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ABSTRACT: Computer simulation offers unique possibili-
ties for investigating molecular-level phenomena difficult to
probe experimentally. Drawing from a wealth of studies
concerning protein folding, computational studies of pro-
tein aggregation are emerging. These studies have been
successful in capturing aspects of aggregation known from
experiment and are being used to refine experimental meth-
ods aimed at abating aggregation. Here we review molecu-
lar-simulation studies of protein aggregation conducted in
our laboratory. Specific attention is devoted to issues with
implications for biotechnology.
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The function of a protein is intimately related to its native
state, which is determined by interactions among amino-
acid residues (Leach, 1996). Varying degrees of residue
hydrophobicity, hydrogen-bonding groups, and the pre-
sence of partial charges result in specific potentials among
the different residue pairs. Competition between these
interactions, subject to topological constraints imposed by
chain connectivity, determines the native state, which is
generally believed to correspond to the global free-energy
minimum of a single chain (Chan and Dill, 1993; Sali et al.,
1994). However, in the presence of additional proteins,
attractive forces among residues from other proteins can
lead to the formation of inter-molecular clusters or
aggregates (Asherie et al., 1998; Fink, 1998; Harrison
et al., 1999). In this process, termed abnormal aggregation
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(Fink, 1998), proteins acquire a tertiary structure incompa-
tible with the biological function of the protein. At sufficient
concentration, aggregation results in protein precipitation
(Asherie et al., 1998).

Protein aggregation leading to reduced biological activity
and insoluble or poorly soluble forms interferes with the
manufacture of protein pharmaceuticals. Expression of
therapeutic proteins in bacteria often results in intracellular
deposits (inclusion bodies); considerable costs are associated
with purification, solubilization, and renaturing the protein
product (Clark, 2001). Aggregation can also take place
during shipping and storage of protein drugs (Chi et al.,
2003). Further, protein aggregates are suspected to be the
causative agent in over 20 neurodegenerative diseases (Canet
et al., 1999; Dobson, 1999; Koo et al., 1999; Tan and Pepys,
1994). Well-known examples include the Alzheimer’s and
Parkinson’s diseases, Bovine spongiform encephalopathy
(BSE) or mad-cow disease, and amyotrophic lateral sclerosis
(ALS). The enormous impact of aggregation diseases and the
growing number of protein drugs have given rise to
considerable research of both equilibrium and dynamic
aspects of protein aggregation, with the ultimate objective of
learning to manipulate the protein chemistry and system
conditions in ways that will prevent or slow down the
aggregation process.

Molecular simulation offers a unique opportunity to gain
novel insight into the process of protein aggregation.
Biotechnology stands to benefit from these studies, as
computer-assisted screening of mutations and environ-
mental conditions can be used to reduce the experimental
burden. In the present perspective, we provide a survey of
our recent computational studies and discuss future
possibilities for this nascent, but exciting field.
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‘‘Simple’’ Models of Proteins

Computer modeling has played an essential role in
developing our conceptual understanding of protein
folding. This has been achieved by analyzing computed
folding trajectories of model proteins to obtain microscopic
insights and thermodynamic information unavailable
through experiment. Because all-atom simulations cannot
access time scales relevant to most folding events, the
majority of simulation studies involve ‘‘coarse-grained’’
protein models. A polypeptide chain is typically treated as a
necklace of beads (Chan and Dill, 1993; Sali et al., 1994). In
view of the significant increase in computational demands
associated with multi-protein simulations, this class of
models appears ideally suited for qualitative studies of
protein aggregation (Bratko and Blanch, 2001). Figure 1a
and b shows snapshots of a lattice-model protein we have
studied extensively (Bratko et al., 2006; Cellmer et al.,
Figure 1. A: A snapshot of an unfolded conformation and lowest potential-energy struc

as a function of temperature for the lattice-model 64-mer. D: The number of native co
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beads are positively charged, green beads are negatively charged.
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2005b,c). By confining the amino acids to the lattice, the
required computational power is reduced significantly. For
studies with this model, we employed a potential function
that was characterized by interaction strengths compatible
with amino-acid contact probabilities from experiment
(Miyazawa and Jernigan, 1985). As with all simulations
using coarse-grained models, the solvent is implicit in the
potential function. Therefore, the ‘‘solvent’’ can be altered
by changes to the potential function. For example, dena-
turing conditions can be simulated (to a first approxima-
tion) by reducing the strength of attractive interactions.

Coarse-grained models capture many features of folding
observed experimentally. Figure 1C and D shows plots of heat
capacity and number of native contacts versus temperature
for the lattice-model 64-mer shown in Figure 1a. A complete
description of the model, and the simulation protocol is
available in Cellmer et al. (2005b,c). Briefly, the model
consists of 64 on-lattice beads, each representing an
ture (B) for the lattice-model 64-mer studied in Cellmer et al. (2005b,c). C: Heat capacity

ntacts as a function of temperature for the same model. The 64-mer sequence is

lue beads represent non-polar residues, red beads represent polar residues, yellow
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individual amino-acid residue. A modified 20-letter
Miyazawa–Jernigan potential is used to describe the
interactions between the amino acids (beads), as it more
correctly reflects the multitude of strong and weak forces
that govern protein interactions than other simple potentials
commonly used for lattice models. The heat capacity is
measured experimentally through calorimetry. With an
appropriately chosen energy scale, the numerical values of
the computed heat capacity (Fig. 1B) are within the range
observed experimentally for proteins. The number of native
contacts is experimentally inaccessible, but the data are very
similar to that observed in protein denaturation experi-
ments using intrinsic tryptophan fluorescence or circular
dichroism.

Many small proteins exhibit a two-state folding character,
making a first order transition from unfolded to folded
forms. We have attempted to test whether this two-state
character is apparent in the lattice-model 64-mer by
applying the calorimetric criterion (Cellmer et al., 2005b).
Due to difficulties in subtracting the unfolded and folded
baselines, the result was inconclusive. However, when the
data pertaining to the number of native contacts are fit to a
two-state model, with linear fits to the baselines of the folded
and unfolded states, very good agreement with two-state
behavior is obtained. With the chosen energy scale, we
obtain a melting temperature of 310 K and an energy of
unfolding of 28 kcal/mol; both numbers are well-within
those found by experiment. These data show that despite the
simplicity of the models, they can exhibit very protein-like
behavior.

Simple models have contributed significantly toward
explaining protein folding. For example, they have provided
a conceptual solution to the Levinthal paradox, which
ponders the ability of proteins to search through the
enormous number of possible conformations to reach the
native state on time scales that range from hundreds of
nanoseconds to minutes. Folding funnels (see Fig. 2),
constructed from simulations of coarse-grained models,
provide a visual solution to this paradox (Dinner et al.,
2000). As a protein makes its way down the funnel, it
accumulates native interactions. Because these interactions
are, on average, more stable than non-native ones, they
persist and systematically reduce the number of possible
states. Thus, the protein need not sample all possible
configurations on its path to the native state.
Figure 2. Folding funnels for the lattice-model 64-mer in isolation (A), in a two-

chain system (B), and in a four-chain system (C). Vnative and Vnon-native, are potential

energies arising from native and non-native interactions, respectively. Free energies F,

as well as energies of native and non-native interactions, and given in units kBT.
Folding Funnels in Multi-Protein Systems

To provide a better understanding of how the presence of
additional protein molecules affects folding, we have
constructed folding funnels in multi-protein systems
(Fig. 2B and C) (Cellmer et al., 2005c). The funnels show how
neighboring chains deform the folding funnel by eliminating
the favorable free-energy bias towards the native state. While
both independent variables (potential energies Vnative and
Bratko et al.: Protein Aggregation 3
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Vnon-native in Fig. 2) pertain to intra-molecular data, the
inter-molecular effects are reflected in an increasing
energetic advantage for misfolded states (reduced Vnative

and increased negative Vnon-native).
‘‘Hot’’ Sites for Aggregation

The molecular-level perspective offered by simulations
facilitates the identification of the amino acids crucial to
folding and aggregation. This information can be exploited
to perform mutations that alter the protein’s stability,
folding speed, or aggregation propensity. For the previously
described lattice-model 64-mer, multi-protein simulations
showed that a select group of 12 amino acids controls the
aggregation process (Fig. 3A) (Cellmer et al., 2005c). Several
of these amino acids are hydrophobic and buried in the
native state. Inter-protein association increases as the
proteins begin to unfold (Fig. 3B); this behavior is a direct
consequence of interactions involving amino acids that are
buried in the native state. Similar effects are commonly
observed in experiments (Fink, 1998). Proteins exposed to
environments where partially folded or unfolded states are
heavily populated, become more likely to associate. Other
amino acids that control the aggregation process arise from
pairs of ‘‘charged’’ residues on the protein surface that form
complementary interactions with the same pair of amino
acids on another protein. Consequently, these interactions
are often present when the protein’s native state is heavily
favored (Fig. 3B).
Figure 3. A: Highlighted beads, on average, are involved in interactions that comprise

aggregation. B: The average number of inter-protein contacts and native contacts (per cha

decrease in native contacts, and concomitant increase in inter-protein contacts.
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Destabilizing the Native State Alters
Protein-Aggregation Propensity

To probe the effects of point mutations on aggregation
propensity, we created two mutant proteins, L36T and
M54T from our original lattice-model 64-mer (Bratko et al.,
2006). Residue 36 is located in the middle of the 11-residue
string (31–41) bound anti-parallel to the string of residues
20–30 (comprising the longest anti-parallel segments) and is
coordinated only by relatively close contour neighbors.
Residue 54 (Methionine, M) is coordinated by residues
distant on the chain contour. Because both M and L are
strongly interacting, substitutions by polar residues prove
disruptive to the protein native structure. Substitutions with
a residue of intermediate hydrophobicity like threonine, T,
however, preserve the native structure of the wild-type
sequence. Substitutions L36T and M54T were therefore
selected for comparison of model-protein aggregation
behavior with that of the unperturbed sequence.

In isolation, all three sequences spontaneously fold into
the same native structure and exhibit similar fluctuations
around it. Small stability differences, however, translate to
quite different behaviors under the influence of additional
destabilizing factors such as elevated temperature or
increased protein concentration. Under these conditions,
the less stable variants become more likely to associate.
Similar comments have been made in the context of single-
chain simulations of the aggregation-prone E22Qmutant of
the 10–35 segment of the Alzheimer’s A-b peptide, whose
structural fluctuations are noticeably stronger than those for
the WT sequence (Massi and Straub, 2001). At a protein
50% of the total-interaction potential. These are referred to in the text as ‘‘hot sites’’ for

in) as a function of temperature for individual chains in four-chain systems. Note the
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volume fraction of �6%, the three variants behave quite
differently; the original sequence refolds regardless of initial
configuration, while L36T and M54T unfold and form a
cluster of misfolded chains. Figure 4 illustrates the effect of
mutations by comparing the free-energy landscapes of two-
chain model systems for the three variants. Sequences with
nearly identical folding behaviors in isolation exhibit very
different affinities for association as a result of moderate
single-point substitutions. The landscape of the WT protein
in the two-chain system retains the funnel-like shape
conducive to folding whereas the two mutants develop
auxiliary free-energy minima corresponding to misfolded
conformations. The shift of these minima toward higher
number of inter-protein contacts, Ninter, confirms that the
misfolded conformations are stabilized by multiple inter-
chain interactions (Cellmer et al., 2005b), an effect that
increases with protein concentration.

The overall effect of moderate residue substitutions is
similar to the influence of weakly destabilizing system
conditions such as increases in temperature, concentration
(Bratko et al., 2006), or denaturant. Because of strong
correlations between the binding states of the specified
monomer and the proximity to the folded state (Bratko and
Blanch, 2003), strengthening or weakening the bonds of a
selected residue can have an effect similar to modulating the
overall strength of intra-protein interactions for the whole
chain. Subtle mutations can therefore be used in sequence
engineering to shift the coexistence lines in the phase
diagram of a protein solution without altering the structure
of the native state.
Figure 4. Free-energy landscapes in two-chain systems for (A) the wild-type

lattice-model 64-mer, the mutant L36T (B), and the mutant M54T (C). NNat is the number

of native contacts, NInter is the number of inter-protein contacts, and F is the free

energy in units kBT.
The Protein ‘‘Refolding’’ Problem

We have also utilized simulations to address directly a
problem of biotechnological interest (Cellmer et al., 2005a).
When E. coli is chosen as the host for protein production,
over-expressed protein often forms intra-cellular aggregates
known as inclusion bodies. These aggregates must be
dissolved, and the protein refolded in order for it to become
biologically active. During the refolding step, aggregation
competes with correct folding, and often limits the yield of
folded protein. While this problem can be avoided by
refolding in a large volume (low protein concentration),
such a strategy is often not economically viable. Because
little is understood about the underlying mechanisms of the
aggregation process it is difficult to prevent its occurrence by
rational design.

The ‘‘protein-refolding’’ problem is well suited for
computational investigation, as it simply involves a scale-
up in the number of chains simulated. For ourmulti-protein
simulations we employed an off-lattice model that folds into
a beta-barrel structure (Fig. 5) (Honeycutt and Thirumalai,
1992). Only three different amino acids are used for these
simulations. There are ‘‘hydrophobic’’ beads that interact
through the Lennard–Jones potential, ‘‘hydrophilic’’ beads
that have a purely repulsive potential, and ‘‘neutral’’, or
‘‘glycine’’ beads that have a purely repulsive two-body
potential and a relaxed dihedral potential that allows them
to form the turns required for the b-barrel.

Each simulation contained three chains that were
equilibrated under the conditions of interest without
Bratko et al.: Protein Aggregation 5
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Figure 5. The native structure of the model protein used in these simulations.

‘‘Hydrophobic’’ beads are green, ‘‘hydrophilic’’ beads are blue, and neutral or

‘‘glycine’’ beads are red.

Figure 6. A: Schematic of the model protein used in the protein-refolding

simulations. B: Represents the average contribution of inter-protein interactions

involving different strands. For example, when two proteins form an aggregate, on

average 35% of the interaction energy comes from interactions between strand one on

one protein, and strand one on the other.
attractive interactions. At time zero, the attractive interac-
tions were turned on, and the simulations were monitored
until all the model proteins had folded or aggregated. The
refolding yield was calculated by dividing the number of
chains that fold by the number simulated. As expected, this
number increases as the volume available to the proteins
increases. The refolding yield more than triples (15–51%) as
the concentration decreases from �3 to �0.3 mM.

As shown in Figure 6B, strands one and three play a
dominant role in aggregation. Both strands have nine
‘‘hydrophobic’’ beads, making them the ‘‘stickiest’’ of the
four strands (Fig. 6A). Despite having the same level of
‘‘stickiness’’, the strands have different propensities to
associate with other chains. This is likely due to higher-order
structural factors, namely that strand three forms intra-
protein interactions earlier in the folding process than strand
one, therefore, limiting its ability to form inter-protein
interactions. This result suggests that, for aggregation
between proteins in states where some three-dimensional
structure is present, the most aggregation-prone segments
cannot be identified by amino-acid sequence alone.

To probe the heterogeneity of the aggregation process, we
registered each aggregation event, and catalogued events
when one pair of strands contributed greater than 50% of
the overall interaction potential. Strand one-strand one
6 Biotechnology and Bioengineering, Vol. 96, No. 1, January 1, 2007
interactions dominate 33% of time, strand one-strand three
interactions 16% of the time, and strand three-strand three
interactions 18% of the time. This result clearly shows that
there are different mechanisms for aggregation, although the
route involving strand one-strand one interactions is
statistically preferred.

Using this information, we designed several mutants
where two hydrophobic beads were changed to hydrophilic
beads (Fig. 7). We focused on mutations that did not
radically alter the stability or native structure of the model
protein. Not surprisingly, mutations to strand three
improved the refolding yield but not to the same degree
as mutations to strand one. This result was expected, given
that strand one is more often involved in inter-protein
interactions.

This exercise has several implications for experiments.
First, as with the lattice-models, aggregation is controlled by
a relatively small number of amino acids. Similar behavior
has been recently observed in amyloid-fibril formation by
DOI 10.1002/bit



Figure 7. A: Refolding yields for various double mutants. All mutations are of the

form ‘‘hydrophobic’’ to ‘‘hydrophilic.’’ B: Native structure of the mutant with the

greatest refolding yield.
unfolded proteins and peptides (Chiti et al., 2002), and has
facilitated the development of a software package that
identifies nucleating regions (Fernandez-Escamilla et al.,
2004) of unfolded peptides. While our model possesses two
segments with the same degree of ‘‘stickiness’’, one of these
tends to favor aggregation more strongly. This shows that a
priori design of mutations from primary-sequence data is
complicated in instances where the formation of higher-
order structure inhibits certain segments of the protein from
inter-protein interactions. We also showed that multiple
aggregation pathways can coexist. Thus, some proteins may
require mutations to multiple regions of their amino-acid
sequence to obtain substantial reductions in aggregation
propensity.
Concluding Remarks

For several decades, computer simulations have contributed
to the study of protein folding. With advances in computer
power, it has become possible to ‘‘scale-up’’ these
simulations to address the problem of protein aggregation.
The successes of simple models in capturing the essential
physics of folding are encouraging for the study of
aggregation, because the two processes share many features.

We present three important conclusions. First, we showed
that coarse-grained models of proteins, despite their
simplicity, nevertheless are very protein-like. Second, we
showed that several features of the aggregation process
known from experiment are reproduced by the simple
models. Third, we showed that the simulations can be used
to ‘‘design out’’ aggregation-prone behavior, as well as
provide direction to experimentalists with similar goals.

In addition to our laboratory, several other groups have
obtained important results from molecular simulations of
protein aggregation (Giugliarelli et al., 2000; Istrail et al.,
1999; Ma and Nussinov, 2002a,b; Toma and Toma, 2000). It
is not possible to describe the results of all of these studies,
but we highlight a few examples here. The Hall group
(Nguyen and Hall, 2004a,b, 2005, 2006) has pioneered the
use of discontinuous molecular dynamics to study large
systems (�100) of polyalanine-like peptides that undergo a
spontaneous transition to form amyloid fibrils. The Head-
Gordon group has exploited its minimalist model of the
small protein, protein L, for multi-protein simulations
(Clark, 2005; Fawzi et al., 2005; Sorenson and Head-
Gordon, 2002). This work is significant because it offers the
possibility for direct comparison to experiment. As protein L
forms a stable three-dimensional structure, it should also
allow for the direct observation of the conformational
changes required prior to non-native aggregation. Such
events are very difficult to observe experimentally.

The molecular-level perspective offered by computer
simulations will continue to improve our fundamental
understanding of aggregation phenomena. Further, it has
begun to serve as a complement to experiment in rationally
designing sequence alterations that can change a given
protein’s propensity to aggregate. As yet, it is not possible to
run simulations at an atomic-level of detail and identify with
certainty the amino acids that drive the aggregation process.
However, studies like those illustrated here can be useful in
directing the search for the appropriate mutations before the
first experiment is performed. The degree of refinement will
continue to improve as the field matures.
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