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Using massively parallel simulation and Markovian models to study protein
folding: Examining the dynamics of the villin headpiece
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We report on the use of large-scale distributed computing simulation and novel analysis techniques
for examining the dynamics of a small protein. Matters addressed include folding rate, very long
time scale kinetics, ensemble properties, and interaction with water. The target system for the study,
the villin headpiece, has been of great interest to experimentalists and theorists both. Sampling
totaled nearly 500 �s—the most extensive published to date for a system of villin’s size in explicit
solvent with all atom detail—and was in the form of tens of thousands of independent molecular
dynamics trajectories, each several tens of nanoseconds in length. We report on kinetics sensitivity
analyses that, using a set of short simulations, probed the role of water in villin’s folding and
sensitivity to the simulation’s electrostatics treatment. By constructing Markovian state models
�MSMs� from the collected data, we were able to propagate dynamics to times far beyond those
directly simulated and to rapidly compute mean first passage times, long time kinetics �tens of
microseconds�, and evolution of ensemble property distributions over long times, otherwise
currently impossible. We also tested our MSM by using it to predict the structure of villin
de novo. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186317�
I. INTRODUCTION

Duan and Kollman’s 1998 1 �s simulation of the villin
headpiece heralded the potential of all-atom molecular dy-
namics to provide a high-resolution trajectory of a small
protein.1 Even today, with seven intervening years of
Moore’s law, such explicit solvent simulations remain a ma-
jor challenge due to the required computational power.2 Four
years after the Kollman simulation, massively parallel simu-
lations of villin were conducted using implicit solvent and
yielded folding trajectories and an accurate prediction of the
folding rate.3 In the current work, we have utilized a distrib-
uted computing paradigm to realize tens of thousands of tra-
jectories of villin in explicit solvent, totaling to a sampling of
nearly 500 �s. This brings together the detailed model of
Kollman’s simulation with the statistical strength previously
obtained only with implicit solvent.

One can use an ensemble of simulations to probe kinetic
properties without directly simulating long folding pathways.
For example, the calculation of the Pfold value of a confor-
mation pools information from multiple, short simulations to
yield the probability of that conformation folding before un-
folding. In addition to testing putative transition state struc-
tures, Pfold analysis can provide an ordering of conformations
along the folding pathway.4 Each trajectory in a Pfold calcu-
lation can be relatively short, but many independent trajec-
tories are needed. The analysis is thus naturally suited to
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distributed computing. Here, we demonstrate the use of simi-
lar, but more general, probabilities to probe the sensitivity of
a system’s kinetics to given perturbations.

While an ensemble of trajectories is vital for reliable
statistics and for techniques such as Pfold analysis, it is also
desirable to have predictions of dynamics occurring on the
full folding time scale, rather than on the tens of nanosecond
time scale that can typically be directly simulated with a
detailed, explicit solvent model. This is not a challenge that
can be addressed solely through running trajectories to or-
ders of magnitude greater length unless we are able and will-
ing to wait correspondingly longer times �or wait for inno-
vation that makes computers significantly faster�. As a single
10 �s trajectory of villin in explicit water would take years
to achieve today, alternative approaches are clearly needed.

Recently, Markovian state models �MSMs� have been
built for small peptides.5–7 MSMs are defined by the transi-
tion probabilities between multiple states rather than just the
two used in Pfold values. They hold the promise of being able
to describe the transitioning of a system between states de-
fined by conformational clusters,8 with only a simple matrix
multiplication operation required to propagate the system by
a time step. A MSM approach could thus offer a solution to
the conundrum of how to describe long time scale phenom-
ena with simulation without waiting for the completion of
very long trajectories.9 Indeed, MSMs can be built from a set
of relatively short trajectories and are therefore ideally suited
to a cluster, grid, or distributed computing paradigm. While
having a large number of trajectories yields benefits in and of
itself �such as the ability to directly simulate folding and

calculate rates�, constructing MSMs lets one pool the infor-
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mation of multiple independent trajectories together in a
probabilistically more descriptive picture of the dynamics.
With grid computing becoming more and more popular in
both academia and industry, we expect that this will be a
powerful technique and we demonstrate here several possible
applications.

The system used in this study, the 36-residue, alpha-
helical villin headpiece, is considered a model system for
both experiment and computation and has yielded significant
results over the past several years.1,3,10–12 It thus gives us a
basis for validation of our simulations and is a natural system
on which to demonstrate the applications of MSM method-
ology.

The main goals achieved in this work are as follows.
First, we report on directly simulating folding trajectories of
villin in explicit solvent starting from an unfolded conforma-
tion, a milestone in simulation. Second, we demonstrate a
method of quantitatively assessing the sensitivity of dynam-
ics to given system perturbations. Finally, we use the col-
lected data to demonstrate the application of a MSM to a
protein, presenting novel analyses reaching time scales not
previously accessible and predicting quantities never before
examined by atomistic simulation. Applications illustrated
include computation of mean first passage times, evolution
of property distributions over long time, and structure pre-
diction. The techniques presented use villin for illustration
but should be generally applicable to a broad range of prob-
lems involving long time scale dynamics.

II. METHODS

A. Molecular dynamics methods

We generated tens of thousands of independent trajecto-
ries for the 36-residue villin headpiece with molecular dy-
namics. The bulk of the simulations was performed on a
subset of the nearly 200 000 processors around the world
participating in our ongoing Folding@Home distributed
computing project.13 We adapted the GROMACS 3.1.4 molecu-
lar dynamics package to our distributed infrastructure.4,14

Single precision computation was utilized, as was the case
with previously published works with GROMACS and villin
specifically,14,15 and as with previous works with GROMACS

more generally �free energy computation and protein folding
kinetics�.4,16

We largely followed the setup of Duan and Kollman as
regards the temperature and pressure control algorithms, wa-
ter model, box type, and time step.1 As in that work, the
villin sequence used was MLSDEDFKAVFGMTRSAFAN-
LPLWKQQNLKKEKGLF protein data bank �PDB code
1VII�, with N-acetyl and C-amino caps. The protein was sol-
vated for all simulations in 5600–6000 explicit TIP3P water
molecules in a truncated octahedron box, with periodic
boundary conditions.17 The minimum distance between a
protein atom and the nearest image atom was 1 nm. Three
sodium and five chloride ions were included to counter the
protein’s charge ��30 and 50 mM�.

Simulations used a 2 fs integration step and 20 fs neigh-
bor list update frequency, at 300 K temperature.14 Berendsen

temperature and pressure control were used, with coupling
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time constants of 0.1 and 1 ps, respectively.18 Despite its
unphysical scaling of kinetic energies, simulations with Be-
rendsen control have previously yielded accurate folding
rates on the microsecond scale.4 The linear constraint solver
�LINCS� algorithm19 was used to constrain all bonds, rather
than only bonds involving hydrogen atoms as in the Kollman
simulation. The Garcia-Sanbonmatsu modified version of
AMBER94 �“AMBERGS”� served as the force field.20,21 One to
four van der Waals forces were scaled by 0.5 as in the base
AMBER94; the data presented in Ref. 20 were with no such
scaling.22

Two sets of calculations were run, each with a different
treatment for long range electrostatics–particle mesh Ewald23

�PME� or reaction field �RF�.24 Under RF, the Coulombic
and van der Waals �vdW� neighbor lists went up to 10 Å
with vdW interactions smoothed from 8 Å and an external
dielectric of 80 was used. Under PME, the neighbor lists
went up to 8 Å with vdW interactions smoothed from 6 Å.
The grid spacing for Fourier transforms was 1.2 Å, the alpha
parameter was 0.39 Å−1, and the interpolation order was 4.
The results presented below are from the more thoroughly
sampled RF ensembles unless otherwise noted.

B. Characterization of the folded state

The simulated native state ensemble serves to validate
native state stability in the simulation model and to charac-
terize the native state and its intrinsic fluctuations. We ran
100 trajectories using each of the electrostatics treatments
�with 2.8 �s total sampling using PME and 4.0 �s total sam-
pling using RF�. Due to the nature of the distributed comput-
ing environment, trajectories varied in length. In the PME
set, the median trajectory length was 26 ns with 64 trajecto-
ries reaching 25 ns. In the RF set, the median trajectory
length was 29.5 ns with 95 trajectories reaching 25 ns. A
structure with 2.0 Å C� root-mean-square deviation �RMSD�
from the PDB structure 1VII, which resulted from brief
equilibration of the PDB structure, was used to start all na-
tive state simulations.

It has been demonstrated that an averaging of folded
structures can be more nativelike than any individual con-
stituent of that ensemble.25 Experiments such as NMR or
x-ray crystallography make ensemble measurements. To
make analogy using our single molecule trajectories, we
computed the C�–C� distance matrix for each individual
structure in the native simulation ensemble and computed the
average across these at each time point.25 The distance root
mean square deviations �dRMSDs� of these “mean struc-
tures” with 1VII are shown in Fig. 1.3 Figure 2 shows the
dRMSD from 1VII seen among individual structures in the
ensembles.3 The C-terminal helix is key to experimental
measurements such as tryptophan fluorescence,26 and 91%
and 95% of PME and RF conformations, respectively, have
residues 24–33 helical.

Characterizing the native ensemble with global tertiary
and per helix structural criteria suggested by the ensemble
distributions �each of the three helices under 0.8 Å
C�-dRMSD and global C�-dRMSD under 3.7 Å, all relative

to the native 1VII structure�, we can identify trajectories
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from the unfolded ensemble that reach the native state.3

Though intended to be comprehensive, the criteria should not
be considered a precise description of the model’s native
basin but a reasonable approximation; alternatives are dis-
cussed later.

C. Trajectories started unfolded

To obtain an unfolded starting structure for folding tra-
jectories, we simulated a fully extended structure in the gen-
eralized Born with surface area �GB/SA� implicit solvent
model in Tinker27 at 1000 K and low viscosity �1 ps−1� for
1 ns, to allow it to become more representative of the un-
folded state and more amenable to solvation in explicit sol-
vent. We began 10 000 independent simulations from that
unfolded conformation. The trajectories were mostly 25 ns in
length, with a median length of 25 ns, a mean of 25±2.7 ns,
and a maximum of 50 ns. Though the lengths of individual
trajectories were well under the experimentally observed
microsecond-scale folding time, by probabilistic arguments
we would expect the large ensemble of simulations to in-
clude a small number of folding trajectories.3 We note that
the more cumulative time simulated, the better the statistical
measures. We also note that this distributed, parallel tech-
nique reduces the wall clock time rather than the cumulative
computational time.

One might compare Monte Carlo simulation, with its
strength in thermodynamics calculation, to a massive en-
semble of molecular dynamics �MD� trajectories. Indeed,
Monte Carlo simulation is an excellent technique for obtain-
ing ensemble averages for thermodynamic quantities.28

However, the kinetic interpretation of Monte Carlo simula-

FIG. 1. Mean structure dRMSD vs time for PME and RF ensembles. The
native ensembles remain close to the experimental structure over the time
scale simulated. In particular, the mean structure under PME stays under
3 Å dRMSD through 25 ns and the mean structure under RF stays under
2 Å.

FIG. 2. Distribution of dRMSD �rounded to nearest angstroms� for the PME
and RF native ensembles sample sampled within 15–25 ns. It shows that the
native state is maintained on the simulated time scale and suggests the

definition of the folded state described in the text.
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tions is unclear. Furthermore, molecular dynamics naturally
exposes physical pathways, not requiring definition of a
move set.

D. MLE rate computation

A folding rate can be computed using the ensemble of
simulations started unfolded.29 Comparing this rate to experi-
mental measurements can help us validate the simulation and
sampling. When there is a single rate-limiting step, folding
kinetics will be in the single exponential regime. We stress
that this is a simplification—clearly there will be other, non-
rate-limiting steps that would contribute to nonsingle expo-
nential dynamics. Following Zagrovic and Pande,29 we cal-
culated the maximum likelihood estimator �MLE� for the
rate assuming a single rate-limiting step �derivation pre-
sented below for completeness�. Deviations from this single
exponential regime can be addressed with MSM methods, as
discussed in later sections.

Under a single exponential kinetics regime �single rate-
limiting step�, we can approximate the probability that a
given trajectory becomes folded in the time between t and
t+dt by P�t�dt=k exp�−kt�dt, where k is the rate constant.
This is an approximation as there will be some small mini-
mum lag time �tlag� for our unfolded structure to reach the
folded state; we approximate tlag by the minimum folding
time observed in the simulations.4

The definition of “folded” establishes which trajectories
become folded �call them members of F� and at what times,
and which trajectories do not fold �members of R� over their
simulated lengths. Then, the probability of the observed data
is

�
i�F

P�tfi
��

i�R

1 − P�tei
� , �1�

where tf is the time beyond tlag at which a trajectory first
meets the folded criteria and te is the total time beyond tlag

simulated for a trajectory �trajectories with length less than
tlag are neglected�.30 The value of k that maximizes this prob-
ability can be shown to be

�F��	
i�F

tf + 	
i�R

tei
−1
�2�

��F� denotes the number of members in set F�. This method
of calculating the rate can make more full use of collected
simulation data than other methods used in the literature
when trajectory lengths vary.30 The Cramer-Rao lower bound
on the variance of k is

��F��	
i�F

tfi
+ 	

i�R

tei
−1
�3�

and the error in �=1/k is the propagation of the k error.

E. Generalization of Pfold analysis: Calculation of PX,Y
values

The Pfold value of a conformation is defined as the prob-
ability of its transitioning to the folded state before the un-
folded state. Applications have included the ordering of con-

formations along the folding pathway and the identification
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of the transition state.4 In the present work, our interest is not
especially in absolute Pfold values, but in probing sensitivity
to certain system perturbations. We therefore propose com-
puting more general commitment probabilities, which we de-
note PX,Y,

PX,Y =
N�X�

N�X� + N�Y�
, �4�

where N�X� is the number of trajectories that meet condition
X before condition Y and N�Y� is the number of trajectories
that meet Y before X.

If a given perturbation has no impact on kinetics, then a
necessary condition is that for any given XY, PX,Y�s�
= PX,Y�s�� where s� is the perturbed form of system state s. A
sufficient condition for a perturbation not affecting the sys-
tem is that PX,Y�s�= PX,Y�s�� for all XY. One obviously can-
not test all possible XY combinations but we do probe with
multiple XY conditions based on protein conformation. Any
XY yielding a difference in commitment probabilities under
perturbed and unperturbed conditions would indicate the
given perturbation affecting the protein’s dynamics. To re-
duce statistical noise in the probabilities, X and Y should be
sufficiently disjoint that there is some barrier between
them.

To obtain such specific probabilities with high precision,
we conducted simulations expressly for that purpose. We
chose a variety of conformations from trajectories in the en-
semble started unfolded and ran 100 trajectories from each of
those points under both perturbed and unperturbed condi-
tions, seeing what fraction of each set met the condition X
before Y. The specific perturbations and XY tested are dis-
cussed in Sec. III.

F. MSM construction

In constructing a MSM, we largely followed the basic
approach described by Singhal et al.6 However, unlike in that
work, where only data from trajectories started unfolded
were utilized, here the data from the ensemble started un-
folded, the native state ensemble, and the PX,Y simulation
ensembles were all used. Especially as the PX,Y simulation
ensembles include trajectories starting between the folded
and unfolded states �the region containing the transition
state�, using all three sets of ensembles maximized converge
of conformational space.

As the first step in construction of the MSM, all
4 509 355 conformations �taken at 100 ps intervals from
each trajectory� were clustered into 2455 states. The k-means
clustering algorithm was used, parallelized over a cluster of
computers using a message passing interface �MPI� library.31

The distance metric was dRMSD. After clustering, folded
conformations were present in more than one cluster, as
more than one cluster overlapped the native state. Such con-
formations were removed from their original clusters and
segregated into a single new state sf. Two states had no path
connecting them to sf �by the edges described in the next
paragraph� and were removed so as to avoid having unfolded

6
sinks, leaving a total of 2454 states.
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Transition probabilities between states were computed
based on transitions seen in the simulations. Given a transi-
tion time �t, the probability of transitioning from a given
state sa to a given state sb was given by the number of times,
T�sa ,sb�, a simulated trajectory was observed to be in state sb

time �t after being in state sa divided by the total number of
�t transitions from state sa observed �including self-
transitions�,

P�sa,sb� =
T�sa,sb�

�"iT�sa,si�
. �5�

The results below use a transition time step of 10 ns.
Validation of MSMs to check that the model accurately

describes the process underlying the raw data is an active
area of theoretical research.5,32 In particular, methods to
verify that a process is Markovian on a given time scale—
that future moves depend only on the system’s current state
and not previous states—are being developed. In this work,
an agreement between the model and direct examination of
the simulation data for certain properties was considered a
necessary but insufficient condition �as in Sec. III C�. An-
other such condition, related to the steadiness of the mean
first passage time �MFPT� to the folded state with regard to
the transition time step, is shown in Fig. 3 �The MFPT from
a state A to a state B is the expected time to first visit B
starting from A—its computation is described in Ref. 6.� Fur-
ther work in model validation, particularly with methods ro-
bust to the complex processes involved with real proteins, is
ongoing and is expected to give it more theoretically com-
plete grounding.

Given the large number of probabilities involved in a
MSM, their statistical robustness is also a concern, even with
the large amount of sampling in the present work. A boot-
strap analysis was conducted. For each state of the above
MSM, observed molecular dynamics transitions were ran-
domly chosen �with replacement� from the set of all ob-
served transitions from that state. As is often the convention,
the number of transitions selected was equal to the total
number of observed transitions from the state. The selected
transitions were used to compute new transition probabilities
from that state to the other states. Repeating this for each
state resulted in the construction of a transition matrix. The

FIG. 3. Transition time of a MSM vs the MFPT from the extended to the
folded state for that MSM. A condition for properly capturing the process
underlying the data is that the MFPT levels as the transition time step is
increased beyond some point �rather than grow linearly with time step as
would be the case if the transition matrices did not reflect the increased time
step�. For the clustering described in the text, we see that the computed
MFPT �solid� �uncorrected for viscosity� is near 3 �s over a range of tran-
sition time steps. The decline in MFPT at longer times is believed due to
poor sampling there—sampling �dashed� decreases as transition time step
increases, due to the limited lengths of trajectories.
procedure was repeated to construct 50 such matrices. The
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transition with the largest standard deviation over the asso-
ciated MSMs had a standard deviation of 0.059 in its prob-
ability. Over 99% of state-to-state transitions that were non-
zero in at least one MSM had a standard deviation of under
0.015. Even numerically small error can be significant in
impact. Here, considering the MFPT from the state including
fully extended conformations to the folded state, the mean
value over the models was 2.9 �s, with a standard deviation
of 0.18 �s. This supports the value of 2.9 �s obtained from
the MSM constructed with all the data. The MFPT is further
discussed in the Results section.

A simple cross-validation test was also performed on the
MFPT. We randomly divided the observed molecular dynam-
ics transitions into ten disjoint sets �each of cardinality
188 836 or 188 837�. Each of those sets was used to calculate
transition probabilities for a MSM following the procedure
described earlier. The average value over the models for the
MFPT between the same two states as described in the pre-
vious paragraph was 2.9±0.24 �s, in agreement with the
earlier values.

III. RESULTS

In Sec. III A below, we briefly discuss the observed fold-
ing trajectories and present rates computed using the MLE
approach described earlier in Sec. II D. In the subsequent
sections, the central feature of the analyses discussed is the
use of transition probabilities. The ability to compute transi-
tion probabilities between conformational states is one of the
key benefits of obtaining an ensemble of trajectories. In Sec.
III C, we discuss how the computation of transition prob-
abilities from single conformations �PX,Y values� may be
used to probe the sensitivity of kinetics to given features of
the system. We build on the method and obtained results in
the final section, generalizing to the transition probabilities
between conformational clusters and introducing several ap-
plications of a MSM.

A. Folding trajectories and rates

Below, we will present the folding rate computed from
the ensemble of simulations started unfolded and compare it
to experiments, but first, it is worthwhile to briefly consider
trajectories from that ensemble individually and compare to
previous computational studies of villin. The behavior of the
residues 9–32, for example, has been typically examined in
computational studies of villin �where numbering begins at 1
for the protein simulated, or at residue 41 of the NMR
structure�.1,12 A rationale for examining this subset of the
residues can be seen from the high variance �Fig. 4� in atom
positions outside of this region even in the 29 NMR struc-
tures that were averaged to obtain 1VII.33 The lowest
C�-RMSD for residues 9–32 �RMSD9–32� seen under PME in
the trajectories started unfolded is 1.50 Å and the lowest
seen under RF is 1.29 Å. With the improved sampling, 89
PME trajectories and 135 RF trajectories see RMSD9–32 val-
ues lower than the lowest 9–32 main chain RMSD, 3.0 Å,
seen in the Kollman trajectory.1 A similar number of our
simulations reach lower values than the lowest 9–32 back-

bone RMSD reached in the Shen and Freed implicit solvent
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trajectory.1,12 Also, 39 of our trajectories meet the dRMSD
�2.85 Å folded criteria used in the analysis of an ensemble
of implicit solvent simulations by Zagrovic et al.3 The
GB/SA solvent model used in that work led to excessive
initial collapse, one of the motivations for examining explicit
solvent. The lowest dRMSD seen in the current work is
1.74 Å. Figure 5 shows the time course of two trajectories
reaching low RMSD.

Besides looking at folding trajectories individually, we
also use the entire ensemble to compute the folding rate and
compare it to experimental measurements. The folding rate
of the villin headpiece has been experimentally measured by
two methods: Kubelka et al. measured the folding rate of the
villin headpiece mutant N28H to be 4.3±0.6 �s using laser
temperature jump and Wang et al. obtained a 10 �s time
scale using NMR line-shape analysis.10,11 Applying the de-
scribed MLE method to our villin ensemble �under RF�, we
obtain a raw value of 7.9±2.3 �s.

These results should be considered in the light of the
nature of diffusion in the water model simulated. It is well
known that the TIP3P water model29 has an unphysically low
viscosity.34 To obtain a rough measure of this fact’s kinetic
impact, an equilibrated cubic water box with a 3 nm side was
simulated under the same simulation model as described ear-
lier. Sampling configurations at a 10 fs frequency and aver-
aging over all molecules yielded a diffusion constant of
6.7�10−5 cm2/s. The experimental diffusion constant of
water at 298.2 K and 1.013 atm has been measured to be
2.23�10−5 cm2/s. If we assume that the folding rate is lin-
early related with water’s diffusion constant, this yields a
correction factor of 0.33, or a folding rate of 23.7±6.9 �s.
We emphasize that this is by no means a precise correction.
Diffusion constants are highly dependent on factors such as
density, which is itself conditioned on the presence or ab-
sence of protein, and even the conformation of the protein.
Furthermore, it has not been established that the solvent’s
diffusion constant is linearly related with a protein’s folding
rate. With these issues in mind, the calculated rate is well
within an order of magnitude of the experimental measure-
ments.

Due to the dependence of the calculated rate on the spe-

FIG. 4. Picture of all 29 McKnight structures overlaid and plot of the un-
biased variance �dashed� and standard deviation �solid� in each C� position
based on the 29 structures. Plot values were obtained by first doing a C� best
fit of each of the 29 McKnight NMRs to 1VII and, for each of these,
computing the Cartesian distance between each C� and the corresponding
C� in 1VII. Both in the picture and graph, one can see that the ends—and
especially the region after residue 32—are far less rigid than the 9–32
regions.
cific criteria used to define the folded state, it is constructive
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to consider the variation of the predicted rate on the defini-
tion of the folded state chosen. In Table I, we examine sev-
eral different criteria for the folded state, including typical
criteria considered in computational studies and rough ana-
logs to the experimental probes employed by Kubelka et al.10

One would not expect an exact equivalence with experiments
given imperfection in the force field and, more notably, the
fact that the folded condition has to be characterized differ-
ently in simulation versus experiment, but all criteria consid-

FIG. 5. The time course of two trajectories reaching lowing RMSD relative
to the native structure. The dRMSD with 1VII, RMSD9–32 with the 1VII,
and radius of gyration �rad. gyr.� are shown.

TABLE I. Sensitivity of computed rates �using MLE method, without visco
The range of values highlights the systematic error from the choice of cond

Condition

dRMSD�3.7 Å and local dRMSD of each helix �0.8 Å Tertiary and s
RMSD9–32�3 Å &
dRMSD�4 Å and three helices

Local tertiary,
and secondary

C-terminal helix �residus24–33 helical as judged by dssp� To approxima
C-terminal helix maintained continuously 1 ns As above, wit
dRMSD�2.85 Å Used in Ref. 3
dRMSD�3 Å Looser than ab

highlights sen
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ered here yield rates well within an order of magnitude of the
experimental measurements �Table I�. One should note that
the systematic error in rate computation arising from the
choice of definition is as great as the statistical error; folded
definitions of the sort used here are but approximations to the
folded state, recommending sensitivity analysis such as this.

While the maximum likelihood method used here and
the fitting methods used in previous works3,4 have a strong
mathematical foundation when there is a basis for assuming
single exponential kinetics, they cannot be extended to cases
where the kinetic model is completely unknown. This is
among the many issues that a MSM can address.

B. Kinetics sensitivity analyses

Before discussing applications of a MSM, which de-
scribes transitions between states defined by conformational
clusters, we show how transition probabilities from indi-
vidual conformations can be used to probe the sensitivity of
dynamics. The results can help in constructing and under-
standing MSMs, particularly in definition of states and time
steps. First, we show how we can probe whether protein
dynamics are highly sensitive to water configuration through
PX,Y analysis and discuss how the result aids MSM method-
ology. Then, we demonstrate how we can assess whether
kinetics are sensitive to a given change in the simulation
model. This technique may be useful in testing physical
faithfulness of MSMs, and of molecular simulation in gen-
eral. Finally, we discuss an extension of PX,Y analysis and
present more on its relationship to MSMs.

1. Sensitivity to water configuration

A set of simulations, computing PX,Y values for protein
structures in different water configurations, was undertaken
to analyze the role of water in the folding process. For each
starting protein conformation chosen, we ran 100 simulations
of the conformation in each of two water configurations. The
perturbed water configuration was generated by freezing the
protein in the unperturbed form of the system and equilibrat-
ing the water for 500 ps.

In simulations of the 23-residue BBA5, water appeared
not to play a significant structural role.4 Here, we observe
similar behavior. The best fit line on the plots of PX,Y values
with and without reannealing of water is the identity line
�Fig. 6�. Formally, the commitment to X or Y of each trajec-

orrection� to the condition tested. Each row is for different folded criterion.
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tory is a Bernoulli trial and the estimated mean of the asso-
ciated binomial distribution of many Bernoulli trials �after
normalization� is PX,Y. Assuming that if we repeated the en-
tire set of Bernoulli trials many times the means observed
would follow a normal distribution centered at the computed
PX,Y, the error bars in Fig. 6 about each PX,Y�s� data point are
defined by the standard deviation of that normal distribution,

�X,Y�s� =�PX,Y�s��1 − PX,Y�s��
N

�6�

�N is the total number of trajectories used to compute
PX,Y�s��. Table II shows the RMSD values between PX,Y sets
for different water configurations for several more XY con-

FIG. 6. Plots of PX,Y values for given structures with their original water
configuration �meaning the configuration seen at the point the structure was
sampled in the ensemble simulations� and with a reannealed water configu-
ration. The best fit is the identity line. �a� X= “�20% native contacts
formed.” Y= “	40% native contacts formed.” �b� X= “radius of gyration
�10 Å.” Y= “radius of gyration 	13 Å.”
ditions. These values are all under 0.06. In addition to the
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absolute RMSD, the table also shows the mean number of
standard deviations comprising the absolute difference be-
tween two corresponding probabilities �using the fact that if
PX,Y�s� and PX,Y�s�� are independent, the variance in their
difference is the sum of their respective variances�,

1

N
	

s

�PX,Y�s� − PX,Y�s���
��X,Y

2 �s� + �X,Y
2 �s��

�7�

�N is the number of conformations, s is a conformation in
one water configuration, s� is that conformation in a different
water configuration, and �X,Y is as defined in Eq. �6��. None
of these values exceeds 1.

These results agree with previous results on BBA5,
which showed little impact on protein dynamics from pertur-
bations to water configuration. The results indicate that, for
villin, either the water configuration does not play a role in
dynamics or water equilibration is so fast that water exists in
a fairly equilibrated state around the protein. In the second
case, the lack of sensitivity of villin’s kinetics to the particu-
lar water configuration at a given time point is likely due to
the water degrees of freedom annealing quickly relative to
protein motion.

Besides its relevance to the role of water in folding, the
result is also encouraging for the construction of MSMs. In
the MSM that we will present, states are defined purely from
the protein coordinates. If the water coordinates played a role
in the above PX,Y values, that result would imply that water
coordinates are important on the several nanosecond time
scale and that a MSM omitting water from its state defini-
tions could accurately represent the simulations only on a
coarser time resolution than the nanosecond length of the
PX,Y trajectories and/or a state partitioning coarse enough to
lump conformations from X and Y into the same state. Both
restrictions would limit the insights available from the model
�the limiting case would be one state spanning the entire
space or an infinite time step�. Also, as the restriction on time
resolution would require transitions be sampled over longer
time steps, it would have the effect of requiring that longer
trajectories be simulated. We reiterate that the PX,Y analysis
shown here, though satisfying necessary conditions for omit-
ting water coordinates from state definitions, is not sufficient
to prove them unnecessary. In a later section, we describe a
generalization of PX,Y and other tests that could be more
probative.

2. Sensitivity to electrostatics treatment

PX,Y analysis can be used not just to probe water, but any
factor in the system, including aspects of the simulation
model. We illustrate its use for probing sensitivity to long
range electrostatics treatment. If transition probabilities and
other kinetic properties obtained from MD are highly depen-
dent on a certain aspect of the model, then that aspect likely
deserves further study. Just as with a single MD trajectory,
the ability of a MSM to predict experiment is dependent on
the validity of the simulation model. While an examination
of all possible molecular dynamics methods is clearly be-
yond the scope of this paper, we present an example of such

sensitivity analyses, for a case where there is still a variety of

 AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



164902-8 Jayachandran, Vishal, and Pande J. Chem. Phys. 124, 164902 �2006�
methods currently employed in the literature. In Sec. III C,
we discuss how a MSM may be used to more efficiently test
and develop new models.

As we conducted simulations both with PME and RF, we
can examine the sensitivity to change between these long
range electrostatics methods. In comparing the performance
of PME and RF, speed and reproduction of experimental
observations are the two main considerations. Algorithmi-
cally one would expect a force calculation with RF to be
faster than with PME and in the GROMACS MD implementa-
tion, a force calculation with RF is close to 20% faster than
one with PME. Simulations were run where one ensemble of
trajectories with a given starting structure used PME and
another ensemble with the same starting structure used RF.
Plots, across 112 structures, of PX,Y for the structure under
PME versus PX,Y for that structure under RF indicate differ-
ences �Fig. 7�. The nonunity slopes indicate that there is
sensitivity to the choice; the absolute position of a structure
along a pathway depends on it. Absolute RMSDs for the
conditions shown in Table II range up to 0.16 in this case and
the mean number of standard deviations in the differences
ranges to 2.7. More comprehensive tests of this type may
help elucidate differences from different simulation methods
or different simulated physical conditions. A theory to ex-
plain the significance of such shifts has been recently ex-
plored by Rhee and Pande.35

We stress that the analysis here does not deem one
method of superior accuracy, since accuracy is to be judged
with comparison to experiment and both methods reasonably
reproduce rates and maintain native structure. Furthermore,
the parameters used for each algorithm �such as cutoffs� can
make a significant difference and only set was used for each
here. What this analysis does offer is the ability to address
whether the choice between PME and RF has any major
impact on PX,Y values, in a parallelized manner that may be
generally applied for other such methodological compari-
sons. This is a more stringent test than solely comparing
folding rates, given the fact that two simulation methods may

36

TABLE II. The RMSD between a set of PX,Y values
values for those conformations in reequilibrated wate
The values do not show a major effect on the probab

Condition X Condition Y

dRMSD�3 Å dRMSD	7 Å
Helix 1 dRMSD�1.6 Å Helix 1 dRMSD	3
Helix 1 dRMSD�1.8 Å Helix 1 dRMSD	3
Helix 3 dRMSD�1.6 Å Helix 3 dRMSD	3
Helix 3 dRMSD�1.8 Å Helix 3 dRMSD	3
Fract. native contact�0.2 Fract. native contac
Fract. native contacts�0.3 Fract. native contac
Rad. gyr.�10 Å Rad. gyr.	13 Å
Rad. gyr.�10 Å Rad. gyr.	15 Å
Rad. gyr.�12 Å Rad. gyr.	17 Å
RMSD9–32�3 Å RMSD9–32	6 Å
produce identical rates with different mechanisms.
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3. Extension and relation to MSMs

A MSM is similar in spirit to the PX,Y technique in its
consideration of transitions between states: A PX,Y value
gives the transition probabilities from one state to each of
two other defined �large� states, while a MSM is defined by a
transition matrix that specifies the transition probabilities be-
tween potentially many different conformational states. We
point out that a comprehensive extension of the described
PX,Y analysis method would be to define a large diversity of
conformational states Xi and compute Pneighbor vectors, where
Pneighbor�s� is the vector of probabilities such that element i of
the vector is the probability that conformation s reaches state
Xi before reaching any other defined state Xj. Comparing
Pneighbor vectors could be a stronger test than comparing PX,Y

values because, due to the smaller size of the states, it would
be more sensitive to pathway differences. Unfortunately,
smaller states also mean that more sampling is required to
obtain statistically significant Pneighbor vectors and its compu-
tation is beyond the scope of the current work. Sufficient
sampling to measure Pneighbor could also yield precise transi-
tion probabilities for a MSM, though how to choose states
ahead of time is not clear, a problem avoided by the con-
struction method described earlier.

In the opposite direction, the Pfold of a given state in a
MSM can be computed analytically from the MSM.6 How-
ever, with the clustering used in the construction of our
MSM, the Pfold would not be associated with a single, well-
defined conformation. Furthermore, probing the effect of
varying system parameters would still require simulating
batches of trajectories from a number of the states under the
perturbed conditions.

C. Applications of a MSM

We now demonstrate several possible applications of the
MSM �described in the Methods section� built for villin from
all of the explicit solvent simulation data. These include an
examination of long time scale folding, computation of en-
semble property distributions, structure prediction, and
model refinement. We conclude with a discussion of increas-

set of 88 conformations in water and a set of PX,Y

gurations. The comparison is shown for various XY.
s from the specific water configuration.

RMSD
Eq. 7 �mean std. devs. in

abs. difference�
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1. Long time scale folding

In previous works,3,4 we have reported the cumulative
distribution of first folding times observed in the simulated
ensemble. With a MSM, we can extend that distribution to
longer times, as one can quickly and easily compute the evo-
lution of the system over arbitrary time lengths. The MSM
describes dynamics with a transition matrix P, where ele-
ment P�i , j� is the probability of transiting to state j in the
next move given that one is currently in state i, and where
the self-transition probability of the folded state is set to 1 so
that we will only capture first folding times. Then, the frac-
tion of trajectories in each state after n propagation steps will
be in the row vector 
�n�=
�0� Pn, where 
�0� is a row
vector with the starting fractional populations.

With this model, the fractional folded population at a
given time can be computed. Figure 8 shows the fractions

FIG. 7. Plots of PX,Y values for given structures when simulated under PME
and RF. �a� X= “�20% native contacts formed.” Y= “	40% native contacts
formed.” �b� X= “RMSD9–32�3 Å.” Y= “RMSD9–32	5 Å.”
folded observed directly in the simulated unfolded ensemble,
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through 25 ns, and the computed fraction folded from the
MSM to 10 �s. The MSM’s first folding time cumulative
distribution curve is single exponential, of the form 1−exp�
−kt�, suggesting a single rate-determining barrier along the
folding pathway �or a number of barriers of equal height�.
The curve agrees, over the simulated time, with the cumula-
tive distribution of first folding times observed directly in the
simulated ensemble. This agreement is a necessary condition
for considering the MSM a valid representation of the simu-
lated data.

The MFPT from a given state to the folded state can also
be easily calculated from the transition matrix.6 We obtain a
value of 8.7 �s �including the approximate correction for the
solvent’s anomalous viscosity discussed earlier� from the
state that includes the initial unfolded structure of our simu-
lations �the average MFPT from all states with a mean
dRMSD	7 Å is also equal to that�. This is in reasonable
agreement with both experiment and the maximum likeli-
hood method described earlier. We note that the MFPT cal-
culation requires no assumption about the overall kinetic
model of the protein, making it ideal for more complicated
systems. A formalism for computing the error in the MFPT
yielded by a given MSM is being developed.37

2. Evolution of ensemble properties

As we can obtain the time evolution of per-state popula-
tions from the MSM, it is also possible to obtain the time
evolution of ensemble distributions of various properties,
such as RMSD or helical content. In addition to probing
observable behavior over long time, these may be useful for
comparison with experiments that yield ensemble averaged
results and therefore may be both another tool in the testing
of simulation methods and a tool for decomposing ensemble

FIG. 8. Cumulative distribution of first folding times. The main plot shows
the fraction computed by propagating state transition probabilities with the
MSM. The single exponential, 1−exp�−kt�, with k=0.34 �the reciprocal of
the computed MFPT�, fits the curve �R2=1.0�. In the inset is a magnification
of the same data through only 25 ns, along with the fractions obtained
directly from the simulations. The deviation between the curves is within the
statistical error in the observed fractions and thus deemed as meeting a
necessary condition for the validity of the MSM. The error shown for each
observed fraction is the 95% confidence interval assuming a beta distribu-
tion �Ref. 39�.
averages to distributions.
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For a given simulation observable of interest, m, we first
characterize each state si of the MSM by the distribution of
m among the conformations comprising si �call the associ-
ated normalized histogram Dsi

m�. Note that if sampling of a
state si is poor, Dsi

m may not accurately represent the distri-
bution of m expected for that state under a Boltzmann dis-
tribution. We later suggest methods, besides an increased
simulation, for addressing this. The folded state sf is treated
as a sink in this demonstration to more clearly see the pro-
gression of states from unfolded to the folded state. Future
applications of this analysis technique may omit this ap-
proximation without any other change in procedure. Given
the population of each state at a number of time points tj,
determined as described earlier, we can now use the per-state
histograms Dsi

m to build an overall distribution of m for each
time point �call the histograms Dm�tj��. We build a histogram
Dm�tj� by taking the sum of the per-state histograms Dsi

m

weighting each bin of Dsi

m by 
si
�tj�, the fractional population

of si at tj,

Dm�tj� = 	
i

Dsi

m
si
�tj� . �8�

Figure 9 shows the outcome of applying the above
method for villin. With such an analysis, we can assess
mechanisms unconstrained by the actual simulated length of
the trajectories �within the limit of there having been suffi-
cient sampling to construct the model�. This will be espe-
cially important for even more complex, slower evolving
proteins.

3. Structure prediction

The stationary distribution of a MSM for a protein has a
special significance. Given the transition matrix P defining a

FIG. 9. Evolution of ensemble distributions of RMSD9–32 and helix 1
dRMSD computed from the MSM.
MSM, the stationary distribution of the MSM is defined by
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the vector s that satisfies the equation P=sP—it is the eigen-
vector of P associated with the eigenvalue 1. The vector s is
therefore the equilibrium distribution of the process.

This suggests that MSMs may be useful for prediction of
unknown protein structure. The stationary distribution indi-
cates free energies, so perhaps conformations in free energy
minima �native ensemble� can be identified from the MSM.
A challenge to such an application, besides force field accu-
racy and sampling hurdles, is that states must be small
enough to provide a precise description of the native state
�something not achieved here�, while being large enough to
have adequate observations for accurate computation of tran-
sition probabilities. Furthermore, the clustering metric must
be such that native conformations do not get divided
amongst too many different neighboring clusters. With these
issues in mind, the ability to predict the native structure tests
the accuracy of a MSM.

Illustrating these points, a MSM was constructed and
validated for villin as described previously, except without
segregation of folded conformations and using only the tra-
jectories started extended �trajectories from the PX,Y analysis
and from the native state were not used so as to avoid any
inclusion of native state knowledge�. The MSM’s stationary
distribution’s most probable state �1.3%, 16 times the mean
probability of 0.08%� has a mean dRMSD of 3.8±0.2 Å and
a mean RMSD9–32 of 2.7±0.4 Å. This state does not only
contain folded conformations, since there are conformations
from within and without the native basin that are yet similar
enough to be clustered together at the utilized clustering
granularity. Also, it is not the only state including folded
conformations, as they are divided amongst neighboring
clusters, making the interpretation of the state probabilities in
the context of native and nonnative difficult. The 181 states
containing at least one conformation meeting the dRMSD
aspect of our folded criteria have a total probability of 0.29.
That the native state is not more favored may indicate an
error in the force field as well as errors in the MSM espe-
cially due to insufficient sampling. Still, further investigation
along these lines seems warranted given that the single most
probable state, described above, is nativelike and suggests
that practical insights may arise even short of a completely
accurate equilibrium distribution. It may also be possible to
use high probability states to guide further sampling, perhaps
with a more detailed and more accurate model, such as a
polarizable force field.

Finally, while molecular dynamics combined with MSM
methods will generally not be the most efficient way to pre-
dict the folded structure, native structure is an important ad-
ditional test of methodology. Structure prediction from mo-
lecular dynamics is difficult due to the sampling involved as
well as possible issues in the force fields. A MSM offers an
excellent tool for use in assessing and improving methodol-
ogy. If a force field is modified, for example, simulations
using that modified force field can be started from each of an
existing MSM’s states; by starting trajectories from through-
out conformational space, new transition probabilities can be
determined much more efficiently, and with shorter trajecto-

ries, than they were for the initial model.
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4. Greater efficiency

Clearly, greater numbers of trajectories to greater lengths
would yield better sampling and thus more accurate MSMs.
However, even with the same amount of simulation, one may
benefit from dividing the trajectories to start among a more
diverse set of initial structures. This should result in coverage
of portions of conformational space that would require more
time to reach if all trajectories were started at a single point.
No additional steps need be taken in computation of transi-
tion probabilities, since those are purely based on local tran-
sitions between states and are normalized by the number of
transitions seen from a state. We also point out that regard-
less of the distribution of starting points for the trajectories
used to construct the MSM, the model can be used to realize
pathways starting from any given state or combination of
states. The diversity of starting points would be particularly
important for proteins with more complicated kinetics, such
as those with intermediate states. For such proteins, the im-
portant regions to start simulations might be between each
intermediate state, running the trajectories to just long
enough length that the sampling of the states overlaps. This
is motivated in a similar manner to transition path sampling
methods.38

IV. CONCLUSION

The main constraint on computational studies of protein
dynamics, and of folding in particular, has been the inacces-
sibility of long time scales and ensemble statistics. Here, we
have demonstrated the power of massively parallel simula-
tion and analysis tools such as MSMs to help overcome this
barrier. Simulations of large ensembles, previously accom-
plished for villin only in implicit solvent and only for smaller
systems in explicit solvent, allowed the computation of rates
and examination of folding trajectories.

PX,Y analysis also made use of parallelized simulation
data. Here, its use to probe the role of water and to compare
different simulation methodologies was demonstrated. The
observed insensitivity to water configuration would be good
to test for larger proteins, and the methodology test would
ideally be applied to a large range of common simulation
methods. In the case of a discrepancy in the latter, the devel-
opment of new experimental tests may be required to distin-
guish which, if any, is correct.

However, simulations can perhaps also now move to-
wards what experiments can measure, as accurately built
MSMs can propagate ensemble data over long times for each
model. The use of MSMs built from the data permits
extrapolation to time scales far beyond those directly simu-
lated. Applications include consideration of long time
scale kinetics, examination of the evolution of ensemble
properties, and perhaps even free energy computation and
structure prediction. They can be used to help refine simula-
tion models to obtain a higher native state stability, for ex-
ample.

We believe that much work remains to be done in devel-
oping techniques for analyzing the data obtained from mas-
sively parallel simulation. Further development of MSMs

should, for example, include the introduction of better statis-
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tical measures of error and techniques for choosing cluster-
ing metrics. We believe that efficiency will greatly increase
from the use of simulation data from even more starting con-
formations and that this will be crucial for larger systems
with more complex, slower kinetics. This work shows, how-
ever, that techniques for examining the dynamics of a pro-
tein, in a detailed model on a long time scale, are today
within our reach.
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