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A rigorous formalism for the extraction of state-to-state transition functions from a Boltzmann-weighted
ensemble of microcanonical molecular dynamics simulations has been developed as a way to study the kinetics
of protein folding in the context of a Markov chain. Analysis of these transition functions for signatures of
Markovian behavior is described. The method has been applied to an example problem that is based on an
underlying Markov process. The example problem shows that when an instance of the process is analyzed
under the assumption that the underlying states have been aggregated into macrostates, a procedure known
as lumping, the resulting chain appears to have been produced by a non-Markovian process when viewed at
high temporal resolution. However, when viewed on longer time scales, and for appropriately lumped
macrostates, Markovian behavior can be recovered. The potential for extracting the long time scale behavior
of the folding process from a large number of short, independent molecular dynamics simulations is also
explored.

1. Introduction

An understanding of the mechanisms by which proteins fold
would have wide utility in many areas, ranging from the
development of effective treatments for protein folding related
diseases to exploitation of the underlying principles of folding
to facilitate industrial nanotechnology. The study of protein
folding has three aspects: thermodynamics, kinetics, and
structure prediction. In this work we introduce an approach to
characterizing some aspects of protein folding kinetics and apply
it to a simple example problem. In a companion paper,1 we
apply the approach to the folding of a small peptide, the
C-terminalâ-hairpin motif from protein G.

Protein folding has been extensively studied experimentally2-6

and by computer simulation.7-12 Computer simulations can
provide information about the process that is highly comple-
mentary to that obtained from experiment.8,13-17 Furthermore,
the computer power available for biomolecular simulations in
general, and protein folding in particular, is increasing through
the production of improved software to exploit parallelism,18

specialized hardware,19 larger and faster computer systems and
grid and distributed computing approaches.20-23 Indeed, the IBM
BlueGene project,24-27 to build a massively parallel computer
to investigate biomolecular processes such as protein folding,
is expected to systematically study a variety of peptide and small
protein systems and will produce very large volumes of
simulation data. One significant advantage of this greater
computer power is that the field is moving from studies that
report on single events observed during single trajectories of
limited duration,7 to studies where extensive thermodynamic
sampling has been performed11-13,28-30 and ensembles of
trajectories are produced and analyzed.8,9 Obtaining large
numbers of independent trajectories is not only a very effective

way to use parallel computing technologies but is required for
statistically meaningful and reproducible results.31 Because of
this move to more comprehensive simulations, new and autom-
atable analysis procedures that can be applied consistently to
data from simulations of a variety of protein systems need to
be developed and validated.

Protein folding is generally studied in the liquid phase, where
the protein or peptide is in contact with a solvent. Besides
providing part of the driving force for the folding process,
through hydrophobic and hydrophilic hydration, the solvent also
provides friction and a heat bath for the process. In fact, because
of the random forces exerted by the solvent, one would expect
that if several identical peptides could be prepared in the same
conformation and solvated, they would very likely adopt
different folding trajectories, perhaps following completely
different paths and taking different amounts of time to reach
native conformations. It is because of this stochastic nature of
folding that one should be careful not to draw strong conclusions
about the process if they are deduced from single MD
trajectories. But given that hundreds of protein simulation
trajectories can be produced, what is the best way to use them
to understand the process of folding? One possible approach,
explored in this work, is to analyze the trajectories to produce
a probability for the evolution of the protein from one
conformational state to another. The formalism associated with
Markov processes and models is, therefore, a natural approach
for this analysis.

Markov models of stochastic processes deal with the temporal
evolution of the state of a system. They are appropriate when
the memory of the system is short. That is, when the evolution
of the system into the near future depends only its properties at
the current time, and not on any of its prior history. Markov
models can be of several types depending on whether one
discretizes the time domain, the state space, or both. With a
discrete time Markov chain, both the time and space domain
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are discretized. These types of models of stochastic processes
involve a finite time transition matrix that is capable of
describing the long time behavior of the system. This matrix
gives the probability that during some discrete interval of time
the system makes transitions betweenstates. The matrix is best
regarded as a propagator for a probability distribution. Markov
models of physical processes are quite common and useful in
chemical physics.45 If protein folding is a physical process for
which a Markov description is appropriate, it could be possible
to characterize the long time behavior of a solvated protein
system through a number of relatively short time molecular
dynamics simulations.

Protein folding kinetics, in this view, is about the evolution
of a probability density for an ensemble of proteins as it relaxes
from some nonequilibrium to an equilibrium distribution. This
view has close connection with the experimental measurement
of folding rates, because many of the experiments observe the
temporal evolution of some spectroscopic signal as anensemble
of proteins evolves to equilibrium after a thermodynamic
perturbation such as heating or cooling, addition of denaturant,
changes in pressure, etc.

Theoretical approaches to protein folding that view the
process in the context of Markov models are not new. Earlier
work32,33 on lattice models of proteins have used an ansatz for
the Markov transition rates between states as a means of relating
the evolution of an ensemble of lattice conformations to
experimental rates. Recent work by Ozkan33 and by Zhang and
Chen34 describe ways to deduce characteristics of folding
pathways, transition states, and long-lived intermediates from
an analysis of the eigenvalues and eigenvectors of the transition
matrix itself, and they have also applied them to cases where
an ansatz was used for the transition rates between pairs of
states. If stable and metastable states, as well as transition states,
of a system are known a priori, or can be guessed, it is also
common to extract or estimate Markov transition rates between
these states through the use of simulation.35-38

To model a physical process with a Markov chain approach,
an appropriate state space needs to be established. However, it
is far from obvious in general how one should tabulate and
characterize the stable and transition states of a protein system.
In fact, doing so predetermines the outcome of the analysis to
a great extent. Moreover, an incorrect choice for the state space
can make a Markovian analysis inappropriate. An ideal method
would be able to construct an appropriate state space without
assuming prior knowledge of the existence or nature of those
states.

Regarding the construction of appropriate states, it is impor-
tant to recognize that although the underlying classical dynamics
of an energy conserving and time reversible MD simulation is
inherently a Markov process, the formulation of states that
aggregatefinite regions of phase space can result in behavior
that defies a Markovian description. In fact, the nature of
processes that can be described as Markov chains in some state
space, but are viewed in a different state space that consists of
aggregated, orlumped, versions of the original states, is an area
of much current study.39-41 In particular, what are the charac-
teristics of partitionings of states that preserve the Markovian
behavior in the reduced, or aggregated, state space?

Because the goal of a Markov description is to extract
accurate temporal behavior, it is important that the states are
defined in a kinetically meaningful way. This imposes several
requirements on the states. First, trajectories that pass through
the phase space spanned by any one of these states should

behave in adynamicallysimilar way. Second, because it is
natural to define states with respect to order parameters related
to the folding process, and to establish states that are compact
in this order parameter space, the order parameters themselves
must satisfy a “kinetic ruler” characteristic:32,42 temporal
progress during, e.g., typical folding trajectories should cor-
respond to monotonic (preferably linear) changes in the order
parameter. Order parameters in common use that may be
appropriate for characterizing thermodynamics, such as fraction
of native contacts formed, are probably not appropriate for
kinetic studies, because topologically very different conforma-
tions may have the same value for this order parameter, and
these conformations are likely to exhibit very different kinetic
behavior. In fact, it is not obvious how to select appropriate
order parameters for kinetics, but it is probably true that a
Markov description of the process will not be possible without
them.

Furthermore, it is possible that protein folding is not truly
Markovian on the time scales that are accessible within MD
simulations. Even for a good choice of state space, for a Markov
description of the process to be accurate, there is a minimum
time interval over which transitions within the system can be
described by a history-independent transition matrix. This time
interval, below which transitions between states will appear to
be history-dependent, is roughly the time scale for a random
trajectory that has entered the state tolose memoryof how it
entered. This time corresponds to a relaxation or equilibration
time within a state and obviously depends on the nature of the
state. In general, states that include larger amounts of phase
space, or that have large internal (free) energy barriers, will
require longer periods of time for their internal equilibration.
For a Markov description of an entire system to work, the
appropriate time interval of the transition matrix must be at least
as large as thelongestequilibration time among the states that
are being used to descibe the process.

Another relevant time for this type of modeling is the time
for the overall system to relax to equilibrium from any arbitrary
starting state. Markov models are really only interesting for times
that are short relative to this time. A Markov transition matrix
for times of this length or longer will take any arbitrary starting
probability distribution to equilibrium in a single step. It is
possible for one to have inadvertently defined states for a system
such that there are some whose internal relaxation time is as
long as the relaxation time of the entire system. For such
systems, any Markov model can hardly be expected to be useful
or accurate.

Despite these difficulties, a Markov analysis,if it can be
shown to be appropriate, has many attractive features. First, it
provides a concise way to represent information derived from
many MD trajectories. Second, each of these trajectories can,
in principle, be much shorter than the time for the protein to
evolve from an extended state to a folded state and can be
performed independently using grid, distributed or parallel
computing. Third, extrapolation of the short time behavior to
long times can provide information about folding rates that could
be compared with experimental observations.

Fersht43 has questioned the validity of deducing information
about phenomena that occur on long time scales from large
numbers of short time scale simulations. His point is that for
folding simulations that are started from ensembles of starting
states that are not in thermal equilibrium, there are likely to be
lag phases during which equilibrum populations of states along
various pathways are established. During this time, one may
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observe anomalous pathways and kinetics, which are not
representative of the dominant relaxation mechanisms. In other
words, short simulations may overemphasize pathways and their
associated kinetics that are importantonlyduring this early local
equilibration phase, but that are not representative of what is
observed on biologically important time scales (milliseconds
or longer). However, we feel that the approach developed in
this paper addresses these questions in two ways. First, we are
careful to start simulations from diverse and properly Boltzmann
weighted conformations. Second, fundamental to our analysis
is the idea that one must examine temporal behavior on
progressively longer time scales and look for convergence with
respect to a number of properties before believing in an ability
to predict long time behavior based on the simulations.

The structure of this paper is as follows. In section 2 we
present the theory. This section has a very brief review of
relevant properties of Markov chains and transition matrices,
then the derivation of important correlation function, transition
function and lifetime expressions. The theory section includes
how these functions can be computed using biased choices for
starting states, along with a reweighting scheme to restore the
required Boltzmann weighting. In section 3 we provide a simple
idealized example and examine it with the techniques described
in section 2. The example is designed to demonstrate that a
system that does not exhibit Markovian behavior on short time
scales can appear Markovian on sufficiently long time scales.
Section 4 is a summary of our findings and a discussion of future
directions.

2. Theory

2.1. Properties of Markov Chains. Several important
properties of discrete time Markov chains will be summarized
here. For a comprehensive review of the subject there are
numerous excellent texts available.44,45 Consider a transition
matrix, T(τ), whose (i, j) element is defined as the probability
that, when the system is prepared in statej at some time, it will
be in statei when observed some timeτ later. Consider also a
vectorP(t), whoseith element is the probability of finding the
system in statei at time t. For a true Markov process, the
following holds:

For discrete times,nτ, we can write this as follows:

BecauseT is a matrix of probabilities, its elements are
nonnegative and its columns sum to unity, a property that
implies that the eigenvalues,µi, of T, which may in general be
complex, have|µi| e 1. We letΦi represent a right eigenvector
of T with eigenvalueµi. In fact, (at least) one eigenvalue is
unity, and the corresponding eigenvector is special. Without loss
of generality, we will refer to these with indexi ) 1. When
appropriately normalized,Φ1 represents the steady-state distri-
bution, because application ofT leaves this eigenvector
unchanged. For ergodic systems, where every state can eventu-
ally be reached from any other, there is only one such unit-
valued eigenvalue. In this case, we can identifyΦ1 as the
equilibrium distribution,P(t)∞).

Detailed balance is the condition that the flux in probability
between any pair of states is equal in each direction when the
system is at equilibrium:

This condition is usually satisfied by physical systems, including
ones governed by Newtonian dynamics such as ours. The only
requirement to achieve this property is that the dynamics be
energy conserving and time-reversible.

Detailed balance is a very strong condition and results in
several consequences. First, all the eigenvalues and eigenvectors
of T are real. Second, the eigenvectors form a complete set,
and they can be used to expressanysolution to eq 2 as a linear
combination of the eigenvectors as follows:

Third, the eigenvectors are orthogonal under the following
definition for the inner product in a vector space whose
dimension is the number of states:

(Here, Φ1,i is the ith component ofΦ1, which is the steady-
state probability that the system is in statei.) With this, we can
uniquely determine the coefficientsci to generate a solution
P(t)nτ) that satisfies any arbitrary initial condition,P(t)0) as
follows:

Thus, the behavior of a probability distribution can be
described as if it were a sum ofmodes, each with a different
temporal behavior, related to its associated eigenvalue. A mode
with an eigenvalue ofµ < 1 exhibits exponential decay,46 with
an exponential decay constant given by-τ/ln µ. The mode with
an eigenvalue of unity has no temporal change and, therefore,
corresponds to the steady state, or stationary distribution. The
other modes correspond to “probability fluxes”, with varying
rates of change. The mode with the largest eigenvalue less than
unity is the slowest and is important because it determines the
time limiting processes in the system. The smallest eigenvalues
are associated with the modes that have the shortest relaxation
times, because they decay quickly from any arbitrary starting
distribution.

An important attribute of a Markov chain is that it is also a
Markov chain when viewed on a coarser time scale. For
example, consider the Markov chain produced by the transition
matrixT(τ). If this chain were observed on a coarser time scale,
such as at a temporal resolution ofnτ, it would be indistinguish-
able from one produced by a different Markov transition matrix
S ) Tn. In fact, it is easy to show that the eigenvalues ofS can
be obtained by raising the eigenvalues ofT to thenth power.
(The eigenvectors ofT andS are the same.)

This property of a Markov chain can be exploited to help
determine whether a process is indeed Markovian. If one were
to examine a chain at varying temporal resolutions,nτ for n )
1, ..., and deduced a transition matrixSn for each of these
temporal resolutions, the eigenvalues of these matrices would
be related. In fact, ifµi(n) are the eigenvalues of transition matrix
Sn, a plot of-nτ/ln µi(n) as a function ofn should show a set
of constant functions. This is because at temporal resolution
nτ, the behavior would be described by a transition matrixS )
Tn, with eigenvaluesµi

n(n)1).

P(t+τ) ) T(τ) P(t) (1)

P((n+1)τ) ) T(τ) P(nτ) (2)

Ti,jPj(t)∞) ) Tj,iPi(t)∞) (3)

P(nτ) ) ∑
i)1

ciµi
nΦi (4)

(φ,ψ) ) ∑
i

φiψi

Φ1,i

(5)

ci ) (Φi, P(t)0)) (6)
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Another important property of Markov chains that can be
exploited to test for Markovian behavior is the distribution of
lifetimes observed for each of the states. This distribution
follows an easily described formula. Diagonal elementTii(τ) of
transition matrixT determines the probability of seeing the
system in statei at some time, given that it was in statei at a
time τ earlier. The probability ofnot being in statei at some
time, given that it was in statei at timeτ earlier, is 1- Tii. So,
given that the system was in statei at timet ) 0, the probability
that it will be observed to remain in statei for exactlyL - 1
more consecutive observations and then be in some other state
on the Lth observation is given byTii

L-1(1-Tii). Using this
probability, one can show that the mean lifetime of statei is
1/(1 - Tii). States with observed lifetime distributions that are
different from this are exhibiting non-Markovian behavior.

2.2. Microstates and Macrostates.We wish to relate the
above discussion to molecular dynamics simulations. We will
define amicrostateto be a specification of all the coordinates
and momenta of a system. For anN-particle system, there are
3N coordinate and 3N momentum components. For this discus-
sion we will represent a microstate asx, with the understanding
that this is a 6N-component vector.

The probability of finding the system in a state where the
coordinates and momenta are in a volume element dx aboutx
is given by

whereH(x) is the Hamiltonian for the system, andâ ) 1/kBT.
Note that this definesP(x) as a probability density.

We definemacrostatesas collections of microstates that have
some attribute in common. Formally, we can define a set of
indicator functions,Ω(i)(x), which allow us to classify mi-
crostates as to which macrostate they belong.

The set ofΩ functions must span all of space in a nonover-
lapping way, such that every possible microstatex must belong
to exactly one macrostate. This means that

The probability of finding the system in any microstate that
is consistent with some particular macrostatei is proportional
to the volume of thermally accessible phase space consistent
with that macrostate.

We could have restricted the integral to regions of phase space
that are consistent with macrostatei, and then left out theΩ.
But by use of theΩ function, we can formally let the range of

the integral go over all of phase space, and only microstates
consistent with macrostatei are counted.

Note that the condition in eq 9 on theΩ(i) functions, that
each microstate be assigned to exactly one macrostate, provides
a normalization condition for theP(i).

2.3. Describing Dynamical Processes.Now consider trajec-
tory data, where the phase space point propagates in time
according to, for example, Newton’s equations. By virtue of
the evolution ofx(t), Ω(i)(x) is now also an implict function of
time. We will be especially interested in two types of functions.
The first type are the correlation functions,Cij(τ), defined as
follows:

This gives the joint probability of finding the system in
macrostatei at one time, and in macrostatej at some timeτ
earlier. In the limit ofτ f 0 the correlation function becomes
〈Ω(i)〉δij ) P(i)δij. At very long times, the probabilities of being
in these macrostates becomes uncorrelated, and approaches
〈Ω(i)〉〈Ω(j)〉 ) P(i)P(j). By virtue of eq 10, summing over the first
and second indices gives the following relationships, true for
any time,τ:

The second type of functions are transition functions,Tij(τ),
defined as follows:

This gives theconditionalprobability of finding the system in
macrostatei at one time, given that it was in macrostatej at
some timeτ earlier. In the limit ofτ f 0 the transition function
becomesδij. In the long time limit, the function approaches〈Ω(i)〉
) P(i) (the limit where the probability of being in macrostatei
does not depend on where the system started out). Notice that
summing over the first index produces unity for any value ofτ
and for any value of the second index:

P(x) dx ) e-âH(x) dx

∫dx e-âH(x)
(7)

Ω(i)(x) ≡ {1 if microstatex is in macrostatei
0 if not

(8)

∑
i

Ω(i)(x) ) 1 for any and allx (9)

P(i) ) ∫dx P(x) Ω(i)(x) (10)

)
∫dx e-âH(x)Ω(i)(x)

∫dx e-âH(x)
(11)

) 〈Ω(i)〉 (12)

∑
i

P(i) )

∫dx e-âH(x)∑
i

Ω(i)(x)

∫dx e-âH(x)
(13)

) 1 (14)

Cij(τ) ≡ 〈Ω(i)(x(τ)) Ω(j)(x(0))〉 (15)

)
∫dx(0) e-âH(x(0))Ω(i)(x(τ)) Ω(j)(x(0))

∫dx e-âH(x)
(16)

∑
i

Cij(τ) ) 〈Ω(j)(x)〉 (17)

∑
j

Cij(τ) ) 〈Ω(i)(x)〉 (18)

Tij(τ) )
∫dx(0) e-âH(x(0))Ω(i)(x(τ)) Ω(j)(x(0))

∫dx e-âH(x)Ω(j)(x)
(19)

∑
i

Tij(τ) ) 1 (20)
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Clearly, the correlation and transition functions are related
through the following Bayes relationship:

In principle, one would computeCij by first selecting a very
large set of starting states,x(0), that are Boltzmann weighted
over the entire phase space. (By this, we mean that configuration
x(0) occurs in the set with a probability proportional to exp[-
âH(x(0))].) These starting states would be produced through
some sort of canonical sampling method, such as Monte Carlo
or canonical ensemble molecular dynamics.47,48Next, one would
note which macrostate each of the starting states was in. One
would then use energy conserving molecular dynamics to evolve
these starting states for a timeτ and note which macrostate they
ended up in.Cij(τ) is the fraction of all of these trajectories that
started in macrostatej and ended up ini. However, because
each of these trajectories is energy-conserving, they maintain
their relative Boltzmann weights over time. Therefore, a given
trajectory, as it passes through various macrostates, can be used
to obtain information about many different transition functions,
and for many different times,τ. For example, where each
trajectory was at timet and at timet + τ could be noted and
used with equivalent weight in computing theCij(τ).

Suppose we haveM Boltzmann weighted starting states from
which trajectoriesxm(t), m ) 1, ...,M, have been computed for
times fromt ) 0 to t ) Tm. From these we can estimateCij(τ)
with the following:

In this expression, note that longer trajectories do not get greater
weight in the sum. To do so would upset the desired Boltzmann
weighting. (The overbar notation will be used to represent time
averages over some trajectory, and the trajectory over which
the average is to be taken will be indicated by what is beneath
the overbar.) Generally, of course, trajectories are sampled at
discrete times and the time integral above is evaluated as a sum
over these samples. Therefore, theC(τ) functions are actually
evaluated at multiples of this sampling period.

We have many ways to evaluateP(j). A particulary useful
one makes use of the desire to enforce the relationship in eq
17.

(Note that this approximation forP(j) depends onτ.) With eqs
23 and 24 forCij andP(j), eq 21 is used to computeTij. When
used in this context, the approximation forP(j) in eq 24 results

in the desired normalization in eq 20 forTij. The final result
for Tij is as follows:

We will often refer to the argument of a correlation or transition
function as thelag time, because it refers to some time period
we wait before characterizing the system, after having seen the
system in some condition earlier.

2.4. Distributions of Lifetimes. We are interested in comput-
ing the observed lifetime distributions for various states.
Consider a “counting” function ofx, KL

(i)(x;τ), that is unity only
if microstatex is in statei at timest ) 0, τ, 2τ, ..., (L - 1)τ,
and is not in state i at time t ) Lτ. An expression for this
function would be as follows:

This is an indicator function for microstates that are observed
to be in a particular macrostatei for L consecutive observations
that are spaced byτ in time. Note that with this definition, if
we sum over all values ofL, we get the following:

because if microstatex is in macrostatei, it will eventually leave,
and one of theKL

(i) functions will evalute to unity, and if
microstatex is not in macrostatei, none of them will, so that
KL

(i) will evaluate to zero for every value ofL.
Using KL

(i), an expression can be made for the thermally
accessible fraction of phase space in macrostatei that survives
for L consecutive observations at timest ) 0,τ, ..., (L - 1)τ
before leaving statei. This is given by the following:

Note that using this relationship and eq 29 it can be seen that

Tij(τ) ) Cij(τ)/P(j) (21)

Cij(τ) =
1

M
∑

i

M 1

Tm - τ
∫0

Tm-τ
dt Ω(i)(xm(t+τ)) Ω(j)(xm(t)) (22)

)
1

M
∑
m)1

M

Ω(i)(xm(τ)) Ω(j)(xm(0)) (23)

P(j)(τ) ) ∑
i

Cij(τ)

=
1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt [∑

i

Ω(i)(xm(t+τ))]Ω(j)(xm(t))

=
1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt Ω(j)(xm(t)) (24)

Tij(τ) =

1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt Ω(i)(xm(t+τ)) Ω(j)(xm(t))

1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt Ω(j)(xm(t))

(25)

)

1

M
∑
m)1

M

Ω(i)(xm(τ)) Ω(j)(xm(0))

1

M
∑
m)1

M

Ω(j)(xm(0))

(26)

KL
(i)(x;τ) ) Ω(i)(x(0)) Ω(i)(x(τ)) Ω(i)(x(2τ)) ... (27)

× Ω(i)(x((L - 1)τ)) (1 - Ω(i)(x(Lτ))) (28)

∑
L)1

∞

KL
(i)(x; τ) ) Ω(i)(x) (29)

〈KL
(i)(x;τ)〉i )

∫dx(0) e-âH(x(0))Ω(i)(x(0)) KL
(i)(x(0);τ)

∫dx(0) e-âH(x(0))Ω(i)(x(0))
(30)

∑
L)1

∞

〈KL
(i)(x;τ)〉i ) 1 (31)
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The set of〈KL
(i)〉i for different values ofL therefore provides

a Boltzmann weighted and normalized distribution of lifetimes
for microstates originating in macrostatei. The mean lifetime
of microstates in macrostatei, which may also be called the
mean lifetime of macrostatei is given by

This lifetime is measured in units ofτ, the observation period.

We will not evaluate〈KL
(i)〉i directly but, rather,

and then derive〈KL
(i)〉i from it as follows:

whereP(i) is given by eq 12.

To evaluate these ensemble averages, we use time averages
over a set of microcanonical trajectories that were started from
a Boltzmann weighted set of starting states. Suppose we have
M Boltzmann weighted starting states from which trajectories
xm(t), m ) 1, ...,M, have been computed for times fromt ) 0
to t ) Tm. From these we can estimate〈KL

(i)(x;τ)〉 with the
following:49

An important aspect of this equation is that it produces lifetime
distributions that are parametrically dependent on a time interval,
τ, which is related to the period between consecutive observa-
tions. We will see in an example that the qualitative nature of
the lifetime distribution can change with this time interval.

2.5. Higher Order Transition Matrices and Correlation
Functions.Later we will establish the degree to which transition
probabilities arehistory independent. This property is a pre-
requisite condition if the observed transition matrices are to be
used as Markov transition matrices to infer long time behavior
of the system.

Consider the conditional probability,Ti|jk, of observing the
system in statei at time t ) 2τ, given that it was in statej at
time t ) τ and in statek at time t ) 0, expressed by the
following:

We can define corresponding three-time correlation functions

as follows:

so that

Note that in the limitτ f 0, Cijk f δijδjkP(i), so that in this
same limit,Ti|jk approachesδijδjk. At long timesCijk f P(i)P(j)P(k),
so Ti|jk f P(i).

For Markovian behavior to emerge, we require that the
transition probability for the system to go from statej to i be
independent of the state it was in earlier. This is equivalent to
the requirement forTi|jk(τ) to be independent ofk. Clearly, this
will not be the case for short times, because we know that for
short enough timesTi|jk has very different values ifk is not equal
to j than if it is. However, for long enough times we might
expect systems leaving statej to behave in a history-independent
way. Therefore, we would like to find the time after which the
subensemble of states that are in statek at time t ) 0 and in
statej at timet ) τ have the same probability of being in state
i at time t ) 2τ, irrespective ofk.

2.6. Biased Sampling by the Use of Selection Cells.In what
follows we assume that a set of states have been generated that
are Boltzmann distributed. This can be done by a number of
methods. For example, replica exchange Monte Carlo simula-
tions28,48are often performed by this research group30 to produce
a set ofNR Boltzmann distributed states. We represent these
states with the notation{xR,i, i ) 1, ..., NR}, with the R to
emphasize that they are members of the set that may have been
produced by a prior replica exchange simulation.

Canonical ensemble, or thermal, averages of any property,
A(x), may be approximated by simply averagingA(x) over this
set ofNR states:

However, some propertiesA may be too expensive to evaluate
over the entire set. This is certainly the case for properties that
are functions of time, such as correlation functions, where the
relevant ensemble average would need to be evaluated by
computing trajectories produced using theNR Boltzmann-
weighted configurations as starting states. Furthermore, given
that we may be averaging over a subset of the available
configurations, we might also be interested in focusing the
sampling in phase space on regions of particular interest, and/
or where the probability density is somewhat low. A prime
example would be to focus sampling near regions that are
suspected transition states to improve our characterization or
understanding of a kinetic process.

Therefore, in this section we describe a way to focus sampling
in various multiple regions of interest by sampling uniformly
from various subsets of theNR configurations, and then by
applying a weighting to regain the desired canonical ensemble
average.

Cijk(τ) ≡
∫dx(0) e-âH(x(0))Ω(i)(x(2τ)) Ω(j)(x(τ)) Ω(k)(x(0))

∫dx e-âH(x)

(38)

Ti|jk(τ) )
Cijk(τ)

Cjk(τ)
)

Cijk(τ)

Tjk(τ)P(k)
(39)

〈A(x)〉 ≡
∫dx e-âH(x)A(x)

∫dx e-âH(x)
=

1

NR
∑
i)1

NR

A(xR,i) (40)

L(i) ) ∑
L)1

∞

L〈KL
(i)〉i (32)

〈KL
(i)(x;τ)〉 )

∫dx(0) e-âH(x(0))KL
(i)(x(0);τ)

∫dx(0) e-âH(x(0))
(33)

〈KL
(i)(x;τ)〉i ) 〈KL

(i)(x;τ)〉/P(i) (34)

〈KL
(i)(x;τ)〉 =

1

M
∑
m)1

M 1

Tm

∫0

Tmdt KL
(i)(xm;τ) (35)

)
1

M
∑
m)1

M

KL
(i)(xm;τ) (36)

Ti|jk(τ) ≡
∫dx(0) e-âH(x(0))Ω(i)(x(2τ)) Ω(j)(x(τ)) Ω(k)(x(0))

∫dx(0) e-âH(x(0))Ω(j)(x(τ)) Ω(k)(x(0))
(37)
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First, defineselection cellsas such regions of interest that
can be characterized in terms of some function ofx. For
example, one may wish to identify a region of phase space as
those states that have simultaneously a particular range of values
for the radius of gyration, and some range of values for the
distance between a particular donor-acceptor atom pair that is
capable of hydrogen bonding. As a second example, consider
the region of phase space with states that have exactly four
hydrogen bonds, defined with respect to some geometric criteria.
We will require that each point in phase space be assignable to
at least one selection cell. (One convenient way to achieve this
is to define one selection cell that corresponds to all of phase
space. Of course, other ways to achieve this are also possible.)
A final point about selection cells is that they do not have to
have any particular relationship to the macrostate definitions
described above. One key difference is that selection cells
describe regions of phase space that can overlap, whereas the
macrostates described above cannot overlap; each phase space
point must be assigned to one and only one macrostate but can
lie in multiple selection cells.

SupposeNS such selection cells have been characterized.
Because selection cells are characterized on the basis ofx, there
is an indicator function for each:

It will also be convenient to define a counting functionN(x)
that indicates how many selection cells a particular phase space
point belongs to

N(x) g 1 for any statex.

Of the NR available states,NR
(i) are considered to be consis-

tent with the definition of selection celli, where

Note that because the regions of phase space corresponding to
the various selection cells might be overlapping, and because
every state is assignable to at least one selection state, theNR

(i)

sum to a number greater than or equal toNR.

The procedure continues byrandomlyselecting (with replace-
ment) for each selection celli some number,NS

(i), of states
from among theNR

(i) available to the selection cell. Denote
these states{xR,j

(i) , i ) 1, ..., NS; j ) 1, ..., NS
(i)}. Note that the

resulting sets can have some duplicated states. We can denote
by M, the total number of starting states selected (counting
duplicates). This is just the sum over allNS selection cells of
NS

(i).

The resulting sample is no longer Boltzmann weighted, even
though the underlying sample was. However, with proper

reweighting, Boltzmann averages can be obtained as follows:

where 〈 〉i represents an ensemble average over the region of
phase space consistent with selection celli, and PS

(i), the
probability of finding a state in selection celli, is approximated
by NR

(i)/NR, the fraction of replica exchange states that are
consistent with selection celli.

This expression provides the desired weighting for averages
of A over the (non-Boltzmann) set of states that were selected
through the selection cell approach. The net effect is that each
starting state simply has a weight associated with it. Properties
are computed for this starting state, or averaged over trajectories
started from this starting state, and these properties are simply
summed up using these weights to produce properly Boltzmann-
weighted averages. Note that these formulas reduce to more
familiar ones in the limit where there is only one selection cell
(covering the entire phase space), or when the selection cells
do not overlap.

2.7. Computing Correlation and Transition Functions and
Lifetime Distributions. We can apply the results in eq 44 of
the previous section to the computation of the correlation and
transition functions. We do this by associating the functionA(x)
with the indicator functions,Ω(i), and with their correlation,
Ω(i)(x(τ)) Ω(j)(x(0)). For the correlation functions, eq 23 becomes

For the purposes of using it to compute the transition functions,
we approximateP(j). After the proper weighting is applied, eq
24 becomes

(Recall that the time average ofP(i) in this expression depends
on τ.) The transition functions are obtained as ratios of these
functions through eq 21.

We can also use the results of the previous section to compute
the lifetime distributions for each state. First, the ensemble

Γ(i)(x) ≡ {1 if statex is consistent with selection celli
0 if not

(41)

N(x) ) ∑
i)1

NS

Γ(i)(x) (42)

NR
(i) ) ∑

j)1

NR

Γ(i)(xR,j) (43)

〈A(x)〉 )

∫dx e-âH(x)A(x)[∑
i

Γ(i)(x)/∑
i

Γ(i)(x)]
∫dx e-âH(x)

)

∫dx e-âH(x)(A(x)/N(x))∑
i

Γ(i)(x)

∫dx e-âH(x)

) ∑
i)1

NS∫dx e-âH(x)(A(x)/N(x)) Γ(i)(x)

∫dx e-âH(x)Γ(i)(x)

∫dx e-âH(x)Γ(i)(x)

∫dx e-âH(x)

) ∑
i)1

NS

〈A(x)/N(x)〉iPS
(i)

= ∑
i)1

NS 1

NS
(i)
∑
j)1

NS
(i)

[A(xR,j
(i) )/N(xR,j

(i) )](NR
(i)/NR) (44)

Cij(τ) = ∑
l)1

NS 1

NS
(l)

∑
m)1

NS
(l) NR

(l)

NRN(xR,m
(l) )

Ω(i)(xR,m
(l) (τ)) Ω(j)(xR,m

(l) (0))

(45)

P(j)(τ) = ∑
l)1

NS 1

NS
(l)

∑
m)1

NS
(l) NR

(l)

NRN(xR,m
(l) )

Ω(j)(xR,m
(l) (0)) (46)
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average of the counting functionKL
(i) is approximated by the

following:

To get the normalized lifetime distribution for macrostatei, this
expression is divided byP(i) as given in eq 46.

3. Example

In this section, we will study a simple example designed to
illustrate a number of points raised in the Introduction. This
example will include an analysis as suggested in the previous
section. The example system consists of a set of states with
dynamics controlled by an associated Markov transition matrix.
If a chain of states is generated by use of the matrix, the resulting
trajectory can be recognized as Markovian. Through the process
of lumping sets of states together, the Markovian nature of the
process is lost on short time scales, and this loss is recognized
from observations suggested in the preceding section. On longer
time scales, however, the Markovian nature of the process is
regained.

Consider a system with nine “microstates” and a nine-by-
nine Markov transition matrix, as illustrated in Figure 1. The
probability of being in each of these states can be described by
a nine vector, and the discrete time evolution of this probability
density can be generated by repeated multiplication of the matrix
and the vector. We can also use the transition matrix to generate
trajectoriesof the Markov process in state space. Using different
random number seeds and starting states, one can easily generate
many such trajectories. In this example, we have generated 100
trajectories of 10 000 states. These trajectories can be subjected
to the analysis presented in the previous section. For example,
transition functions for lag times fromt ) 0 to t ) 200 sampling
periods can be computed from the trajectories, and one set is
shown in Figure 2. The curves in this figure show the probability
of observing the system to be in various states as a function of
time, given that it was in state 5 at timet ) 0. For a nine-state
system there are 81 such transition functions. By taking one
element, corresponding to a particular time, from each function,
one can construct a transition matrix that describes the evolution
of the system over that period of time. Because we have
evaluated the functions at 201 times, we can construct 201 such
transition matrices. We can, in fact, index these matrices by
their lag times. (The matrix fort ) 0 is the identity matrix.)
We expect that the matrix corresponding to an evolution by
one time period to strongly resemble the one used to contruct
the trajectory in the first place. They are not identical, of course,
due to the fact that we based our estimates of the transition
functions on a finite number of finite length trajectories.

The transition matrices can be diagonalized and their nine
eigenvalues can be plotted as a function of these lag times. The
result is shown in Figure 3. For a Markov process, we expect
that the transition matrix corresponding to evolution byn steps
to be just the transition matrix corresponding to one step raised
to the power ofn. The eigenvalues of these matrices should be
similarly related, so ifµ is an eigenvalue corresponding to the
matrix T(t)1), we expect there to be an eigenvalue with value
µn for the matrix corresponding toT(t ) n). The figure shows
such expected exponential decay, characteristic of a Markov
process. The eigenvalues describe the rates of decay of various
relaxation processes in the system. An eigenvalue ofµ associated
with a matrix that corresponds to evolution by a lag timet, for

Figure 1. Representation of the Markov transition matrix for the
example problem described in the text. Only “off-diagonal” values of
the matrix are explicitly shown. The diagonal elements can be deduced
from the fact that the sum of all transition probabilities out of any state
is unity. The ninemicrostatesof the nine-state system are indicated by
numbers. Threemacrostates, indicated by letters, are formed by lumping
groups of three microstates together, as shown.

〈KL
(i)(x;τ)〉 = ∑

l)1

NS 1

NS
(l)
∑
m)1

NS
(l) NR

(l)

NRN(xR,m
(l) )

KL
(i)(xR,m

(l) ;τ) (47)
Figure 2. Transition functions, showing the probability of being in
various states as a function of time given that the system was in state
5 of the nine-state system at timet ) 0 (solid lines), or given that it
was in state 2 of the lumped three-state system at timet ) 0 (dashed
lines). For the nine-state case, the rapidly decreasing function represents
the diagonal functionT5,5, and the two most rapidly rising functions
represent the probability of being in states 4 or 6. For the three-state
system, the decreasing function represents the diagonal functionTB,B,
and the two more rapidly rising functions represent the probability of
being in states A or C.

Figure 3. Eigenvalues as a function of time for a nine- (solid lines)
and a three-state (dashed lines) system. Each system has one eigenvalue
of unity for all lag times. The eigenvalues of the nine-state system
show the expected exponential decay of a Markov process. Those of
the three-state system need not, because they represent a process that
is not necessarily Markovian.
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example, corresponds to an exponential decay time given byτ
) -t/ln µ. These decay times, as a function of the lag times of
the matrices from which they came, are shown in Figure 4. Note
that they are constant functions for a Markov process. The
largest eigenvalues determine rates of the slowest processes in
the system.

Not surprisingly, indications based on lifetime distributions
(not shown) also suggest Markovian behavior for the nine-state
system. The lifetime of each state is simply related to the value
of a diagonal element of the transition matrix. Looking at the
lifetime distributions with different lag times shows Markovian
behavior.

Consider now what happens if sets of three microstates are
lumped together to form macrostates. Thesametrajectories
described above, produced using the full nine-state transition
matrix, were analyzed as if the system were actually a three-
state system. That is, when any of microstates 1-3 are observed,
the system is assigned to macrostate A, etc. The correspondence
between (numbered) microstates and (lettered) macrostates is
shown in Figure 1. This situation mimics the fact that the
underlying process of classical dynamics is Markovian when
viewed in the context of infinitesimally small elements of phase
space. However, in our analysis of peptide behavior, we are
interested in macrostate definitions that ignore all momenta and
all degrees of freedom of the solvent, and that encompass
significant volumes of configuration space, such as all regions
where the radius of gyration of the peptide is within some finite
range of values. The macrostates we are ultimately interested
in for characterizing folding dynamics, therefore, represent a
significant amount of lumping. With lumping, we expect to
observe non-Markovian behavior in transitions from state A to
B, for example, because the probability of making a transition
to state B really depends on whether the system is in the state
1, 2, or 3 compartment of A. The resulting behavior of A should
be more complex than if a single transition probability described
its transitions to B.

Having projected from nine down to three states, we now
subject the trajectories to the same kind of analysis described
in the previous section. We generate correlation functions,
macrostate probabilities, transition functions, and lifetime

distributions. Example transition functions are shown in Figure
2. They represent much slower processes than observed for the
underlying nine-state system because they are describing
transitions between more weakly coupledmanifoldsof states.
The eigenvalue spectrum for the three-state system is shown in
Figure 3. Notice that for this example, the larger eigenvalues
of the three-state system are similar to those of the nine-state
system. The times implied by the eigenvalues are shown in
Figure 4. For the three-state system, these functions are not
constant, a signature of non-Markovian behavior. However, as
the lag time increases, the two curves for the three-state system
appear to approach corresponding constant curves for the nine-
state system. That is, on sufficiently long (lag) time scales, we
see that the three-state system can appear to behave in a
Markovian manner. Furthermore, the slow processes and their
time scales in the nine-state system are being adequately
described on sufficiently long time scales in the analysis of the
three-state system.

Figure 5 shows lifetime distributions for two states of the
three-state system. Shown on the plots are both the observed
(Boltzmann-weighted) lifetime distribution and, for comparison,
what would be expected if the distribution were that of a Markov
process with the same mean lifetime. State A, consisting of states
1-3 of the nine-state system, exhibits non-Markovian behavior
on short time scales, but as the time lag increases, we see that
a Markovian description could be adequate. State B, consisting
of states 4-6 of the nine-state system, appears to behave in a
way consistent with a Markov process on all the time scales
shown.

The nine-state transition matrix used in this example was
contrived to illustrate the transition from Markovian to non-
Markovian behavior upon lumping, and the transition from non-
Markovian to Markovian which appears again on sufficiently
long time scales. The matrix was constructed so that states 1-3
make frequent transitions among themselves, each with a mean
lifetime of about 100 steps, similarly, for states 4-6, each with
a mean lifetime of about 50 steps, and for states 7-9, each
with a mean lifetime of about 20 steps. Transitions between
the A, B, and C macrostates of the three-state system are
determined largely by the small transition probabilitites between
states 3 and 4, and between states 6 and 7. These determine the
much longer lifetimes of the three-state system. The approach
to Markovian behavior should occur on time scales that are
related to both the relaxation times among the states within a
macrostate and the transition times between macrostates. To
see correct long time scale behavior, we need to formulate
macrostates that have internal equilibration time scales that are
short compared to the lifetimes of the macrostates themselves.

4. Conclusions and Discussion

We have presented a rigorous derivation of formulas for the
computation of transition probabilities from molecular dynamics
data. The formulation uses Boltzmann weighted conformations
as starting states for microcanonical simulations. It takes into
account the need for enhanced sampling around parts of phase
space that might be involved in transition states through the
use of a reweighting scheme thatrestores the Boltzmann
weighting. We feel that it is important to start trajectories from
many starting states and that these starting states should be
representative of some thermodynamically meaningful ensemble,
that is, they should be Boltzmann distributed, so that statistically
meaningful and unbiased conclusions can be drawn about the
number, nature, and relative importance of folding pathways.
This is very difficult to do from studies that start from artificially

Figure 4. Time scales for relaxation processes implied by the
eigenvalues of transition matrices. The exponential decay constants for
the processes are related to the eigenvalues,µ, by τ ) -t/ln µ. Note
that for the nine-state system (solid lines), the functions are constants
of the lag time. For the lumped three-state system (dashed lines), the
functions are not constant of the lag time but approach them as the lag
time increases.
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prepared starting conformations, such as fully extended states.
We also feel that from these Boltzmann distributed starting states
microcanonical and time reversible (NVE) molecular dynamics
simulations should be performed because the thermal control
mechanisms in use for canonical sampling interfere with the
dynamics of the system. It is possible that for some peptide
systems, if not the majority, the kinds of thermal control in
common use will have minimal or no impact on protein folding
kinetic studies. This remains to be seen. But there is no scientific
reason to impose thermal control in studies that use energy
conserving algorithms to generate dynamics.

An important aspect of the formulation is that no prior
assumption of Markovian behavior is assumed and so the degree
to which the observations are Markovian can be assessed in an
unbiased way. We also provide in this formulation for the
possibility that observations may not be Markovian on short
time scales but may be on longer time scales. Furthermore, the
formulation provides a way to compute correlation and transition
functions in a way that satisfies many of the desireable
normalization conditions. The equilibrium distribution produced
from replica exchange simulations can be used in such a way
that there is a high degree of consistency between this
distribution and the eigenvector of the transition matrix that
corresponds to the steady-state distribution.

We have applied the techniques described to a sample
problem that demonstrates how appropriately defined mac-
rostates might behave under this kind of analysis. We would
not, for example, expect to observe Markovian behavior on short
time scales, but the formalism provides suggestions for metrics
that might be exploited to assess the degree to which a
Markovian description might be appropriate at longer time
scales. These include an analysis of the eigenvalue spectrum
as a function of lag time, lifetime distributions and history
dependence of transition probabilities.

Work is ongoing to address the issue of better macrostate
definitions, such as the formulation of an automated process
for order parameter selection and binning. We also wish to

address issues related to the sensitivity of our results with respect
to the number and length of the dynamical simulations.

Appropriately applied, this approach has the potential to
properly elucidate the behavior of protein folding from multiple
independent trajectories. This requires appropriate Boltzmann
weighted coverage of phase space as well as high quality energy
conserving trajectories. We are looking forward to the applica-
tion of these techniques to a variety of peptide and small protein
systems.

In a companion paper, we describe an application of this
formalism to the folding of theâ-hairpin from protein G using
a novel macrostate space definition that resolves not only the
number, but the pattern of native hydrogen bonds.
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