The Protein Folding Problem

Introduction

The Foldin Code

Predicting Structure

Folding Mechanisn

The Protein Folding Problem

Matt Holford

Department of Biology and Biomedical Science Yale University

CBB 752 Discussion Section 4b February 18, 2010

Introduction

The Protein Folding Problem

Matt Holford

Introduction

The Folding Code

Predicting Structure

Folding Mechanism

Three questions

- What is the folding code?
- Can we predict folding structure from amino acid sequence?
- What is the folding mechanism?
- This once seemed a daunting task...
- But today...
 - Foldable proteins are designed and used
 - Structures of small proteins can be predicted by computers
 - Provable theory: Large global optimization solved by being broken into smaller local optimizations

Anfinsen's hypothesis

The Protein Folding Problem

Matt Holford

Introduction

The Folding Code

Predicting Structure

Folding Mechanism

- What balance of forces encodes native protein structures?
- Anfinsen's Thermodynamic Hypothesis
 - Native structure = thermodynamically stable structure
 - Depends only upon amino acid sequence and conditions of solution
 - NOT on folding route
 - This makes in vitro folding a viable research approach
 - The problem is reduced to one of physical chemistry

Old and New Views of Folding

Matt Holford

Introduction

The Folding Code

Predicting Structure

Folding Mechanism

The old view:

- Folding is the sum of many small interactions
 - e.g. H-bonds, ion pairs, Van der Waals forces, hydrophobic interactions

The new view:

- Informed by statistical mechanical modeling
- Hydrophobic interactions dominate
- Secondary structure ↔ tertiary structure

Predicting Protein Structure From Sequence

- The Protein Folding Problem
- Matt Holford
- Introduction
- The Foldin Code
- Predicting Structure
- Folding Mechanism

- Rise of protein databases, eg PDB
- CASP (Critical Assessment of Techniques for Protein Structure Prediction)
 - Biennial, community-wide blind test of unsolved structures
 - Small proteins can now be accurately predicted to 2-6 Å
 - Best methods combine bioinformatics techniques with physics

Folding Mechanism I

The Protein Folding Problem

- Matt Holford
- Introduction
- The Folding Code
- Predicting Structure
- Folding Mechanism

- How do proteins fold so fast?
- The search has led to many important advances
 - Experimental techniques
 - Computational techniques
 - Protein theory
- Plaxco, Simons and Baker (PSB) discover a universal feature of protein folding kinetics
 - Folding speed correlated with topology of native structure
 - \blacksquare Fast folding \rightarrow mostly local, e.g. helices, turns
 - Slow folding \rightarrow mostly non-local, e.g. β -sheets

Folding Mechanism II

The Protein Folding Problem

Matt Holford

Introduction

The Folding Code

Predicting Structure

Folding Mechanism Proteins have funnel-shaped energy landscapes

- Many high-energy states, few low-energy states
- "Cartoonization" which shows folding as a pathway from disorder to order
 - Chain entropy increases as structures become less stable
 - There are multiple folding routes
 - Different routes dominate under different folding conditions
- ZA (Zipping and Assembly) hypothesis
 - Global optimization found by divide-and-conquer
 - Avoids search of all of conformational space
 - Process takes only small-conformational-entropy-loss steps
 - Many short, parallel steps in the beginning
 - Fewer, more sequential steps at the end

Pure Physics-Based Modeling

The Protein Folding Problem

Matt Holford

Introduction

The Foldin Code

Predicting Structure

Folding Mechanism

- Better than mixed-bioinformatics methods for:
 - Predicting conformational changes, such as induced fit
 - Understanding action mechanisms, such as motion, folding and catalysis
 - Understanding how proteins respond to external factors: e.g. solvents, ions, etc.
 - Designing synthetic proteins with noncanonical amino acids or non-biological backbones

BUT...

- Very expensive computationally
- Semiemperical atomic physical force-fields not entirely reliable