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of one of the first HIV-1 protease inhibitors, ritonavir, in
chronic HIV patients (mean CD4 COUNT = 180), the
plasma level of HIV-1 RNA was observed to drop by
one to two orders of magnitude during the first 2 weeks
of therapy18–20. Although this, as well as earlier observa-
tions, indicated that the virus might be replicating
rapidly, modelling the effects of drug therapy was able to
quantify rates of virus production and loss, and indi-
cated two important points. First, HIV-1 is cleared from
chronically infected patients at a rapid rate, with the
half-life of the virus in plasma estimated in this case to
be 6 hours or less20. Second, to maintain a constant (or
steady-state) level of virus in the plasma before therapy
required that HIV-1 be produced at a rapid rate in these
patients, with, on average, at least 1010 virions being pro-
duced daily20. The experimental observations and quan-
titative estimates that followed strongly supported the
idea that HIV-1 was a rapidly reproducing virus and one
that could respond to therapy21,22. Furthermore, at the
predicted rate of rapid HIV-1 production, one could
mathematically show that during HIV-1 replication
every single possible point mutation of the viral genome
would be made hundreds or thousands of times each
day21,23. So, modelling indicated that the virus could
quickly become resistant to any single drug, particularly
those that required one mutation to generate resistance.

Viral dynamics 
The basic ideas that drove the analysis of HIV-infection
kinetics, and that led to the development of the field
called viral dynamics24, are simple. First, in patients

The immune system is a complex system that can
mount different types and intensities of responses,
learn from experience and exhibit memory. Regulation
in the immune system involves multiple cell types and
probably hundreds of soluble mediators and different
receptor–ligand interactions. Obtaining an integrated
view of the immune system will entail the development
of models that look at the immune system in various
ways — some qualitative, some quantitative1. Although
mathematical modelling has yielded some quantitative
results that have improved our understanding of
immunological phenomena2–17, it is still in its infancy.
Successes in areas such as human immunodeficiency
virus (HIV) dynamics, as well as the wealth of data
coming from high-throughput experimental tech-
niques, have provided a strong motivation for pursuing
a quantitative approach. This review will focus on mod-
els of HIV and T-lymphocyte dynamics, and include
more limited discussions of hepatitis C virus (HCV),
hepatitis B virus (HBV), cytomegalovirus (CMV) and
lymphocytic choriomeningitis virus (LCMV) dynamics
and interactions with the immune system, highlighting
the insights gained through modelling.

HIV — a success story for modelling
HIV, on average, takes about 10 years to advance from
initial infection to full-blown AIDS. If a patient with
chronic HIV infection is repeatedly sampled and the
viral load in plasma measured, the viral load generally
remains unchanged. This suggested that the rate of HIV
replication was very slow. During Phase I/II clinical trials
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During the past 6 years, there have been substantial advances in our understanding of human
immunodeficiency virus 1 and other viruses, such as hepatitis B virus and hepatitis C virus, that
cause chronic infection. The use of mathematical modelling to interpret experimental results has
made a significant contribution to this field. Mathematical modelling is also improving our
understanding of T-cell dynamics and the quantitative events that underlie the immune response
to pathogens.

CD4 COUNT

A normal CD4 count is 1,000
per µl, with a range of
600–1,400 per µl. The count
falls during primary infection,
then returns to near or lower
than normal levels. It then
slowly falls, taking many years
to reach the level of 200 per µl
that characterizes AIDS.



© 2001 Macmillan Magazines Ltd
NATURE REVIEWS | IMMUNOLOGY VOLUME 2 | JANUARY 2002 | 29

R E V I E W S

V

Various notations have been
used in modelling viral
infections. V, the concentration
of free virus, in the case of HIV,
is measured in units of HIV-1
RNA per ml. As there are two
RNAs per virion, the true
concentration of virions is half
the RNA concentration.

I

Productively infected cells have
here been denoted I. In the HIV
literature, as there are different
types of infected cells, T *, has
been used instead of I to denote
the population of productively
infected CD4+ T cells. In the case
of HCV and HBV, I denotes
infected hepatocytes.

NONLINEAR LEAST SQUARES

A procedure that estimates 
the parameters in a model by
minimizing the differences
between model predictions 
and data.

cell produces a total of N virions during its lifetime, the
average rate of virus production per cell, p = Nδ. In the
case of HIV infection, death might involve viral cyto-
pathic effects or immune-mediated cellular destruction.
Newly produced virus particles, V, can either infect new
cells or be cleared from the body at rate c per virion.
BOX 1 shows the equations26 corresponding to the model
in FIG. 1 and illustrates their use in analysing data obtained
from HIV-infected individuals on antiretroviral therapy
to obtain minimal estimates of the parameters c and δ.
From these estimates one can compute upper bounds for
the half-life of virions in plasma (t

1/2
= ln 2/c) and the

half-life of productively infected cells (t
1/2

= ln 2/δ).
Although models and data-fitting techniques allow

estimation of parameters characterizing viral infection,
models can be wrong, errors in analysis can occur, differ-
ent fitting methods can give different answers27, and mul-
tiple solutions (local optima) might confound NONLINEAR

LEAST SQUARES or maximum-likelihood fitting. Therefore, it
is important to independently confirm parameter esti-
mates. In the presence of a 100% effective protease
inhibitor, infectious virus production is inhibited, and
infectious virus should decay exponentially with slope c.
Measuring the rate of loss of viral infectivity was used by
Perelson et al.20 to confirm the estimate of c in one patient
with high-baseline viral load. In other patients, infectivity
decayed too rapidly to quantify.Another approach to esti-
mating c is to use plasma apheresis28. In this technique,
plasma with suspended virus is removed from a patient at
a known rate, and fluids are returned to the patient to
maintain blood volume. If the rate at which virus is
removed by apheresis is small compared with cV — the
rate of natural clearance — then apheresis will have little
impact on plasma viral load. Conversely, if the rate of
removal by apheresis is large compared with cV, the
plasma virus concentration will fall.A model of apheresis
was developed and data from apheresis experiments then
used to estimate c (REF. 28). This approach confirmed that
HIV was cleared rapidly; in four patients, the half-life 
of HIV varied between 28 min and 110 min, with a mean
of ~1 hour; whereas, c varied between 9.1 per day and 36
per day, with a mean of 23 per day (REF. 28).

Using the formula P = cV, and taking into account
each patient’s estimated plasma and extracellular fluid
volume based on body weight, the total rate of virus pro-
duction can be calculated. For HIV, estimates made in
1996 using a t

1/2
of 6 hours for virus (c = 3 per day), indi-

cated that a minimum of 1010 virions were produced
daily20. That estimate might need to be revised upward
by a factor of 8 or so given the apheresis-based estimate
of c. On the basis of the rapid replication of HIV-1, its
mutation rate (3.4 × 10–5 per base per replication cycle29)
and its genome size (~104 bases), one can compute that,
on average, mutations will occur in every position in the
genome multiple times each day and that a sizeable
fraction of all possible double mutations will also
occur each day23. Although treating cancer and some
infectious diseases with multiple drugs is common-
place, the realization that HIV replicates and mutates
rapidly provided a reason for treating HIV-infected
patients with three or more drugs.

with chronic viral disease, the level of virus frequently
reaches a constant or set-point level25, and then remains
at approximately that level for years. To maintain this
constant level the body must be producing and clearing
virus at the same rate. If this were not the case, and, for
example, more virus was produced each day than was
cleared, then the amount of virus would slowly increase.
Mathematically, if P is the total rate of virus production
and c is the clearance rate per virion, then to maintain a
viral set point, P must equal cV, where V is the viral load
at the set point. If P > cV, then the viral load will
increase; whereas, if P < cV, the viral load will decrease.
At the set point P = cV, therefore, simply measuring the
amount of virus at the set point, V, does not tell one
whether the virus is produced slowly or rapidly. Second,
the way to gain information on rates of viral production
and clearance is to perturb the system. For example, if
production is fully blocked, then the viral load will fall
and the rate at which it falls is the clearance rate. If pro-
duction is not fully blocked, then the rate of viral-load
decline will depend not only on the virion-clearance
rate, but also on the rate of death of virus-producing
cells and the efficacy of the drug being used to block
viral production. Last, fitting the kinetics of viral decay
to mathematical models can elucidate the kinetic para-
meters governing viral infection, cell death and, in some
cases, the efficacy of antiviral therapy.

Basic model of virus infection 
A model that has been used to study HIV, HCV and
HBV infection is shown in FIG. 1. The model considers
a set of cells susceptible to infection, that is, target
cells, T, which, through interactions with virus, V,
become infected. Infected cells, I, are each assumed to
produce new virus particles at a constant average rate
p and to die at rate δ per cell. The average lifespan of a
productively infected cell is 1/ δ, and so if an infected

Infected cell Target cell

Death Clearance

p

k

δ c

V

Infection rate

Virions per day

Virus

I T

Figure 1 | Basic model of viral infection. Cells susceptible to infection, that is, target cells (T),
are infected by virus (V) with rate constant k. Although not shown, target cells are assumed to be
produced from a source at rate λ and to die at rate d per cell. Infection produces productively
infected cells (I), which produce new virions at rate p, and die at rate δ per cell. Free virions are
cleared at rate c per virion. This model and minor variants have been used to study the dynamics
of human immunodeficiency virus, hepatitis C virus, hepatitis B virus and cytomegalovirus
infections in vivo.
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Box 1 | Modelling HIV dynamics

The equations that describe the basic model of viral dynamics shown in FIG. 1 are:

dT/dt = λ – dT – kVT (1)

dI/dt = kVT –δI
(2)

dV/dt = pI – cV
(3)

If one assumes that initially a person is uninfected and then introduces a small amount of virus, the solution of
equations 1–3 mimics the kinetics of primary human immunodeficiency virus (HIV) infection66. To analyse the effects
of giving an antiretroviral drug, equations 1–3 are modified. Reverse transcriptase (RT) inhibitors block the ability of
HIV to successfully infect a cell. Protease inhibitors (PI) cause the production of non-infectious viral particles, V

NI
.

So, in the presence of these drugs, the model equations become:

dT/dt = λ – dT – (1 – ε
RT

)kV
I
T (4)

dI/dt = (1 – ε
RT

)kV
I
T – δI (5)

dV
I
/dt = (1 – ε

PI
)pI – cV

I 
(6)

dV
NI

/dt = ε
PI 

pI – cV
NI

(7)

where ε
RT

and ε
PI

are the efficacies of RT and PI (ε = 1 being a perfect drug), V
I
and V

NI
are the concentration of

‘infectious’ and ‘non-infectious’ virus, respectively, V = V
I
+ V

NI
is the total amount of virus.

Ιf a 100% effective PI is given to an individual at steady state with viral load, V
0
, and one assumes that over the time

period of interest T remains constant, the viral load decay will obey the equation20:

(8)

Using nonlinear least-squares regression this equation was fitted to patient data and used to estimate the
parameters c and δ. The left graph shows data obtained from an HIV-infected patient who initiated antiretroviral
therapy at time 0. The solid line is the best-fit theoretical curve from which the parameters c and δ were estimated.
(Reproduced with permission from REF. 20 © (1996) American Association for the Advancement of Science.)
To explain the results of longer-term combination therapy, more complex models were needed that postulated the
existence of a second source of virus, such as long-lived infected cells36. The right graph shows data obtained from an
HIV-infected patient who initiated combination antiretroviral therapy at time 0. The solid line is the best-fit
theoretical curve from which model parameters and half-lives were estimated. (Reproduced with permission from
REF. 36 © (1997) Macmillan Magazines Ltd.)
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with more potent therapy26,30–32. This principle has been
used to compare the efficacies of different drug doses33,34

and different drug regimes35. To interpret the two-phase
decline a new model was introduced36, which postulated
that the second phase was due to sources of HIV-1 not
included in the basic model. Candidates were a
longer-lived population of productively infected cells,

In clinical studies, when three or more drugs are
given to HIV-infected patients, plasma virus decays with
an initial rapid exponential decline of nearly 2 logs (first
phase), followed by a slower exponential decline (sec-
ond phase) that leads to the virus falling below levels of
detection. The slope of the decline depends on the effi-
cacy of the therapy, with faster declines corresponding
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apheresis28 agree with estimates made in IFN-α-treated
patients51. Analysing data from clinical trials has shown
that the reduction in viral production is related to the
dose of IFN-α, with 5 MU (million units) given daily
yielding a reduction of ~80% in HCV GENOTYPE 1-infected
patients, whereas 10 MU given daily yields a reduction of
~95% for HCV genotype 1 and over 99% for HCV
genotype 2 (REFS 51,54). An analysis of the kinetics of viral
decline showed that at pretreatment, steady-state virus
was being produced more rapidly than HIV, with ~1012

virions/day being generated and cleared, and with free
virions having a half-life of 3 hours51.

HBV. HBV infection has also been modelled using the
‘basic model’55–57, and a model58 including cytokine-
mediated ‘cure’ of infected cells59. These models indi-
cate that HBV, similar to HIV and HCV, is produced
and cleared during chronic infection at a rapid rate,
with 1011–1012 virions produced and cleared from
plasma per day55,56. At the peak of primary HBV infec-
tion, 1013 virions per day are produced60. HBV and
HCV therapy also yields a two-phase decline in
viraemia, with the first phase attributed to virion
clearance and the second phase to loss of virus-
producing cells by immune-mediated killing51,55,56 or
cytokine-mediated ‘cure’ of infected cells59.

CMV. The basic model has also been applied to CMV,
which has generally been regarded as a slowly repli-
cating virus61. Modelling and fitting data from drug-
perturbation experiments showed that CMV, similar to
HIV, replicates rapidly in its human host with a doubling
time of ~1 day61, and that the efficacy of ganciclovir, the
foremost agent used to treat CMV in the immunocom-
promised host, is 91.5% when given intravenously, but
only 46.5% when given orally62. These results have signif-
icance for the treatment of CMV and help to explain the
appearance of drug-resistant CMV in patients given oral
ganciclovir for extended periods62.

Modelling antiviral immune responses
The basic model and a variant containing latently
infected cells63 have been used to model the abrupt rise,
peak, subsequent fall, and the establishment of the set-
point viral load that characterizes acute HIV infection.
It is remarkable that these models do not include an
explicit immune response and yet can account for the
viral kinetics seen early in infection. To be more specific,
in the basic model the rate of infected cell death, δ, and
the rate of virion clearance, c, are constants. So, if an
immune response had a role in these processes its con-
tribution would need to be small or constant. For exam-
ple, the rate of death δ can be modelled as having two
components, one due to viral cytopathic effects (δ

0
) and

one due to a cell-mediated immune response64; for
example, δ = δ

0
+ δ

x
X, where X denotes cytotoxic T lym-

phocytes (CTLs) and δ
x

the contribution to the rate of
infected cell death per CTL. If the total rate of death δ is
approximately constant, then either δ

x
X is small com-

pared with δ
0

or constant. In chronic infection it is easy
to predict that the immune response is constant, but

activation of latently infected cells and release into the
blood of virions trapped in tissue reservoirs — for
example, on FOLLICULAR DENDRITIC CELLS (FDCs). Models of
all three processes fit experimental data on the rate 
of plasma virus decline equally well36, and therefore the
cause of the second phase could not be discerned by
modelling alone.Additional data, quantifying the density
of productively infected plus latently infected cells that
could be activated into productive infection were then
collected from HIV-infected patients. Simultaneously,
fitting viral load and infected cell declines indicated that
activation of latently infected cells was unlikely to be an
important source of second-phase virus, and that long-
lived cells were projected to decay after 2–3 years of
100% effective therapy. Some incorrectly interpreted the
predicted decay of long-lived cells to mean that HIV-1
could be eradicated from a patient in 2–3 years. This
‘eradication hypothesis’, as it was called, turned out not
to be true. It was shown that replication-competent
virus could be isolated from infected patients despite
prolonged plasma virus suppression during 3–4 years
of antiretroviral treatment37. Resting CD4+ memory 
T cells were identified as a long-lived latent reservoir38,
and their mean half-life was estimated in different stud-
ies as being as short as 6 months39 or as long as 43.9
months40–42. In either event, latently infected cells were
decaying extremely slowly, and so possibly comprised a
third phase of viral decay. Because current therapy does
not seem to be 100% effective39,43–45, replenishment of
this reservoir could be due to low-level ongoing replica-
tion46. Mathematical models of the release of HIV-1
virions attached to FDCs, assuming virions do not
degrade, indicated that a small fraction of virions could
remain attached for over a decade47 and that their rate
of release was compatible with two-phase decay of
plasma virus48,49. Experiments in mice showed that
HIV-1 attached to FDCs could remain infectious for 
9 months50, raising the possibility that retention of viri-
ons on FDCs, as the well as the slow decay of latently
infected cells, could hinder the eradication of HIV and
drive the need for life-long therapy.

Modelling other viruses
The ‘basic’ model (FIG. 1) used to study HIV viral
dynamics has been applied to understand the kinetics
of HCV, HBV and CMV — other viruses that can cause
chronic infection.

HCV. Treatment of HCV with high daily doses of
INTERFERON-α (IFN-α), can cause the viral load to
decrease by two orders of magnitude in the first day of
treatment51–54. A similar decline in HIV levels takes 
1–2 weeks using potent combination therapy — why
the difference? Modelling has provided a testable
hypothesis: IFN-α, by a direct antiviral effect, causes
infected cells to rapidly reduce their rate of viral pro-
duction51. As indicated by the basic model (FIG. 1), if
IFN-α reduces production, then viral clearance can
rapidly reduce the amount of HCV in serum. If IFN-α
increased c, then a similar rapid decrease in HCV would
occur; however, estimates of c in untreated patients by

FOLLICULAR DENDRITIC CELLS

(FDCs). Specialized non-
haematopoietic stromal cells
that reside in lymphoid follicles
and germinal centres. These cells
have long dendrites and carry
intact antigen on their surface
for long periods of time.

INTERFERON-α

(IFN-α). A cytokine secreted by
many cell types in an early
response to viral infection.
IFN-α has pleiotropic antiviral
effects, including inhibition of
protein synthesis and DNA
replication, enhanced antigen
presentation and natural killer-
cell activation.

HCV GENOTYPE

The nucleotide sequence of
HCV is highly variable, with the
most divergent isolates sharing
only 60% nucleotide sequence
homology. On the basis of
sequence similarity, isolates have
been grouped into six main
types, called genotypes.
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on measurements of viral load one needs to characterize
the humoral, CTL and non-cytolytic CD8+ T-cell and
cytokine (for example, IFN-α) responses to viral infec-
tion. Even with the advent of MHC TETRAMER technology74

and intracellular cytokine staining, quantitative kinetic
data is limited. Furthermore, a better quantitative
understanding of the role of CD4+ T-cell help in gener-
ating and maintaining humoral and CD8+ T-cell
responses is needed. Models by Nowak, Wodarz and
colleagues75–77 are a start in this direction, but so far
they have not been explicitly matched against experi-
mental data. Substantive collaborations between mod-
ellers and experimental groups are needed to further
this endeavour.

Establishing the viral set point. An interesting theoreti-
cal, as well as practical, question is what controls the
viral set point in HIV infection? High viral set points
are associated with rapid progression to AIDS, whereas
low set points are associated with slow progression25,78.
In the Stafford et al.66 analysis, patients with different
set points had various small differences in essentially all
of the parameters of the basic model. A more elaborate
analysis79 supports this idea that not one but many
parameters control the set point. Despite this, an
important set of experiments80,81 in which CD8+ T cells
were transiently depleted by monoclonal anti-CD8
antibody treatment in simian immunodeficiency virus
(SIV)-infected rhesus macaques, showed a 10–104-fold
rise in plasma SIV as CD8+ T cells were lost, and a re-
establishment of the set point when the CD8+ T cells
recovered. These experiments strongly indicate that
CD8+ T cells have a role in determining the viral set
point. But is this through direct action, such as a CTL
response, or by more indirect means? Apart from
directly killing virally infected cells, CD8+ T cells pro-
duce β-chemokines that block the entry of certain viri-
ons into target cells82 and inhibitory factors that sup-
press viral transcription83 and, hence, efficient
production of virions. Using the basic model, we asked
whether the marked rise in plasma SIV could be mim-
icked solely by reducing δ81. (If δ = δ

0
+ δ

x
X and X =

CTL, then reducing CTL is equivalent to reducing δ.)
The model predicted a tenfold rise in plasma viraemia
over the course of a week, but could not account for
the increases of up to 3 or 4 orders of magnitude seen
in some macaques. The basic model assumes that viri-
ons are made at a constant rate, p. So, increasing the
lifespan of a cell twofold will increase the amount of
produced virus twofold, which, in turn, causes some
additional cell infections. However, an open question is
whether the assumption of constant p is valid. Some
models have assumed that there is a delay between the
time of infection and the start of virus production84–88,
so that p is initially zero and then jumps to a constant
value. Another approach is to assume that after an ini-
tial period of no virus production, p increases with
time since infection, ultimately reaching saturation.
Models that incorporate this assumption are under
development (P. W. Nelson, M. A. Gilchrist and A.S.P,
unpublished observations).

during primary infection an HIV-specific CTL response
is generated and correlates temporally with the decline
in viraemia65. Therefore, the fact that models with con-
stant δ can account for the kinetics of acute HIV infec-
tion is surprising. In the basic model, the decline in virus
from its peak is due to target-cell limitation — that is,
running out of cells to infect63.

Stafford et al.66 fit viral-load data from ten primary
infection patients and showed that the basic model fit
the data well for the first 100 days of infection. However,
in some patients, the decline in virus after the peak was
more profound than the basic target-cell-limited model
could explain. Surprisingly, even when the viral load
fell 1–2 orders of magnitude more than predicted by
the target-cell-limited model it still obtained a set
point consistent with the prediction of the basic
model. This suggests that by the time viral loads reach
peak values, or slightly after, the immune response
might have a role in decreasing viral loads, but that the
response is transient, possibly owing to the loss of
HIV-specific helper T cells and dysfunction of effector
CD8+ T cells67,68. At the moment, these are speculations
driven by modelling and limited data, but they present
a path for future experiment.

Responses to acute infection. For some acutely-infecting
viruses, such as LCMV, a CTL response is necessary to
clear the infection69,70. Mathematical models have been
used to describe the kinetics of the CTL response to
LCMV71,72 and suggest the tenfold difference in the mag-
nitude of the response to dominant versus subdominant
CTL epitopes might be due to a difference in the epitope
concentration needed for half-maximal T-cell stimula-
tion71. Models of the kinetics of other acute infections,
such as HCV and influenza, are being developed (see
REF. 73 and P. Baccam, C. Macken and A.S.P., unpub-
lished observations). Although it has not yet been
accomplished, it will be intriguing if one can discern
from these modelling efforts the kinetic and immuno-
logical factors that differ between viral infections that
are cleared and those that become persistent.

Developing models of the antiviral immune
response is a substantial challenge. Rather than relying

MHC TETRAMERS

Reagents composed of four
MHC–peptide complexes linked
by biotinylation, which can be
fluorescently labelled and used
to track antigen-specific T cells
by flow cytometry.
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Figure 2 | Models of T-cell dynamics. a | Basic model in which T cells are supplied by a source,
s, proliferate at rate p and die at rate d per cell. b | A more realistic model in which T cells can
either be resting (R) or activated (A). Resting cells are derived from a source at rate σ, can possibly
proliferate very slowly at rate π, die at rate dR, and become activated at rate a. Activated cells
proliferate at rate p, die at rate d, and return to rest at rate r. These models have been used to
model T-cell dynamics and to interpret labelling experiments (REFS 26,92,93 and R. J. De Boer, 
H. Mohri, D. D. Ho and A.S.P., unpublished observations).



© 2001 Macmillan Magazines Ltd
NATURE REVIEWS | IMMUNOLOGY VOLUME 2 | JANUARY 2002 | 33

R E V I E W S

depletion81. However, one complication not yet consid-
ered is that increasing virion production might increase
viral cytopathicity. Models are an ideal vehicle for exam-
ining the quantitative consequences of these competing
effects.A lesson from this analysis is that the basic model
with constant parameters should only be taken as a start-
ing point and that, as additional quantitative experiments
probe the mechanisms of immune system interaction
with viruses, elaborations will be needed.

A related mechanism assumes that activated CD8+

T cells produce a factor that normally limits viral pro-
duction89. Then, loss of this factor would increase p. For
example, one might assume p = p

0
/(1+aX), where X is

CD8+ T cells, a is a constant proportional to the amount
of antiviral factor made per CD8+ T cell and p

0
is the

rate of virion production in the absence of factor. Using
this form of p, changes of a factor of ten in the plasma
virus level can be obtained within 1 day of CD8+ T-cell

Box 2 | Interpreting labelling experiments

Models are needed to interpret bromodeoxyuridine (BrdU)- and deuterated glucose (2H-glucose)-labelling experiments.
The simplest model for T-cell population dynamics is shown in FIG. 2a. If T denotes the population of cells, the equation
describing the model is

dT/dt = s + (p – d)T (9)

When BrdU is present, each unlabelled cell, U, on division is replaced by two labelled cells, L. If both labelled and
unlabelled cells die at the same rate, d, then one has:

dU/dt = s
U

– pU – dU (10)

dL/dt = s
L

+ 2pU + (p – d)L (11)

where s
U

and s
L

are sources of unlabelled and labelled cells, respectively. If the total number of cells is unchanging 
and cells are initially unlabelled, with U

0
being the initial number of cells, then the solution of equation (10) can be

written as92

f
L

= 1 – U(t)/U
0

= C (1 – e – (p+d)t) (12)

where f
L

is the fraction of labelled cells, C is a constant given by C = 1 – s
U
/[U

0
(p + d)], and s

U
/U

0
is the fraction of the

total cell population provided by the unlabelled source per unit time. A similar analysis provides the equation describing
the decline in f

L
after BrdU is withdrawn92. An analysis using the model in FIG. 2b yields similar results95.

Modelling 2H-glucose labelling is similar, except one now measures the fraction of labelled DNA in a population of
cells. So, the appropriate model follows unlabelled, U, and labelled, L, DNA strands. When a cell divides in the presence
of 2H-glucose, the newly synthesized DNA is labelled, but the template DNA remains unchanged. Therefore, on division,
U → U + L, L → L + L. Hence the appropriate model equations for the changes in unlabelled and labelled DNA in the
presence of 2H-glucose are:

dU/dt = s
U

– dU
(13)

dL/dt = s
L

+ pU +(p – d)L
(14)

from which one can deduce93

f
L

= 1 – U(t)/U
0

= C (1 – e–dt),
(15)

where C = 1 – s
U
/(U

0
d). The equation describing the decay of

labelled DNA after 2H-glucose is withdrawn, which can be
derived analogously, is93

(16)

where t
e
is the time 2H-glucose labelling ends and s

L
′ is the source rate of labelled DNA after labelling ends. Analyses

based on the model in FIG. 2b give more complex relations, but provide an interpretation for the various source terms101.
The figure shows the best-fit theoretical curve (solid line) and experimental data from an 2H-glucose labelling
experiment in which 2H-glucose was administered for the first 7 days and then was withdrawn. (Reproduced with
permission from REF. 93 © (2001) Rockefeller University Press.)
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its interpretation in the case of BrdU labelling raised
some concerns — due to possible label dilution97 and
heterogeneity in populations98, which can be resolved
by estimating the average turnover of all populations
(R. J. De Boer, H. Mohri, D. D. Ho and A. S. P., unpub-
lished observations) — the results with 2H-glucose
labelling are clear cut. Mean proliferation and death
rates of CD4+ T cells are elevated threefold or more
with HIV-infection, but subsequently reduce to nearly
normal levels after 1 year of antiretroviral therapy93.
These quantitative results strongly indicate that the
CD4+ lymphocyte depletion observed in AIDS is pri-
marily a consequence of increased cellular destruction,
and not decreased production.

Concluding remarks
Models provide a rigorous means of thinking about and
describing the immune system and its interactions with
viruses and other pathogens. As shown here, models can
take the form of a picture (for example, FIG. 1) that
depicts various processes. A mathematical model goes
further and codifies the picture in terms of equations
(for example, BOX 1), which can be used to make predic-
tions (for example, if a drug is given viral load will fall
according to equation (8) in BOX 1). Testing such a pre-
diction, however, depends on obtaining data and using
that data to estimate parameters. Models can also be
used to test hypotheses. In the case of the model of
HCV infection, one could use the model to predict what
would occur if IFN-α acted by blocking de novo infec-
tion, viral replication or if it affected virion clearance.
In combination with data, one could then evaluate the
various hypotheses. Models also provide a means of cal-
culating things. An example was calculating the likeli-
hood of HIV developing a drug-resistant mutation,
given a certain replication rate and mutation rate.

Success in describing HIV and T-cell dynamics has
been due, in part, to the availability of reliable highly
quantitative data. The willingness of experimental labs
to expend considerable resources to produce quantita-
tive rather than qualitative data is partly the result of the
early successes of modelling in HIV research. At first
glance, it is somewhat surprising that the merging of
quantitative theory and experiment came about in the
context of clinical rather than basic research in
immunology. However, the need to make progress, the
resources and prescient collaborators were available.
Other areas of immunology involve complicated phe-
nomena that can benefit from quantitative analysis.
However, labs need to choose between going after the
next molecule or doing quantitative experiments and
modelling that hopefully will integrate immunological
knowledge into a larger conceptual picture. Although it
might be easy to understand how one or a few mole-
cules influence an immune response, understanding the
simultaneous effects of tens or hundreds of molecules
requires a quantitative description. Theory, which is
distinct from modelling, need not be mathematical, as
evidenced by clonal selection, and drives much experi-
mentation. To some extent all immunologists act as
theorists when designing and interpreting experiments.

Modelling lymphocyte dynamics
Modelling the changes in the populations of T cells dur-
ing immune responses and during HIV infection has
provided quantitative information about lymphocyte
dynamics, and has helped to elucidate the mechanisms
underlying T-cell depletion in HIV-infected patients
and the potential for T-cell recovery with potent anti-
retroviral therapy. T cells are produced in the thymus,
they proliferate in the blood and lymphoid tissues and
then die (FIG. 2). In the case of HIV infection, cell death is
enhanced, but depletion will only occur if the supply of
new cells cannot keep pace with the rate of depletion.
To fully understand this issue, quantitative measure-
ments of lymphocyte dynamics and models are needed

One method of obtaining information about cell
kinetics is to label cells with agents such as bromo-
deoxyuridine (BrdU) or deuterated glucose (2H-
glucose)90,91, which are incorporated into the newly syn-
thesized DNA of dividing cells. Using pulse-chase
experiments, the kinetics of the acquisition and loss of
labelled cells can be followed92–94. Interestingly, a mathe-
matical model is crucial for extracting quantitative infor-
mation from labelling experiments. For example, one
might mistakenly interpret the rate at which a popula-
tion of cells acquires BrdU as the rate of cell prolifera-
tion, p, and the rate of loss of BrdU-labelled cells after
BrdU is withdrawn as the rate of cell death, d. Flow
cytometry is used to measure f

L
, the fraction of BrdU-

labelled cells in a population. Modelling shows that the
rate at which f

L
increases is indicative of the sum of the

proliferation and death rates, whereas the rate of decay
during the BrdU-free chase reflects the death rate minus
the proliferation rate95. The reason for this can be seen by
considering unlabelled cells, which decrease by death or
by proliferating and acquiring label. As the fraction of
labelled cells f

L 
is one minus the fraction of unlabelled

cells, f
L

increases at a rate proportional to d + p (BOX 2).
The interpretation of 2H-glucose-labelling experiments
is different because the fraction of labelled DNA from a
population of cells is measured rather than the fraction
of labelled cells; however, models (BOX 2) are still needed
to extract parameters from experimental data93.

With models and labelling experiments at hand,
what have we learned? First, in HIV-infection CD4+

T-lymphocyte depletion can be due to increased cellular
destruction, decreased production, or both. In terms of
the simple model in BOX 2, the rate of death, d, can
increase and/or the rate of production from source, s, or
proliferation, p, can decrease.

For a population that is not changing rapidly — that
is, in quasi-steady state — the rate of loss from death
must match the production from source and prolifera-
tion; therefore, the rate of death can be used as a measure
of the turnover of the population. Ho et al.18 suggested
that HIV is a high-turnover disease, in which the regener-
ative capacity of T cells at some point fails to keep up with
HIV-induced death. Others have suggested that HIV is
characterized by a failure in T-cell production96. Using the
model in BOX 2, the parameters p, d and s for uninfected
controls, SIV-infected macaques92 and HIV-infected
patients have been estimated93.Although the model and
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Access to this interactive links box is free online.




