR
3: Mean	±SD	6.0 ± 5.9	9.5 ± 3.5	6.1 ± 1.9		96 ± 4%		0.24 ± 0.15		663 ± 769
All: Mean	±SD	9.4 ± 12.4	8.7 ± 2.3	6.2 ± 1.8		_		0.14 ± 0.13		1276 ± 498

Average virion production rate of 1.3×10^{12} virions per day

Hepatitis C Viral Dynamics and Interferon- α Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

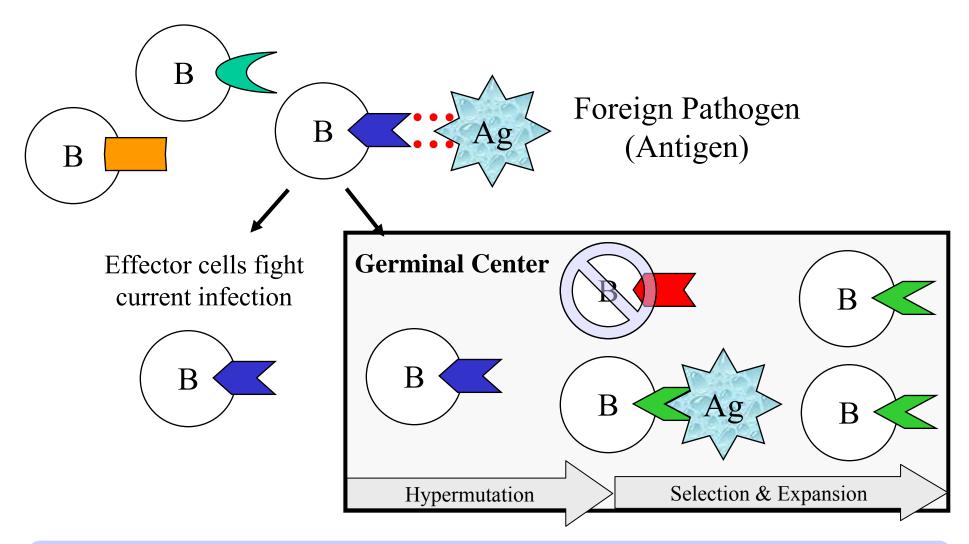


Suggests immune control has important role in lowering viral load

Patients with undetectable HCV after 3 months of therapy (filled symbols) had significantly faster cell death rates

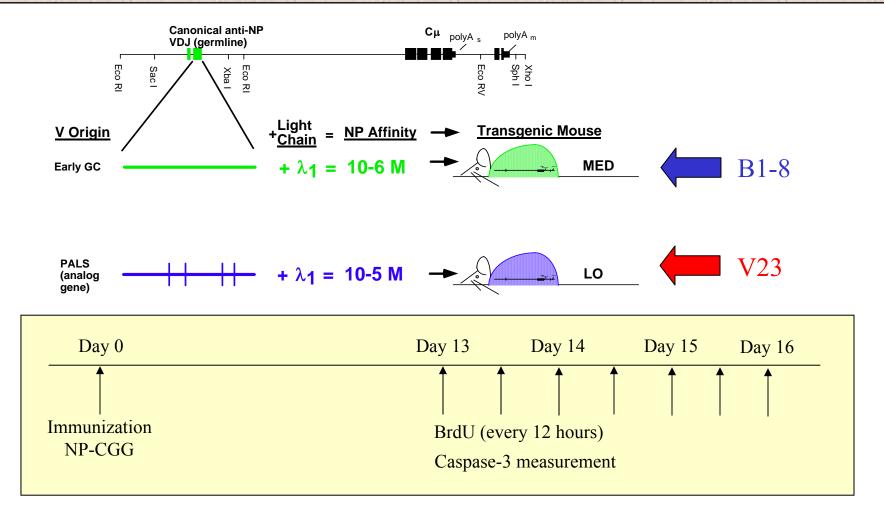
Immune System Adapts to Pathogenic Challenge

Secondary responses are quantitatively and qualitatively different



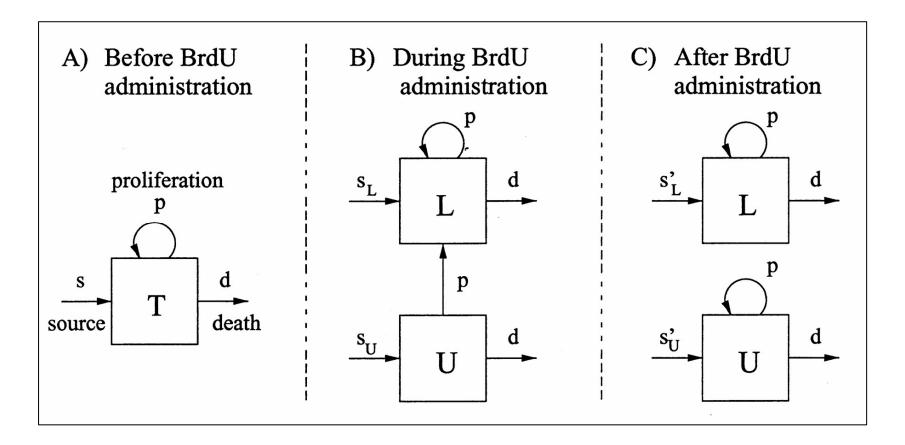
Increased affinity

Affinity Maturation is Fundamental to Adaptive Immunity


Germinal Centers are Site of Affinity Maturation

Affinity maturation accomplished through somatic hypermutation of B cell receptor, followed by expansion of rare higher-affinity mutants

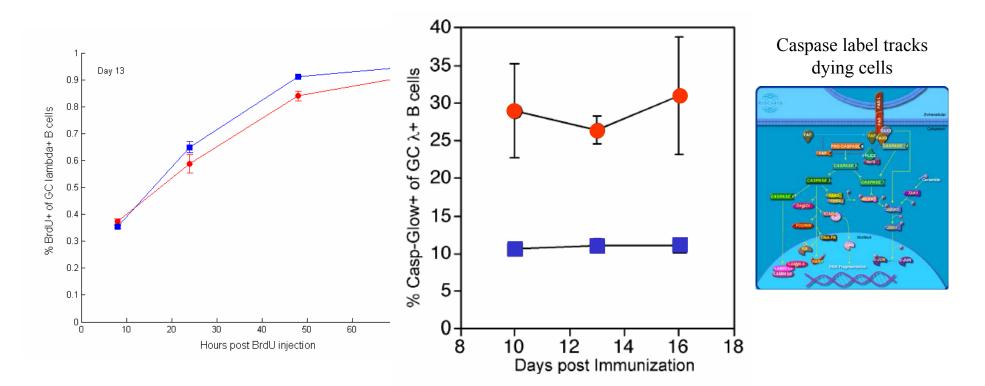
How does affinity impact cell-fate decisions?


Follow fate of higher and lower affinity B cells using transgenic mice

Is selection driven by a proliferative vs. survival advantage?

Basic Model of BrdU Labeling

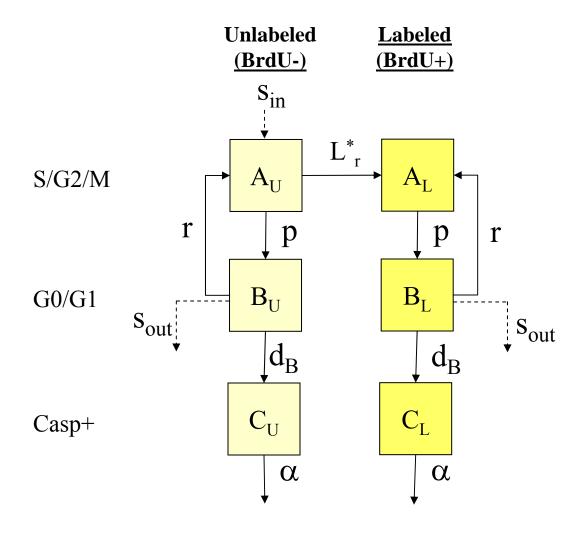
Many experiments stop administering label after some time



We can express these as sets of ordinary differential equations

How do proliferation and death depend on affinity?

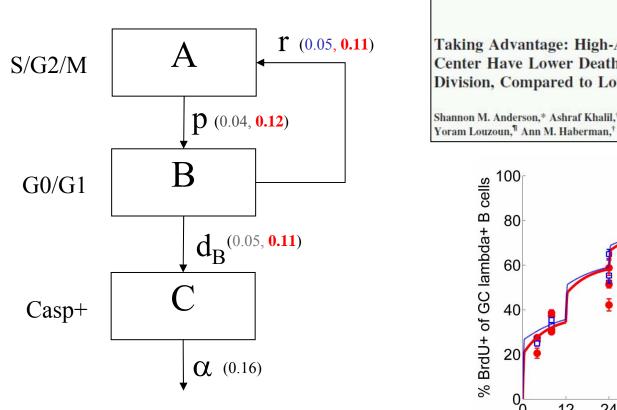
Higher Affinity Transgenic (B1-8) lower Affinity Transgenic (V23)


Flow cytometry used to look at antigen-specific germinal center B cells...

Updates to basic BrdU model: caspase compartment, BrdU pulse

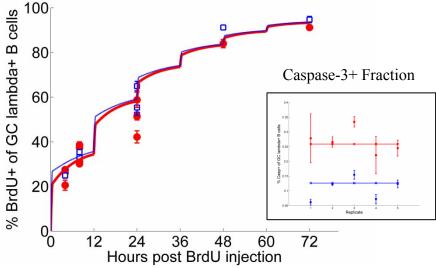
The ABC Model

A: Dividing $(S/G_2/M)$; B: Non-Dividing (G_0/G_1) ; C: CaspGLOW+ cells



$$\begin{aligned} \frac{dA_U}{dt} &= s_{in} + rB_U - \left(p + d_A + L_r^*\right)A_U \\ \frac{dB_U}{dt} &= 2pA_U - \left(r + d_B + s_{out}\right)B_U \\ \frac{dC_U}{dt} &= d_A A_U + d_B B_U - \alpha C_U \\ \frac{dA_L}{dt} &= rB_L + L_r^*A_U - \left(p + d_A\right)A_L \\ \frac{dB_L}{dt} &= 2pA_L - \left(r + d_B + s_{out}\right)B_L \\ \frac{dC_L}{dt} &= d_A A_L + d_B B_L - \alpha C_L \\ \\ \frac{dC_L}{dt} &= d_A A_L + d_B B_L - \alpha C_L \\ \\ \end{bmatrix}$$

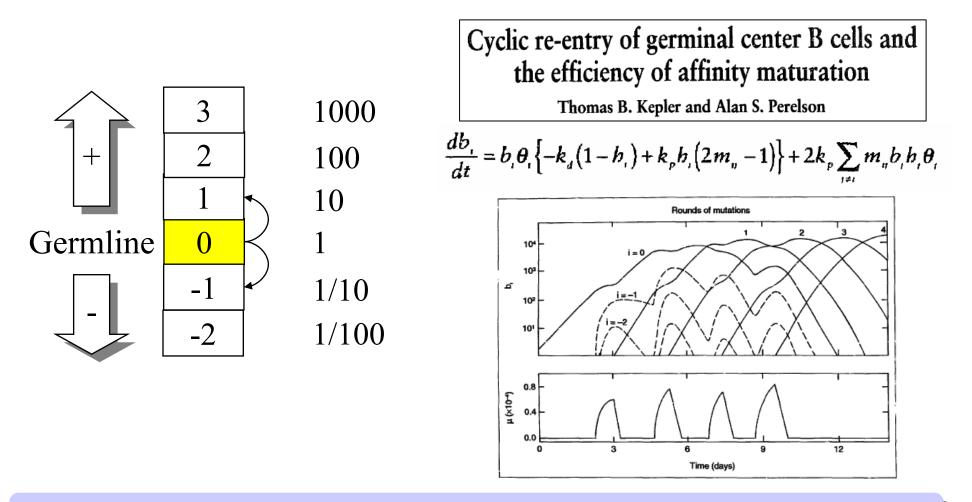
$$\begin{aligned} & \int_{r}^* = \begin{cases} L_r & \text{if } T_i \leq t \leq \left(T_i + L_t\right) \\ \text{for some BrdU injection } T_i \\ 0 & \text{otherwise} \end{cases} \\ \\ & \int_{0}^* \text{Orderwise} \end{cases} \\ \\ & \int_{0}^* \text{CaspGLOW} + = \frac{A_L + B_L + C_L}{A_U + B_U + C_U + A_L + B_L + C_L} \times 100\% \end{aligned}$$


Model estimates proliferation and death rates

Higher Affinity Transgenic (B1-8) 🔴 Lower Affinity Transgenic (V23)

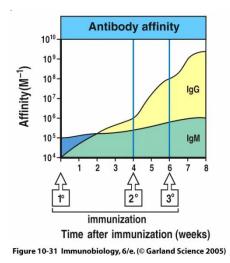
Taking Advantage: High-Affinity B Cells in the Germinal Center Have Lower Death Rates, but Similar Rates of Division, Compared to Low-Affinity Cells¹

Shannon M. Anderson,* Ashraf Khalil,[†] Mohamed Uduman,^{\$§} Uri Hershberg,^{*†} Yoram Louzoun,[¶] Ann M. Haberman,[†] Steven H. Kleinstein,^{\$§} and Mark J. Shlomchik^{*†}



The Journal of Immunology

Lower affinity cells have intrinsically higher death rate, AND increased proliferation


Immune response as optimization problem

Affinity class framework groups B cells with similar on/off-rates

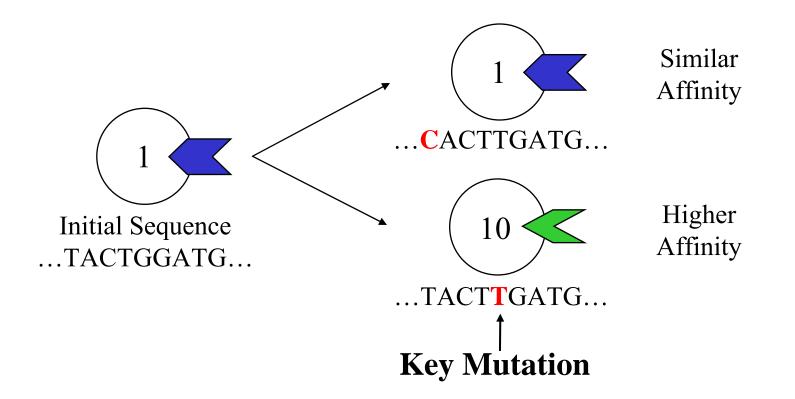
Optimal mutation schedule is phasic (on-off cycles)

But, what should we optimize?

Immunology and Cell Biology (1998) 76, 373-381

Theoretical Article

Predicted and inferred waiting times for key mutations in the germinal centre reaction: Evidence for stochasticity in selection

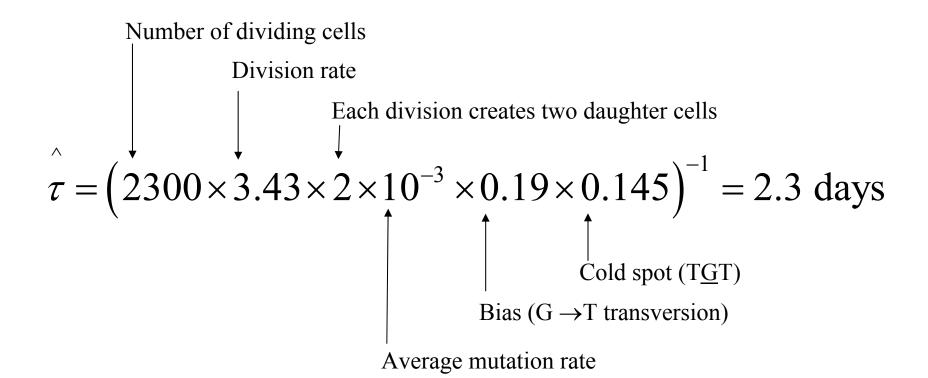

MICHAEL D RADMACHER,¹ GARNETT KELSOE² and THOMAS B KEPLER¹

¹Biomathematics Graduate Program, Department of Statistics, North Carolina State University, Raleigh, North Carolina, and ²Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA

How efficient is affinity maturation? Optimal?

Quantitative Affinity Maturation

Consider well-studied antigen NP: (4-hydroxy-3-nitrophenyl)acetyl



Key Mutation increases affinity 10-fold

(majority of high-affinity antibodies observed in the anti-NP response contains this mutation)

Mean waiting time for key mutations

The position 33 mutation, a transversion from G to T in the second nucleotide of the codon, produces a 10-fold increase in binding affinity of the Ig for NP

Predicted waiting time for key mutations is 2.3 days

Appearance time for key mutations

Experimental sequence data from germinal center microdissections

GC	Strain	Day	Ig sequences*	Position 33 mutations
61AM40	BL/6	8	8	0
61AM41	BL/6	8	10	0
61AM14	BL/6	8	12	0
61AM16	BL/6	8	12	0
L1AB01	BL/6.lpr	10	9	0
L1AB02	BL/6.lpr	10	10	10
L1AB03	BL/6.lpr	10	3	0
L1AB04	BL/6.lpr	10	7	0
61AB08	BL/6	10	4	0
L1AD01	BL/6.lpr	14	12	0
L1AD02	BL/6.lpr	14	11	11
L1AD03	BL/6.lpr	14	10	8
L1AD05	BL/6.lpr	14	11	0
61AD01	BL/6	14	8	3
61AD02	BL/6	14	10	0
61AA02	BL/6	16	8	8

*Sequences are available from EMBL/Gen Bank/DDBJ under accession numbers DS13953 and X67341-X67391.

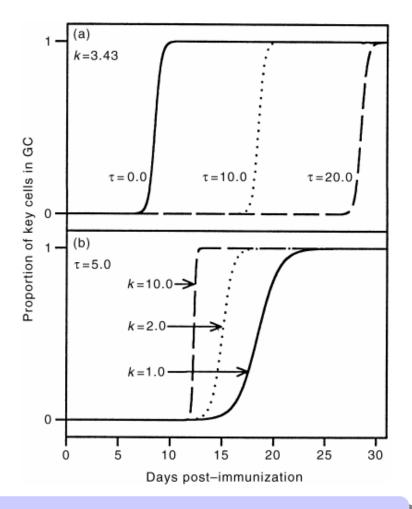
How does this compare with predicted waiting of 2.3 days

Arrival time of founder key mutant

Two-stage model of B cell mutation and clonal expansion

Stage 0:

Mutation begins \sim day 6.5


Stage I:

Arrival times are exponentially distributed (τ)

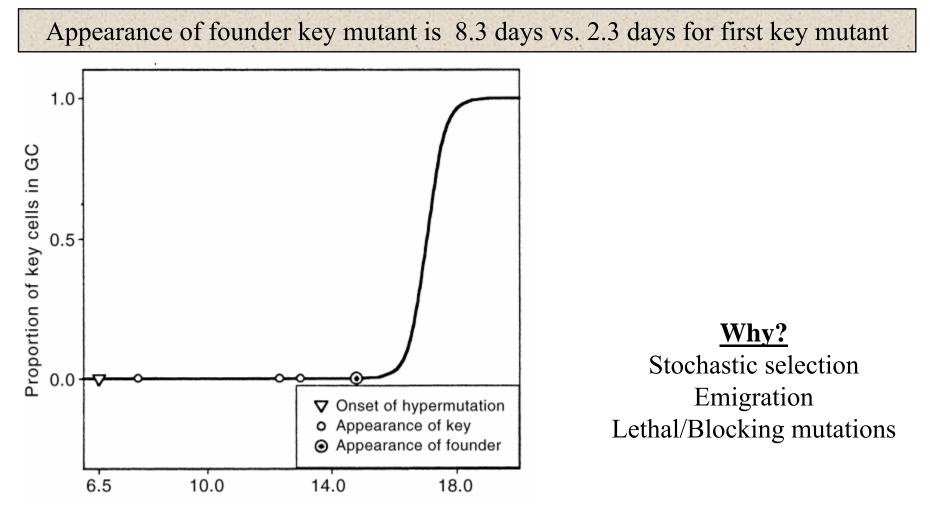
Stage II:

Growth of the key mutant clone is logistic

$$\frac{d\rho}{dt} = k\rho(1-\rho), \quad \text{for } t > \tau^*$$
Arrival time of key mutant

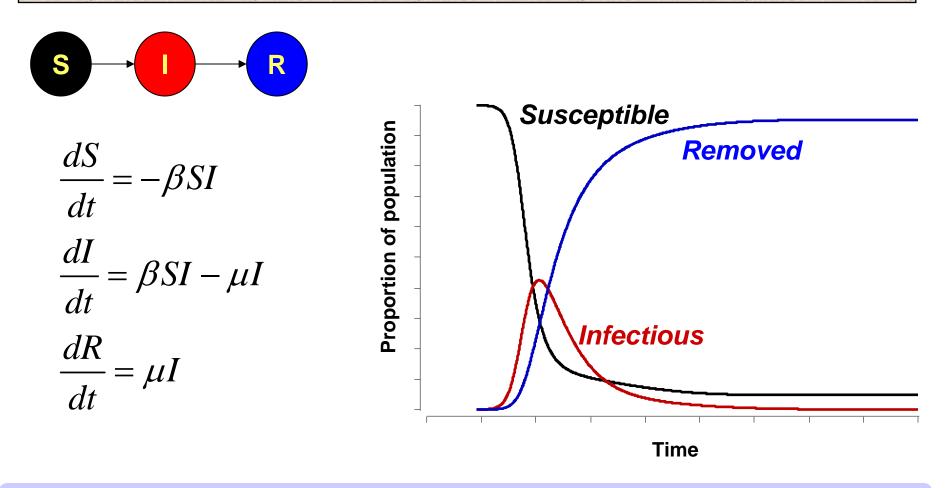
Estimate τ and k by fitting to experimental data

Maximum likelihood parameter estimates


Give average appearance time (τ) and proliferation rate (k)...

Appearance time of founder key mutant

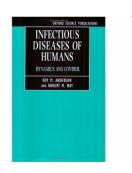
Maximize likelihood (L) over τ and k

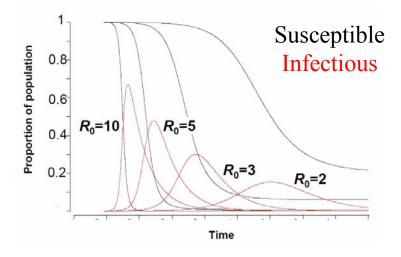

First key mutant produced earlier than founder

On average, 2.6 key mutants arise that are not perpetuated within the GC before one appears that leads to domination of the GC

The SIR Model of Epidemics

Model for many infectious diseases including measles

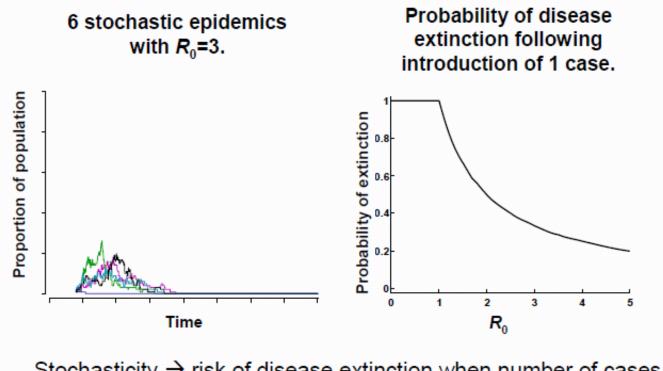

Other versions allow recovered individual to be re-infected


The basic reproductive ratio: R_0

average number of secondary cases caused by an infectious individual in a totally susceptible population

$$R_0 = \frac{\beta}{\mu} \times S(0)$$

 $R_0 < 1$: disease dies out $R_0 > 1$: disease can invade



The value of R_0 for some well-known diseases					
Disease	R ₀				
AIDS	2 to 5				
Smallpox	3 to 5				
Measles	16 to 18				
Malaria	> 100				

R₀ indicates whether population at risk from disease

ODEs are deterministic

Predicts epidemic even with non-zero chance that disease dies out

Stochasticity → risk of disease extinction when number of cases is small, even if R₀>1.

Simulate using stochastic approach – Gillepsie Method

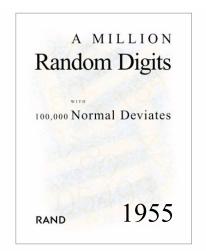
Random Numbers

Starting with the same seed will give you equivalent stream

Uniform deviates: [0,1)

Linear congruential generator

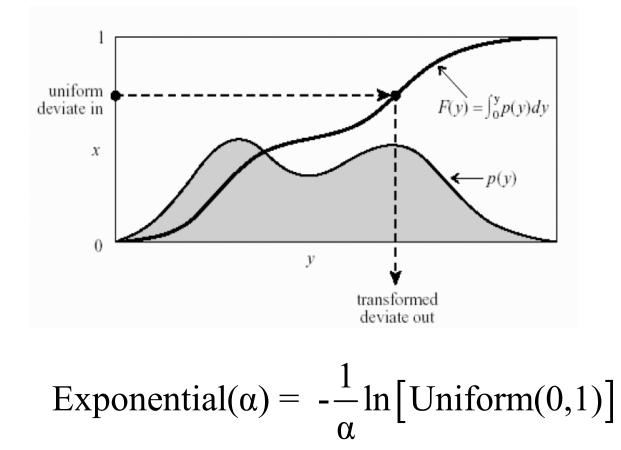
 $I_{j+1} = aI_j + c \pmod{m}$


 I_0 is the seed (common to use system clock)

$$I_{j+1} = 3I_j + 7 \pmod{10}$$

Produces: 6,5,2,3

<u>**Period</u>**: time before stream repeats itself (maximum m)</u>


Fast, but sequential calls can be correlated, so not used much **Mersenne Twister** (period 2¹⁹⁹³⁷-1)

Be careful on computer clusters (streams can be correlated)

Simulating from other distributions

Transformation Method: indefinite integral of p(y) must be known and invertible

Transformation to generate exponential distribution (Poisson process)

For more information...

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Message from ISCB

Getting Started in Computational Immunology

Steven H. Kleinstein*

Interdepartmental Program in Computational Biology and Bioinformatics, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America

Feel free to email me with any questions! steven.kleinstein@yale.edu