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A rigorous formalism for the extraction of state-to-state transition functions from a Boltzmann-weighted
ensemble of microcanonical molecular dynamics simulations has been developed as a way to study the kinetics
of protein folding in the context of a Markov chain. Analysis of these transition functions for signatures of
Markovian behavior is described. The method has been applied to an example problem that is based on an
underlying Markov process. The example problem shows that when an instance of the process is analyzed
under the assumption that the underlying states have been aggregated into macrostates, a procedure known
as lumping, the resulting chain appears to have been produced by a non-Markovian process when viewed at
high temporal resolution. However, when viewed on longer time scales, and for appropriately lumped
macrostates, Markovian behavior can be recovered. The potential for extracting the long time scale behavior
of the folding process from a large number of short, independent molecular dynamics simulations is also

explored.

1. Introduction

An understanding of the mechanisms by which proteins fold
would have wide utility in many areas, ranging from the
development of effective treatments for protein folding related
diseases to exploitation of the underlying principles of folding
to facilitate industrial nanotechnology. The study of protein
folding has three aspects: thermodynamics, kinetics, and
structure prediction. In this work we introduce an approach to
characterizing some aspects of protein folding kinetics and apply
it to a simple example problem. In a companion pdpee
apply the approach to the folding of a small peptide, the
C-terminal5-hairpin motif from protein G.

Protein folding has been extensively studied experimeAtélly
and by computer simulatioft12 Computer simulations can
provide information about the process that is highly comple-
mentary to that obtained from experiméri# 17 Furthermore,
the computer power available for biomolecular simulations in
general, and protein folding in particular, is increasing through
the production of improved software to exploit paralleli¥m,
specialized hardwar€,larger and faster computer systems and
grid and distributed computing approach&Z?3 Indeed, the IBM
BlueGene project}~27 to build a massively parallel computer
to investigate biomolecular processes such as protein folding,
is expected to systematically study a variety of peptide and small
protein systems and will produce very large volumes of
simulation data. One significant advantage of this greater
computer power is that the field is moving from studies that
report on single events observed during single trajectories of
limited duration! to studies where extensive thermodynamic
sampling has been performiéd328-30 and ensembles of
trajectories are produced and analy2€dObtaining large
numbers of independent trajectories is not only a very effective
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way to use parallel computing technologies but is required for
statistically meaningful and reproducible resdt®ecause of

this move to more comprehensive simulations, new and autom-
atable analysis procedures that can be applied consistently to
data from simulations of a variety of protein systems need to
be developed and validated.

Protein folding is generally studied in the liquid phase, where
the protein or peptide is in contact with a solvent. Besides
providing part of the driving force for the folding process,
through hydrophobic and hydrophilic hydration, the solvent also
provides friction and a heat bath for the process. In fact, because
of the random forces exerted by the solvent, one would expect
that if several identical peptides could be prepared in the same
conformation and solvated, they would very likely adopt
different folding trajectories, perhaps following completely
different paths and taking different amounts of time to reach
native conformations. It is because of this stochastic nature of
folding that one should be careful not to draw strong conclusions
about the process if they are deduced from single MD
trajectories. But given that hundreds of protein simulation
trajectories can be produced, what is the best way to use them
to understand the process of folding? One possible approach,
explored in this work, is to analyze the trajectories to produce
a probability for the evolution of the protein from one
conformational state to another. The formalism associated with
Markov processes and models is, therefore, a natural approach
for this analysis.

Markov models of stochastic processes deal with the temporal
evolution of the state of a system. They are appropriate when
the memory of the system is short. That is, when the evolution
of the system into the near future depends only its properties at
the current time, and not on any of its prior history. Markov
models can be of several types depending on whether one
discretizes the time domain, the state space, or both. With a
discrete time Markov chain, both the time and space domain
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are discretized. These types of models of stochastic processedehave in adynamically similar way. Second, because it is
involve a finite time transition matrix that is capable of natural to define states with respect to order parameters related
describing the long time behavior of the system. This matrix to the folding process, and to establish states that are compact
gives the probability that during some discrete interval of time in this order parameter space, the order parameters themselves
the system makes transitions betwastates The matrix is best ~ must satisfy a “kinetic ruler” characteristié#? temporal
regarded as a propagator for a probability distribution. Markov progress during, e.g., typical folding trajectories should cor-
models of physical processes are quite common and useful inrespond to monotonic (preferably linear) changes in the order
chemical physic$? If protein folding is a physical process for parameter. Order parameters in common use that may be
which a Markov description is appropriate, it could be possible appropriate for characterizing thermodynamics, such as fraction
to characterize the long time behavior of a solvated protein of native contacts formed, are probably not appropriate for
system through a number of relatively short time molecular kinetic studies, because topologically very different conforma-
dynamics simulations. tions may have the same value for this order parameter, and
Protein folding kinetics, in this view, is about the evolution these conformations are likely to exhibit very different kinetic
of a probability density for an ensemble of proteins as it relaxes behavior. In fact, it is not obvious how to select appropriate
from some nonequilibrium to an equilibrium distribution. This order parameters for kinetics, but it is probably true that a
view has close connection with the experimental measurementMarkov description of the process will not be possible without
of folding rates, because many of the experiments observe thethem.
temporal evolution of some spectroscopic signal asreemble Furthermore, it is possible that protein folding is not truly
of proteins evolves to equilibrium after a thermodynamic Markovian on the time scales that are accessible within MD
perturbation such as heating or cooling, addition of denaturant, simulations. Even for a good choice of state space, for a Markov
changes in pressure, etc. description of the process to be accurate, there is a minimum
Theoretical approaches to protein folding that view the time interval over which transitions within the system can be
process in the context of Markov models are not new. Earlier described by a history-independent transition matrix. This time
work32:33on lattice models of proteins have used an ansatz for interval, below which transitions between states will appear to
the Markov transition rates between states as a means of relatingoe history-dependent, is roughly the time scale for a random
the evolution of an ensemble of lattice conformations to trajectory that has entered the statddse memonyof how it
experimental rates. Recent work by Oz&aand by Zhang and  entered. This time corresponds to a relaxation or equilibration
Cher* describe ways to deduce characteristics of folding time within a state and obviously depends on the nature of the
pathways, transition stateand long-lived intermediates from  state. In general, states that include larger amounts of phase
an analysis of the eigenvalues and eigenvectors of the transitionspace, or that have large internal (free) energy barriers, will
matrix itself, and they have also applied them to cases whererequire longer periods of time for their internal equilibration.
an ansatz was used for the transition rates between pairs ofFor a Markov description of an entire system to work, the
states. If stable and metastable states, as well as transition stategppropriate time interval of the transition matrix must be at least
of a system are known a priori, or can be guessed, it is also as large as thiongestequilibration time among the states that
common to extract or estimate Markov transition rates between are being used to descibe the process.
these states through the use of simulaffor? Another relevant time for this type of modeling is the time
To model a physical process with a Markov chain approach, for the overall system to relax to equilibrium from any arbitrary
an appropriate state space needs to be established. However, gtarting state. Markov models are really only interesting for times
is far from obvious in general how one should tabulate and that are short relative to this time. A Markov transition matrix
characterize the stable and transition states of a protein systemfor times of this length or longer will take any arbitrary starting
In fact, doing so predetermines the outcome of the analysis to probability distribution to equilibrium in a single step. It is
a great extent. Moreover, an incorrect choice for the state spacepossible for one to have inadvertently defined states for a system
can make a Markovian analysis inappropriate. An ideal method such that there are some whose internal relaxation time is as
would be able to construct an appropriate state space withoutlong as the relaxation time of the entire system. For such
assuming prior knowledge of the existence or nature of those systems, any Markov model can hardly be expected to be useful
states. or accurate.

Regarding the construction of appropriate states, it is impor-  Despite these difficulties, a Markov analysis,it can be
tant to recognize that although the underlying classical dynamicsshown to be appropriatehas many attractive features. First, it
of an energy conserving and time reversible MD simulation is provides a concise way to represent information derived from
inherently a Markov process, the formulation of states that many MD trajectories. Second, each of these trajectories can,
aggregatdinite regions of phase space can result in behavior in principle, be much shorter than the time for the protein to
that defies a Markovian description. In fact, the nature of evolve from an extended state to a folded state and can be
processes that can be described as Markov chains in some statperformed independently using grid, distributed or parallel
space, but are viewed in a different state space that consists otomputing. Third, extrapolation of the short time behavior to
aggregated, dumped versions of the original states, is an area long times can provide information about folding rates that could
of much current stud§-! In particular, what are the charac- be compared with experimental observations.
teristics of partitionings of states that preserve the Markovian  Fersh#3 has questioned the validity of deducing information
behavior in the reduced, or aggregated, state space? about phenomena that occur on long time scales from large

Because the goal of a Markov description is to extract numbers of short time scale simulations. His point is that for
accurate temporal behavior, it is important that the states arefolding simulations that are started from ensembles of starting
defined in a kinetically meaningful way. This imposes several states that are not in thermal equilibrium, there are likely to be
requirements on the states. First, trajectories that pass throughag phases during which equilibrum populations of states along
the phase space spanned by any one of these states shoubdrious pathways are established. During this time, one may
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observe anomalous pathways and kinetics, which are notThis condition is usually satisfied by physical systems, including
representative of the dominant relaxation mechanisms. In otherones governed by Newtonian dynamics such as ours. The only
words, short simulations may overemphasize pathways and theirrequirement to achieve this property is that the dynamics be
associated kinetics that are importanty during this early local energy conserving and time-reversible.

equilibration phase, but that are not representative of what is  petajled balance is a very strong condition and results in
observed on biologically important time scales (milliseconds geyera| consequences. First, all the eigenvalues and eigenvectors
or longer). However, we feel that the approach developed in ot T 4re real. Second, the eigenvectors form a complete set,
@nd they can be used to expresy solution to eq 2 as a linear

careful to start simulations from diverse and properly Boltzmann combination of the eigenvectors as follows:

weighted conformations. Second, fundamental to our analysis

is the idea that one must examine temporal behavior on _ n

progressively longer time scales and look for convergence with P(nz) = Zciﬂi @ (4)

respect to a number of properties before believing in an ability =

to predict long time behavior based on the simulations. ) ) .
The structure of this paper is as follows. In section 2 we Th|_rd_,_the e|genve_ctors are ortho_gonal under the following

present the theory. This section has a very brief review of definition for the inner product in a vector space whose

relevant properties of Markov chains and transition matrices, dimension is the number of states:

then the derivation of important correlation function, transition

function and lifetime expressions. The theory section includes &Y

how these functions can be computed using biased choices for (py) = Z— (5)

starting states, along with a reweighting scheme to restore the ™ Py

required Boltzmann weighting. In section 3 we provide a simple

idealized example and examine it with the techniques described(Here, ®;; is theith component of®;, which is the steady-

in section 2. The example is designed to demonstrate that astate probability that the system is in stajewith this, we can

system that does not exhibit Markovian behavior on short time uniquely determine the coefficients to generate a solution

scales can appear Markovian on sufficiently long time scales. P(t=nr) that satisfies any arbitrary initial conditioR(t=0) as

Section 4 is a summary of our findings and a discussion of future follows:

directions.
c = (®, P(t=0 6
2. Theory i = (P, P(t=0)) (6)
2.1. Properties of Markov Chains. Several important Thus, the behavior of a probability distribution can be

properties of discrete time Markov chains will be summarized yescribed as if it were a sum afodes each with a different
here. For a comprehensive review of the subject there areemporal behavior, related to its associated eigenvalue. A mode
numerous excellent texts availaldfe’> Consider a transition | i on eigenvalue of < 1 exhibits exponential decd§with
matrix, T(z), whose {, J), element |s.def|ned as th? pro?’ab,"'ty an exponential decay constant given-bg/ln «. The mode with
Lha;, w:letn_ thi systEm IS p(;eparedtl_rrwr’t;.taitlESo(r:ne t|_rge, It|WI|| an eigenvalue of unity has no temporal change and, therefore,
€ In stata when observed some imeater. Lonsider aiso a corresponds to the steady state, or stationary distribution. The
vectorP(_t), who;elth _element is the probability of finding the other modes correspond to “probability fluxes”, with varying
?g”sgs\m] mh;lt(?;? at time t. For a true Markov process, the rates of change. The mode with the largest eigenvalue less than
9 ) unity is the slowest and is important because it determines the

P(t+1) = T(7) P(t) 1) time Iimitiqg processes in the system. The smallest eigenvalqes
are associated with the modes that have the shortest relaxation
For discrete timesnzr, we can write this as follows: times, because they decay quickly from any arbitrary starting
distribution.
P((nt+1)r) = T(z) P(n) (2) An important attribute of a Markov chain is that it is also a

Markov chain when viewed on a coarser time scale. For
example, consider the Markov chain produced by the transition
matrix T (7). If this chain were observed on a coarser time scale,
such as at a temporal resolutionraf it would be indistinguish-
able from one produced by a different Markov transition matrix

BecauseT is a matrix of probabilities, its elements are
nonnegative and its columns sum to unity, a property that
implies that the eigenvalues;, of T, which may in general be
complex, haveu;| < 1. We let®; represent a right eigenvector
of T with eigenvaluey;. In fact, (at least) one eigenvalue is L .
unity, and the corresponding eigenvector is special. Without loss S=T° _In fact, it IS easy to show that the eigenvaluesSaian
of generality, we will refer to these with indéx= 1. When be obtglned by raising the eigenvaluesTofo thenth power.
appropriately normalizedp; represents the steady-state distri- (The eigenvectors of andS are the same.)
bution, because application Of leaves this eigenvector This property of a Markov chain can be exploited to help
unchanged. For ergodic systems, where every state can eventudetermine whether a process is indeed Markovian. If one were
ally be reached from any other, there is only one such unit- to examine a chain at varying temporal resolutiansfor n =
valued eigenvalue. In this case, we can identlfy as the 1, ..., and deduced a transition mat® for each of these
equilibrium distribution,P(t=c0). temporal resolutions, the eigenvalues of these matrices would

Detailed balance is the condition that the flux in probability be related. In fact, ifii(n) are the eigenvalues of transition matrix
between any pair of states is equal in each direction when theS,, a plot of —nz/In «i(n) as a function of should show a set
system is at equilibrium: of constant functions. This is because at temporal resolution

nz, the behavior would be described by a transition merix
T Pj(t=0) = T; iPi(t=0) (3) Tn, with eigenvalueg;"(n=1).
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Another important property of Markov chains that can be the integral go over all of phase space, and only microstates
exploited to test for Markovian behavior is the distribution of consistent with macrostateare counted.
lifetimes observed for each of the states. This distribution  Nte that the condition in eq 9 on tH2® functions, that
foIIOV\_/s_ an ea3|!y descrlbeq formula. D|agor_1§1I elem‘émt) of each microstate be assigned to exactly one macrostate, provides
transmop matr.le deterrmnes t.he probapﬂny qf seeing the o hormalization condition for the®.
system in staté at some time, given that it was in statat a
time 7 earlier. The probability ohot being in state at some

time, given that it was in stateat timez earlier, is 1— Tj. So, fdx eﬁﬁH(X)ZQ(i)(x)
giver_l th('_;\t the system was in stzii_mzt _timet =0, the probability i) — [ 13)
that it will be observed to remain in statdor exactlyL — 1 Z
. . . | dX e*ﬂH(X)
more consecutive observations and then be in some other state f
on the Lth observation is given byl (1—T;). Using this -1 (14)

probability, one can show that the mean lifetime of stai®

1/(1 — T;). States with observed lifetime distributions that are . ) ) ]

different from this are exhibiting non-Markovian behavior. 2.3. Describing Dynamical Processedlow consider trajec-
2.2. Microstates and MacrostatesWe wish to relate the ~ ©"Y da}ta, where the phase space point propagate§ in time

above discussion to molecular dynamics simulations. We will accordlng_to, for example_’ Newton’s equ_at|o_ns. By \_/|rtue of

define amicrostateto be a specification of all the coordinates e evolution ofx(t), QU(x) is now also an implict function of

and momenta of a system. For BiFparticle system, there are time. We will be especially |nte_rested |n_two types of_ functions.

3N coordinate andI8 momentum components. For this discus- 1 N€ first type are the correlation functiorS;(z), defined as

sion we will represent a microstategswith the understanding ~ follows:

that this is a 6l-component vector.

The probability of finding the system in a state where the Ci(r) = EQ“)(x(r)) QG)(X(O))D (15)
coordinates and momenta are in a volume elemarahbutx . A
is given by Jdx(0) e MNP0 (x(7)) QU(x(0))
= (16)
—BH(x) dx e 1t
P(x) dx = e—;’(‘) 0 J
— X
fdxe This gives thejoint probability of finding the system in

. S macrostaté at one time, and in macrostajteat some timer
whereH(x) is the Hamiltonian for the system, afid= 1kgT. earlier. In the limit oft — 0 the correlation function becomes

Note that this define®(x) as a probability density. OB, = POs;. At very long times, the probabilities of being
some attribute in common. Formally, we can define a set of O)qmni = pipo. By virtue of eq 10, summing over the first

indicator functions,Q0(x), which allow us to classify mi- 354 second indices gives the following relationships, true for
crostates as to which macrostate they belong. any time, 7:

i 1 if microstatex is in macrostate .
QY0 = {O i not 8) S Cy(@) = @YD (17)
I

The set ofQ functions must span all of space in a nonover- S
lapping way, such that every possible microstateust belong ZCij (r) = RV(YU (18)
to exactly one macrostate. This means that !

Zg(i)(x) =1 foranyand alk 9) The second type of functions are transition functiohigr),
7 defined as follows:

The probability of finding the system in any microstate that de(O) e—ﬂH(x(O))Q(i)(X(T)) QG)(X(O))
is consistent with some particular macrostate proportional T(r) =
to the volume of thermally accessible phase space consistent ! fdx efﬁH(x)Q(i)(X)
with that macrostate.

, , This gives theconditionalprobability of finding the system in
PO = [dx P V(%) (10) macrostaté at one time, given that it was in macrostatat

_BHX) () some timer earlier. In the limit ofr — O the transition function

B fdx e "R becomesj. In the long time limit, the function approach@(]

11)

AHx = P® (the limit where the probability of being in macrostate
fdxe BHX) !
does not depend on where the system started out). Notice that
=min (12) summing over the first index produces unity for any value of

and for any value of the second index:

We could have restricted the integral to regions of phase space
that are consistent with macrostateand then left out thé. ZT“(T) =1 (20)
But by use of theQ function, we can formally let the range of T
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Clearly, the correlation and transition functions are related in the desired normalization in eq 20 f@;. The final result
through the following Bayes relationship: for Tj is as follows:
(21)

Tj(m) =G (T)/P(j)

Tm 4 0) 0
|v| T _t dt Q% (x(t+7)) QU(x (1))

In principle, one would comput€; by first selecting a very
large set of starting states(0), that are Boltzmann weighted
over the entire phase space. (By this, we mean that configuration
x(0) occurs in the set with a probability proportional to exp[
BH(X(0))].) These starting states would be produced through
some sort of canonical sampling method, such as Monte Carlo
or canonical ensemble molecular dynantic®Next, one would
note which macrostate each of the starting states was in. One
would then use energy conserving molecular dynamics to evolve
these starting states for a timand note which macrostate they
ended up inC;(7) is the fraction of all of these trajectories that
started in macrostateand ended up in. However, because

teha(';:]rof ttri1veseB trltai;ct(r)]::e; |is s tn erg\]/y-rct(i)rr;ser_\r/lhngr, :hrey ma:\r;ta::nWe will often refer to the argument of a correlation or transition
elr relative boftzma €Ights ove €. Therelore, a given gn0tion as thdag time, because it refers to some time period

trajectqry', asit passes through varipus macrostg'tes, can ,be USEH{e wait before characterizing the system, after having seen the
to obtain information about many different transition functions, system in some condition earlier.

and for many different timesr. For example, where each 2.4. Distributions of Lifetimes. We are interested in comput-

trajectory was at timé and at timet + z could be noted and g the observed lifetime distributions for various states.

used with equivalent weight in computing t@(r). Consider a “counting” function of, K{(x;7), that is unity only
Suppose we havé Boltzmann weighted starting states from  if microstatex is in statei at timest = 0, 7, 2z, ..., L — 1)z,

which trajectoriesi(t), m= 1, ...,M, have been computed for  and isnot in statei at timet = Lz. An expression for this

times fromt = 0 tot = Ty, From these we can estima@g(z) function would be as follows:

with the following:

T (r) =
Lo dt QO(x, (1)

M&T,
(25)

M
ﬁ Z QY% () QU(x,(0))

- (26)
_ ()
v n; Q0x(0))

kP xn) = QOx(0) Qx()) QU (x(20)) .. (27)

C) == Z — f "t QO(x,(t+17) QO(x() (22)

x QUL - 1) (1 - QL) (28)

This is an indicator function for microstates that are observed
to be in a particular macrostaitéor L consecutive observations
that are spaced by in time. Note that with this definition, if

In this expression, note that longer trajectories do not get greaterwe sum over all values df, we get the following:

weight in the sum. To do so would upset the desired Boltzmann
weighting. (The overbar notation will be used to represent time
averages over some trajectory, and the trajectory over which
the average is to be taken will be indicated by what is beneath
the overbar.) Generally, of course, trajectories are sampled at
discrete times and the time integral above is evaluated as a su
over these samples. Therefore, @) functions are actually
evaluated at multiples of this sampling period.

We have many ways to evaluaR¥). A particulary useful
one makes use of the desire to enforce the relationship in eq

M
=$”; Q%)) QU(x,(0)) (23)

LiKﬁ”(x; 7) =0 (29)

Mhecause if microstateis in macrostaté, it will eventually leave,
and one of theK! functions will evalute to unity, and if
microstatex is not in macrostaté, none of them will, so that
K® will evaluate to zero for every value df

Using KE), an expression can be made for the thermally

17.

PG)(T) = zCij (7)

~i “ _ = (TuT 0) 0
TMAT s dt [ZQ (X (t+7))1 QY (X,(1)
LR Tt QO ¢ 24
TMAT s (Xn(D)) (24)

(Note that this approximation fd?0) depends on.) With eqs
23 and 24 forC; andP0), eq 21 is used to compufi. When
used in this context, the approximation 8 in eq 24 results

accessible fraction of phase space in macrosttitat survives
for L consecutive observations at times= O,7, ..., L — 1)t
before leaving state This is given by the following:

KOpcn): Jdx(0) e "P20x(0)) KP(X(0);7)
L X7)L=

f dx(0) e—ﬁH(X(O))Q(i)(X(O))

Note that using this relationship and eq 29 it can be seen that

LZ‘[KE)(X;T)Q= 1 (31)
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The set of K"[ifor different values oL therefore provides ~ as follows:
a Boltzmann weighted and normalized distribution of lifetimes

for microstates originating in macrostateThe mean lifetime fdx(O) efﬁH(X(O))Q(i)(X(ZT)) QG)(x(r)) Q(")(x(O))
of microstates in macrostate which may also be called the Ci(0) =
mean lifetime of macrostateis given by : fdx g PHK)
(38)
LO = ZL[KE’Q (32)  so that
(=3

Cijk(T)z Cij()
C® T, (x)P¥

This lifetime is measured in units of the observation period. Ti(@) = (39)
We will not evaluateK{’[1directly but, rather,

Note that in the limitt — 0, Cix — ;0xP®, so that in this

_ f dx(0) e PO O(x(0):7) same limit, T approachesjjdj. At long timesCix — POPOP®),
KL (c7) = ~BH(X(0)) (33) s0 Tip > PV
fdx(O)e For Markovian behavior to emerge, we require that the

transition probability for the system to go from stat® i be
independent of the state it was in earlier. This is equivalent to
the requirement fof;(7) to be independent d&f. Clearly, this
] , , will not be the case for short times, because we know that for
D}(E)(X;T)Q= [B(ﬂ)(x;r) =Y (34) short enough times; has very different values Kis not equal
to j than if it is. However, for long enough times we might
N expect systems leaving stat® behave in a history-independent
whereP® is given by eq 12. ) waF;/. Thgrefore, we wgulc?like to find the time r<'31/1"[er WFf)ﬂCh the
To evaluate these ensemble averages, we use time average§,pensemble of states that are in sta timet = 0 and in
over a set of microcanonical trajectories that were started from statej at timet = 7 have the same probability of being in state

a Boltzmann weighted set of starting states. Suppose we havg at timet = 2z, irrespective ok.
M Boltzmann weighted starting states from which trajectories 5 g Biased Sampling by the Use of Selection Cells.what

and then derivéK"(J from it as follows:

Xm(t), m=1, ...,M, have been compqted fc()ig times frare= O follows we assume that a set of states have been generated that
to t = Ty From these we can estimaté’(x;7)Uwith the are Boltzmann distributed. This can be done by a number of
following:4° methods. For example, replica exchange Monte Carlo simula-

tions’848are often performed by this research gréfup produce
, 1M1, ‘ a set ofNg Boltzmann distributed states. We represent these
KO (x7) = — Z— S, "dt KP(x7) (35)  states with the notatiofixg;, i = 1, ..., Ng}, with the R to
M= T, emphasize that they are members of the set that may have been
M —_— produced by a prior replica exchange simulation.
— i Z KE)(Xm;T) (36) Canonical ensemble, or thermal, averages of any property,
M & A(X), may be approximated by simply averagifg) over this
set of Nr states:

An important aspect of this equation is that it produces lifetime

distributions that are parametrically dependent on a time interval, JdxeMOA)
7, which is related to the period between consecutive observa- A= ——=— Y AlXz) (40)
tions. We will see in an example that the qualitative nature of fdx g PHM) Ng = ’
the lifetime distribution can change with this time interval.
2.5. Higher Order Transition Matrices and Correlation However, some properties may be too expensive to evaluate

Functions. Later we will establish the degree to which transition over the entire set. This is certainly the case for properties that
probabilities arehistory independentThis property is a pre-  are functions of time, such as correlation functions, where the
requisite condition if the observed transition matrices are to be relevant ensemble average would need to be evaluated by
used as Markov transition matrices to infer long time behavior computing trajectories produced using thg Boltzmann-

of the system. weighted configurations as starting states. Furthermore, given
Consider the conditional probabilityf; , of observing the ~ that we may be averaging over a subset of the available
system in staté at timet = 27, given that it was in statpat configurations, we might also be interested in focusing the

time t = 7 and in statek at timet = 0, expressed by the sampling in phase space on regions of particular interest, and/
following: or where the probability density is somewhat low. A prime

example would be to focus sampling near regions that are
) ) suspected transition states to improve our characterization or
f dx(0) e PHOQ0x(27)) QV(x(7)) QW (x(0)) understanding of a kinetic process.
Tij(@) = AHO) () ® Therefore, in this section we describe a way to focus sampling
Jdx(©0) e Q¥(x(7)) Q™ (x(0)) in various multiple regions of interest by sampling uniformly
(37) from various subsets of thBir configurations, and then by
applying a weighting to regain the desired canonical ensemble
We can define corresponding three-time correlation functions average.
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First, defineselection cellsas such regions of interest that reweighting, Boltzmann averages can be obtained as follows:
can be characterized in terms of some functionxoffor
example, one may wish to identify a region of phase space as fdx g PHK A(X)[Zr(i)(x)/Zr(i)(x)]
those states that have simultaneously a particular range of values : :
for the radius of gyration, and some range of values for the [A(X)[=

distance between a particular dor@cceptor atom pair that is f dx e PH®

capable of hydrogen bonding. As a second example, consider A

the region of phase space with states that have exactly four Jdx e’ﬂH(X)(A(x)/N(x))ZF(')(X)
I

hydrogen bonds, defined with respect to some geometric criteria.
We will require that each point in phase space be assignable to

at least one selection cell. (One convenient way to achieve this de e he

is to define one selection cell that corresponds to all of phase o , A
space. Of course, other ways to achieve this are also possible.) Ns f dx e MIAMR)/NK)) TO(x) f dx e M9r0(y)
A final point about selection cells is that they do not have to = _

have any particular relationship to the macrostate definitions = Jdxe T Jdxe

described above. One key difference is that selection cells

describe regions of phase space that can overlap, whereas the _ o 0
macrostates described above cannot overlap; each phase space 4 [AX)/NCILPs
point must be assigned to one and only one macrostate but can =
lie in multiple selection cells. Ns ., NO
SupposeNs such selection cells have been characterized. = fZ[A(X(FL%j)/N(Xg%j)](Ng)/NR) (44)
Because selection cells are characterized on the basistere 1= N(S')1=

is an indicator function for each:
where [l represents an ensemble average over the region of

phase space consistent with selection delland Pg), the

r0(x) = { 1 if statexis consistent with selection cell probability of finding a state in selection céllis approximated
0 if not (41) by NO/Ng, the fraction of replica exchange states that are
consistent with selection ceill
This expression provides the desired weighting for averages
It will also be convenient to define a counting functidifx) of A over the (non-Boltzmann) set of states that were selected
that indicates how many selection cells a particular phase spacehrough the selection cell approach. The net effect is that each
point belongs to starting state simply has a weight associated with it. Properties
are computed for this starting state, or averaged over trajectories
N started from this starting state, and these properties are simply
_ o) summed up using these weights to produce properly Boltzmann-
N = ) T7(9) (42) weighted averages. Note that these formulas reduce to more

familiar ones in the limit where there is only one selection cell
(covering the entire phase space), or when the selection cells
N(x) = 1 for any statex. do not overlap.
. 2.7. Computing Correlation and Transition Functions and
Of the N available states\) are considered to be consis- | ifetime Distributions. We can apply the results in eq 44 of

tent with the definition of selection cei] where the previous section to the computation of the correlation and
transition functions. We do this by associating the funcix)
Ne with the indicator functionsQ®, and with their correlation,
i i 0] () i i
N(R.) _ ZF("(XRJ) (43) QO(x(z)) QU(x(0)). For the correlation functions, eq 23 becomes
= Ns N NO

1 R N 3o
G = 5 — 3~ () 2Y0(0)
Note that because the regions of phase space corresponding to =1 N =1 NNEE )
the various selection cells might be overlapping, and because ' (45)
every state is assignable to at least one selection statel,g)che

sum to a number greater than or equalip For the purposes of using it to compute the transition functions,

we approximatePl). After the proper weighting is applied, eq
The procedure continues bgndomlyselecting (with replace- 24 becomes
ment) for each selection cell some numberNY, of states ) 0
from among theN{’ available to the selection cell. Denote . Ns NS Ni S
0 i 0 Py =§ —§ —0:0 )  (46)
these stategxz), i = 1, ..,Ns j = 1, ..., Ng'}. Note that the 2. 0 0 Rm
resulting sets can have some duplicated states. We can denote =1 Ng' ™1 NeN(Xg )
by M, the total number of starting states selected (counting

duplicates). This is just the sum over &l§ selection cells of " ’ : .
NG) on r.)_ The transition functions are obtained as ratios of these
S functions through eq 21.
The resulting sample is no longer Boltzmann weighted, even  We can also use the results of the previous section to compute
though the underlying sample was. However, with proper the lifetime distributions for each state. First, the ensemble

(Recall that the time average Bf) in this expression depends
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Figure 1. Representation of the Markov transition matrix for the %0.6 L |
example problem described in the text. Only “off-diagonal” values of 8
the matrix are explicitly shown. The diagonal elements can be deduced &
from the fact that the sum of all transition probabilities out of any state §
is unity. The ninamicrostatef the nine-state system are indicated by § 0.4 E
numbers. Thremacrostatesindicated by letters, are formed by lumping &
groups of three microstates together, as shown.
. O . 0.2
average of the counting functldnﬂ) is approximated by the
following:
0 Ns N ND N 00, 50 100 150 200
[KL' (X;r)l]z Z_ Z—KL' (XR,m;T) (47) time (sample periods)
= Ng)m= NRN(Xg)m) Figure 2. Transition functions, showing the probability of being in

various states as a function of time given that the system was in state
5 of the nine-state system at time= 0 (solid lines), or given that it

To get the normalized lifetime distribution for macrostitihis was in state 2 of the lumped three-state system at time (dashed

expression is divided bP(®) as given in eq 46. lines). For the nine-state case, the rapidly decreasing function represents
the diagonal functionTss, and the two most rapidly rising functions
3. Example represent the probability of being in states 4 or 6. For the three-state

In thi fi ill stud imol le desi dt system, the decreasing function represents the diagonal furigiign
. n this section, we wi S udy 6,‘ S'mP € example e§|gne _O and the two more rapidly rising functions represent the probability of
illustrate a number of points raised in the Introduction. This peing in states A or C.

example will include an analysis as suggested in the previous
section. The example system consists of a set of states with 1.0 u T T T
dynamics controlled by an associated Markov transition matrix.
If a chain of states is generated by use of the matrix, the resulting
trajectory can be recognized as Markovian. Through the process
of lumping sets of states together, the Markovian nature of the
process is lost on short time scales, and this loss is recognized
from observations suggested in the preceding section. On longer |
time scales, however, the Markovian nature of the process is 2
regained. E05 )
Consider a system with nine “microstates” and a nine-by-
nine Markov transition matrix, as illustrated in Figure 1. The
probability of being in each of these states can be described by
a nine vector, and the discrete time evolution of this probability
density can be generated by repeated multiplication of the matrix
and the vector. We can also use the transition matrix to generate
trajectoriesof the Markov process in state space. Using different
random number seeds and starting states, one can easily generate%-0 ; 50 100 150 200
many such trajectories. In this example, we have generated 100 lag time (sample periods)
trajectories of 10 000 states. These trajectories can be subjectegtigyre 3. Eigenvalues as a function of time for a nine- (solid lines)
to the analysis presented in the previous section. For example,and a three-state (dashed lines) system. Each system has one eigenvalue
transition functions for lag times froin= 0 tot = 200 sampling of unity for all lag times. The eigenvalues of the nine-state system
periods can be computed from the trajectories, and one set isshow the expected exponential decay of a Markov process. Those of
shown in Figure 2. The curves in this figure show the probability Fhe three-state system negzd not, because they represent a process that
. . . . is not necessarily Markovian.
of observing the system to be in various states as a function of
time, given that it was in state 5 at timie= 0. For a nine-state The transition matrices can be diagonalized and their nine
system there are 81 such transition functions. By taking one eigenvalues can be plotted as a function of these lag times. The
element, corresponding to a particular time, from each function, result is shown in Figure 3. For a Markov process, we expect
one can construct a transition matrix that describes the evolutionthat the transition matrix corresponding to evolutionrbsteps
of the system over that period of time. Because we have to be just the transition matrix corresponding to one step raised
evaluated the functions at 201 times, we can construct 201 suchto the power ofh. The eigenvalues of these matrices should be
transition matrices. We can, in fact, index these matrices by similarly related, so if« is an eigenvalue corresponding to the
their lag times. (The matrix fot = O is the identity matrix.) matrix T(t=1), we expect there to be an eigenvalue with value
We expect that the matrix corresponding to an evolution by u" for the matrix corresponding t6(t = n). The figure shows
one time period to strongly resemble the one used to contructsuch expected exponential decay, characteristic of a Markov
the trajectory in the first place. They are not identical, of course, process. The eigenvalues describe the rates of decay of various
due to the fact that we based our estimates of the transitionrelaxation processes in the system. An eigenvalueassociated
functions on a finite number of finite length trajectories. with a matrix that corresponds to evolution by a lag tipfor
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1.5 T r T distributions. Example transition functions are shown in Figure
2. They represent much slower processes than observed for the
underlying nine-state system because they are describing
N transitions between more weakly couplegnifoldsof states.
1 The eigenvalue spectrum for the three-state system is shown in
_ Figure 3. Notice that for this example, the larger eigenvalues
- of the three-state system are similar to those of the nine-state
system. The times implied by the eigenvalues are shown in
Figure 4. For the three-state system, these functions are not
constant, a signature of non-Markovian behavior. However, as
the lag time increases, the two curves for the three-state system
appear to approach corresponding constant curves for the nine-
————————————————————————————— state system. That is, on sufficiently long (lag) time scales, we
see that the three-state system can appear to behave in a
Markovian manner. Furthermore, the slow processes and their
time scales in the nine-state system are being adequately
0 50 100 150 200 described on sufficiently long time scales in the analysis of the
lag time (sample periods) three-state system.
Figure 4. Time scales for relaxation processes implied by the Figure 5 shows lifetime distributions for two states of the
eigenvalues of transition matrices. The exponential decay constants forthree-state system. Shown on the plots are both the observed
the processes are related to the eigenvalueby v = —t/In u. Note (Boltzmann-weighted) lifetime distribution and, for comparison,
that for the nine-state system (solid lines), the functions are (_:onstantswhat would be expected if the distribution were that of a Markov
of the lag time. For the lumped three-state system (dashed lines), the . o -
functions are not constant of the lag time but approach them as the lagPr0Cess with the same mean lifetime. State A, consisting of states
time increases. 1-3 of the nine-state system, exhibits non-Markovian behavior
on short time scales, but as the time lag increases, we see that
example, corresponds to an exponential decay time given by 5 Markovian description could be adequate. State B, consisting
= —t/In u. These decay times, as a function of the lag times of of states 4-6 of the nine-state system, appears to behave in a
the matrices from which they came, are shown in Figure 4. Note \yay consistent with a Markov process on all the time scales
that they are constant functions for a Markov process. The shown.
largest eigenvalues determine rates of the slowest processes in Tne nine-state transition matrix used in this example was

the system. contrived to illustrate the transition from Markovian to non-
Not surprisingly, indications based on lifetime distributions  p5rkovian behavior upon lumping, and the transition from non-

(not shown) also suggest Markovian behavior for the nine-state \jarkovian to Markovian which appears again on sufficiently

system. The lifetime of each state is simply related to the value long time scales. The matrix was constructed so that stat8s 1

of a diagonal element of the transition matrix. Looking at the \,ake frequent transitions among themselves, each with a mean

lifetime distributions with different lag times shows Markovian ifetime of about 100 steps, similarly, for states@, each with

behavior. _ ) a mean lifetime of about 50 steps, and for state®7each
Consider now what happens if sets of three microstates aréyith 5 mean lifetime of about 20 steps. Transitions between

lumped together to form macrostates. Téemetrajectories the A, B, and C macrostates of the three-state system are

described above, produced using the full nine-state transition getermined largely by the small transition probabilitites between
matrix, were analyzed as if the system were actually a three- gates 3 and 4, and between states 6 and 7. These determine the

state system. That is, when any of microstates &re observed,  mych longer lifetimes of the three-state system. The approach
the system is assigned to macrostate A, etc. The correspondencg, nvarkovian behavior should occur on time scales that are

between (numbered) microstates and (lettered) macrostates igg|ated to both the relaxation times among the states within a
shown in Figure 1. This situation mimics the fact that the m5crostate and the transition times between macrostates. To
underlying process of classical dynamics is Markovian when gee correct long time scale behavior, we need to formulate
viewed in the context of infinitesimally small elements of phase macrostates that have internal equilibration time scales that are

space. However, in our analysis of peptide behavior, we are gjort compared to the lifetimes of the macrostates themselves.
interested in macrostate definitions that ignore all momenta and

a_II d_e_grees of freedom of_ the _solvent, and that encompass,  -onclusions and Discussion
significant volumes of configuration space, such as all regions
where the radius of gyration of the peptide is within some finite ~ We have presented a rigorous derivation of formulas for the
range of values. The macrostates we are ultimately interestedcomputation of transition probabilities from molecular dynamics
in for characterizing folding dynamics, therefore, represent a data. The formulation uses Boltzmann weighted conformations
significant amount of lumping. With lumping, we expect to as starting states for microcanonical simulations. It takes into
observe non-Markovian behavior in transitions from state A to account the need for enhanced sampling around parts of phase
B, for example, because the probability of making a transition space that might be involved in transition states through the
to state B really depends on whether the system is in the stateuse of a reweighting scheme thegstoresthe Boltzmann
1, 2, or 3 compartment of A. The resulting behavior of A should weighting. We feel that it is important to start trajectories from
be more complex than if a single transition probability described many starting states and that these starting states should be
its transitions to B. representative of some thermodynamically meaningful ensemble,
Having projected from nine down to three states, we now that is, they should be Boltzmann distributed, so that statistically
subject the trajectories to the same kind of analysis describedmeaningful and unbiased conclusions can be drawn about the
in the previous section. We generate correlation functions, number, nature, and relative importance of folding pathways.
macrostate probabilities, transition functions, and lifetime This is very difficult to do from studies that start from artificially
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Figure 5. Lifetime distributions for the lumped three-state system. On each plot the solid line represents observed lifetime distributions and the
dashed line represents the distribution that would be expected if the behavior were Markovian and had a mean lifetime that was equal to the
observed mean lifetime. Panels-& show data for state A of the three-state system using time lags of 10, 20, and 50 sampling periods, respectively.
Similar data for state B of the three-state system are shown in parefs(Bgain, with time lags of 10, 20, and 50).

prepared starting conformations, such as fully extended statesaddress issues related to the sensitivity of our results with respect
We also feel that from these Boltzmann distributed starting statesto the number and length of the dynamical simulations.
microcanonical and time reversible (NVE) molecular dynamics ~ Appropriately applied, this approach has the potential to
simulations should be performed because the thermal controlproperly elucidate the behavior of protein folding from multiple
mechanisms in use for canonical sampling interfere with the independent trajectories. This requires appropriate Boltzmann
dynamics of the system. It is possible that for some peptide weighted coverage of phase space as well as high quality energy
systems, if not the majority, the kinds of thermal control in conserving trajectories. We are looking forward to the applica-
common use will have minimal or no impact on protein folding tion of these techniques to a variety of peptide and small protein
kinetic studies. This remains to be seen. But there is no scientific systems.

reason to impose thermal control in studies that use energy |n a companion paper, we describe an application of this
conserving algorithms to generate dynamics. formalism to the folding of thg8-hairpin from protein G using

An important aspect of the formulation is that no prior a novel macrostate space definition that resolves not only the
assumption of Markovian behavior is assumed and so the degreenumber, but the pattern of native hydrogen bonds.
to which the observations are Markovian can be assessed in an
unbiased way. We also provide in this formulation for the  Acknowledgment. The authors wish to acknowledge the
possibility that observations may not be Markovian on short many and very helpful discussions with Bruce Berne (Columbia
time scales but may be on longer time scales. Furthermore, theUniversity), Hans Andersen, Persi Diaconis and Vijay Pande
formulation provides a way to compute correlation and transition (Stanford University), and Ken Dill and John Chodera (Uni-
functions in a way that satisfies many of the desireable versity of California at San Francisco).
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