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Simulated Experiment

How can we estimate flow/proliferation/death rates?How can we estimate flow/proliferation/death rates?

Demonstrate full cycle of fitting model to data to estimate parameters

BrdU withdrawn

Parameters used to create synthetic data

s = 0.003 per hour

p = 0.01 per hour

d = p + s (to achieve steady state)

Random noise added to each data point
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Simulating the BrdU Labeling Model

Simple models can be solved analytically -- fasterSimple models can be solved analytically -- faster

Use integration functions (e.g., ode45 in MATLAB)

Yin = [1 0]; % Initial Conditions [unlabeled labeled]

pr = [s p d tau];  % Model Parameters

t = [0,12,24,36,48,60,72];   % Times to evaluate

[T,Y] = ode45(@fode,t,Yin,opts,pr);

fl = Y(:,2) ./ sum(Y,2); % Fraction labeled

function dy = fode(t, y, pr)

s = pr(1); p = pr(2); d = pr(3); tau = pr(4);

U = y(1); L = y(2);

dy = zeros(2,1); % Vector of derivatives

if (t<tau) % During BrdU Administration (B)

dy(1) =  s - p.*U - d.*U; % dbU/dt

dy(2) =  2.*p.*U + p.*L - d.*L;       % dbL/dt

else % After BrdU Administration (C)

dy(1) =  s + p.*U - d.*U; %dbU/dt

dy(2) =        p.*L - d.*L; %dbL/dt

end



Fitting the Model to Experimental Data

Many options for how to optimize the fitMany options for how to optimize the fit

Compare simulation and experiment using least-squares objective
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Least-squares objective function

Find parameters to minimize objective



Fitting Models to Data in MATLAB

lsqnonlin, fminsearch, fmincon, fminbndlsqnonlin, fminsearch, fmincon, fminbnd

Several optimization functions available in many programming languages

pri = [.01 .01];  %Initial guess for parameter values to be fitted [s p]

[pr,fval,exitflag] = lsqnonlin (@efun,pri,[],[],options,fl_observed,t,tau);

s = pr(1); p = pr(2); % Optimal parameter values

function error = efun (pr,fl_observed,t,tau)

s = pr(1); p = pr(2); d = s+p;                             % Assume steady-state

[fl_predicted] = labelBrdU(s,p,d,tau,t);           % Function that simulates model

error = sum((fl_predicted-fl_observed).^2);   % Least-squares objective

Optional parameters



Local and Global Optimization

Global optimization attempts to avoid local minimaGlobal optimization attempts to avoid local minima

Local optimization techniques find optimal fit around given starting point
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Optimal Parameter Estimates

Is inflow necessary to fit the data? Can we use simpler model?Is inflow necessary to fit the data? Can we use simpler model?

Least-squares fit using lsqnonlin in MATLAB

Parameter estimates

s = 0.002 per hour

p = 0.01 per hour
0.95 1 1.052.25

2.3

2.35 x 10
-3

s

O
bj

ec
tiv

e 
Fu

nc
tio

n

0.95 1 1.05
2

2.5

3

3.5 x 10
-3

p

O
bj

ec
tiv

e 
Fu

nc
tio

n

Plot local curvature to check minimization…

Recall, parameters used to create data:

s = 0.003 per hour

p = 0.01 per hour

d = p + s (to achieve steady state)



Is inflow (s) significant?

F distribution with (dfsmaller-dflarger, dflarger) degrees of freedomF distribution with (dfsmaller-dflarger, dflarger) degrees of freedom
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Is inflow (s) significant?

Observations Parameters RSS F test 
(1-fcdf in MATLAB)

(1) No flow (s=0) 6 1 9.38e-7

(2) Including flow 6 2 0.95e-7 53.1 (p<0.0004)

Inflow (s) is important to explain observationsInflow (s) is important to explain observations
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Building models with variable selection
F statistic determines if variable added or deleted from model

No guarantee that globally optimal model with be found 
(need all subsets, but prohibitive for large parameter space)
No guarantee that globally optimal model with be found 

(need all subsets, but prohibitive for large parameter space)

Forward selection: adds 
variables one at a time as 
long as significant F test.

Stepwise procedure: 
allows for removal of a 
parameter at each step

No

Stop

Compute F statistic and
p-value for each independent

parameter in model

Independent parameter with
largest p-value is

removed from model
Yes

Start with all independent
parameters in model

Any
p-value > 
to remove

?

Backward Elimination
Other Variations:
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How much confidence to put in estimate?

Estimate uncertainty given limited number of experimental observationsEstimate uncertainty given limited number of experimental observations

Construct confidence intervals for model parameters

Parameter estimates

s = 0.002 per hour

p = 0.01 per hour



Bootstrap Methods
Estimating generalization error based on "resampling“:

Randomly draw datasets with replacement from training data

Effect of generating bootstrap dataset from the distribution D is similar to the 
effect of obtaining dataset D={x1, x2, …, xN} from the original distribution D’
Effect of generating bootstrap dataset from the distribution D is similar to the 
effect of obtaining dataset D={x1, x2, …, xN} from the original distribution D’

Pengyu Hong



Bootstrap Methods
Randomly draw datasets with replacement from training data

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.

• D = [3.0, 2.8, 3.7, 3.4, 3.5] → average = 3.28
• Bootstrap samples DN could be:

– [2.8, 3.4, 3.7, 3.4, 3.5] → 3.36
– [3.5, 3.0, 3.4, 2.8, 3.7] → 3.28
– [3.5, 3.5, 3.4, 3.0, 2.8] → 3.24
– ...

3.28



Bootstrapping Parameter Confidence Intervals

Bootstrapping observations also possible – asymptotically equivalentBootstrapping observations also possible – asymptotically equivalent

1) Fit model to data to obtain parameter estimates 
2) Draw a bootstrap sample of the residuals (Fixed-X Bootstrapping)
3) Create bootstrap sample of observations by adding randomly sampled 

residual to predicted value of each observation
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Bootstrapping Parameter Confidence Intervals

May not have correct coverage when sampling distribution skewedMay not have correct coverage when sampling distribution skewed

Three commonly used methods: 1. Normal Theory Intervals, 2. Percentile 
Intervals, 3. Bias Corrected Percentile Intervals

Contains 95% of the estimates
Calculate the parameter for each 
bootstrap sample and select  (e.g., 0.05)

LCL =  /2th percentile.

UCL = (1-/2)th percentile.

Use MATLAB’s prctile function:
= prctile(bootstrap estimates, 0.025)

Parameter estimates for synthetic data
Estimate of s = 0.0017 [0.0009,0.0030]
Estimate of p = 0.0099 [0.0095,0.0100] 0.009 0.0095 0.01 0.0105 0.011 0.0115 0.012
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Immune System Adapts to Pathogenic Challenge

Faster kinetics,
greater magnitude

Increased affinity

Affinity Maturation is Fundamental to Adaptive ImmunityAffinity Maturation is Fundamental to Adaptive Immunity

Secondary responses are quantitatively and qualitatively different
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Germinal Centers are Site of Affinity Maturation
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Foreign Pathogen
(Antigen)

Affinity maturation accomplished through somatic hypermutation of
B cell receptor, followed by expansion of rare higher-affinity mutants
Affinity maturation accomplished through somatic hypermutation of
B cell receptor, followed by expansion of rare higher-affinity mutants
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Hypermutation Selection & Expansion



http://mcb.berkeley.edu/courses/mcb150/Lect10/Lect10.pdf

Germinal Centers in Spleen & Lymph Nodes

Site of somatic hypermutation, and production of long-lived memory and plasma cellsSite of somatic hypermutation, and production of long-lived memory and plasma cells

Germinal Center



For more information…

Feel free to email me with any questions!
steven.kleinstein@yale.edu

Feel free to email me with any questions!
steven.kleinstein@yale.edu


