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Markov state models �MSMs� are a powerful tool for modeling both the thermodynamics and
kinetics of molecular systems. In addition, they provide a rigorous means to combine information
from multiple sources into a single model and to direct future simulations/experiments to minimize
uncertainties in the model. However, constructing MSMs is challenging because doing so requires
decomposing the extremely high dimensional and rugged free energy landscape of a molecular
system into long-lived states, also called metastable states. Thus, their application has generally
required significant chemical intuition and hand-tuning. To address this limitation we have
developed a toolkit for automating the construction of MSMs called MSMBUILDER �available at
https://simtk.org/home/msmbuilder�. In this work we demonstrate the application of MSMBUILDER to
the villin headpiece �HP-35 NleNle�, one of the smallest and fastest folding proteins. We show that
the resulting MSM captures both the thermodynamics and kinetics of the original molecular
dynamics of the system. As a first step toward experimental validation of our methodology we show
that our model provides accurate structure prediction and that the longest timescale events
correspond to folding. © 2009 American Institute of Physics. �doi:10.1063/1.3216567�

I. INTRODUCTION

For a molecular system, the distribution of conforma-
tions and the dynamics between them is determined by the
underlying free energy landscape. Thus, the ability to map
out a molecule’s free energy landscape would yield solutions
to many outstanding biophysical questions. For example,
structure prediction could be accomplished by identifying the
free energy minimum,1 leading to insights into catalytic
mechanisms of proteins that are difficult to crystallize. Inter-
mediate states, such as those currently thought to be the pri-
mary toxic elements in Alzheimer’s disease,2 could also be
identified by locating local minima. As a final example, pro-
tein folding mechanisms could be understood by examining
the rates of transitioning between all the relevant states.

Unfortunately, the free energy landscapes of solvated
biomolecules are extremely high dimensional and there is no
analytical means to identify all the relevant features, espe-
cially when one is concerned with molecules in which small
molecular changes yield significant perturbations of the sys-
tem, such as amino acid mutations in proteins. Therefore, a
theoretical treatment requires sampling the potential, gener-
ally using Monte Carlo or molecular dynamics �MD�, and
then inferring information about the states in the free energy
landscape from the sampled configurations. Moreover, if one
is interested in kinetic properties, one must go further and
sample kinetic quantities �e.g., rates� of interconversion be-
tween these thermodynamic states.

Mapping out a molecule’s free energy landscape can be
broken down into three stages: �1� identifying the relevant

states and, in particular, the native state, �2� quantifying the
thermodynamics of the system, and �3� quantifying the kinet-
ics of transitioning between the states. Each of these stages
builds upon the preceding stages. In fact, this hierarchy of
objectives is evident in the literature. For example, in the
structure prediction community it is common to plot the free
energy as a function of the RMSD to the native state.3 Such
representations allow researchers to quickly assess whether
or not their potential accurately captures the most experi-
mentally verifiable state, the native state. However, they pro-
vide little information on the presence of other states, their
relative probabilities, or the kinetics of moving between
them.4 Projections of the free energy landscape onto multiple
order parameters, on the other hand, may capture multiple
states and their thermodynamics.4,5 The main limitation of
these representations is that they depend heavily upon the
order parameters selected.5 If the order parameters are not
good reaction coordinates, then important features may be
distorted or even completely obscured.5,6 Furthermore, bar-
ring the selection of a perfect set of reaction coordinates,
such projections only yield limited information about the
system’s kinetics due to loss of information about other im-
portant degrees of freedom.7

Clustering techniques are a promising means of over-
coming these limitations as they allow the automatic identi-
fication of the relevant degrees of freedom.8 However, most
clustering techniques are based solely on geometric criteria9

so they may fail to capture important kinetic properties. To
illustrate the importance of integrating kinetic information
into the clustering of simulation trajectories, one can imagine
two people standing on either side of a wall. Geometricallya�Electronic mail: pande@stanford.edu.

THE JOURNAL OF CHEMICAL PHYSICS 131, 124101 �2009�

0021-9606/2009/131�12�/124101/11/$25.00 © 2009 American Institute of Physics131, 124101-1

Downloaded 25 Feb 2010 to 128.36.196.126. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1063/1.3216567


these two individuals may be very close but kinetically
speaking it could be extremely difficult for one to get to the
other. Similarly, two conformations from a simulation data
set may be geometrically close but kinetically distant and,
therefore, a clustering based solely on a geometric criterion
would be inadequate for describing the system’s dynamics.

Markov state models �MSMs� fit nicely into this progres-
sion as they provide a natural means to achieve a complete
understanding of a molecule’s free energy landscape—a map
of all the relevant states with their correct thermodynamics
and kinetics.10–14 The critical distinction between MSMs and
other clustering techniques is that an MSM constitutes a ki-
netic clustering of one’s data.10–12,14 That is, conformations
that can interconvert rapidly are grouped into the same state
while conformations that can only interconvert slowly are
grouped into separate states. Such a kinetic clustering en-
sures that equilibration within a state, and therefore loss of
memory of the previous state, occurs more rapidly than tran-
sitions between states. As a result, the model satisfies the
Markov property—the identity of the next state depends only
on the identity of the current state and not any of the previ-
ous states.

MSMs are better able to capture the stochastic nature of
processes such as protein folding than traditional analysis
techniques, allowing more quantitative comparisons with and
predictions of experimental observables. Thus, they will al-
low researchers to move beyond the traditional view of MD
simulations as molecular microscopes. An MSM also pro-
vides a natural means of varying the resolution of one’s
model. For example, consider a protein folding process that
occurs on a 10 �s timescale. Using a cutoff of 1 ns to dis-
tinguish a fast transition from a slow one would yield a high
resolution model that may be difficult to interpret by eye.
Using a cutoff of 1 �s, however, would likely yield a high-
level model capturing the essence of the process in a human
readable form. MSMs provide a rigorous means to combine
data from multiple sources and can be used to extract infor-
mation about long timescale events from short simulations.15

Finally, there are a number of ways of exploiting MSMs to
minimize the amount of computation that must be performed
to achieve a good model for a given system.16

Unfortunately, constructing MSMs is a difficult task be-
cause it requires dividing the rugged and high dimensional
free energy landscape of a system into metastable states.11 A
good set of states will tend to divide phase space along the
highest free energy barriers. More specifically, none of the
states will have significant internal barriers. Such a partition-
ing ensures the separation of timescales discussed above—
intrastate transitions are fast relative to interstate
transitions—and, therefore, that the model is Markovian.
States with high internal barriers break the separation of ti-
mescales and introduce memory. To illustrate this situation,
imagine a state divided in half by a single barrier that is
higher than any barrier between states. Besides breaking the
separation of timescales by causing transitions within this
state to be slow relative to transitions between states, trajec-
tories that enter the state to the left of the internal barrier will
also tend to leave to the left while trajectories that enter on
the right will tend to leave to the right. Thus, the probability

of any possible new state will depend both on the identity of
the current state and the previous state, breaking the Markov
property. Avoiding such internal barriers has generally re-
quired a great deal of chemical insight and hand tuning;17,18

thus, the application of MSMs has been limited.
To facilitate the more widespread use of MSMs we have

developed an open source software package called MSM-

BUILDER that automates their construction �now available at
https://simtk.org/home/msmbuilder�.14

MSMBUILDER builds
on previous automated methods11 by incorporating new geo-
metric and kinetic clustering algorithms. It also provides a
command-line interface built on top of an object oriented
structure that should allow for the rapid incorporation of new
advances. In summary, MSMBUILDER works as follows: �1�
group conformations into very small states called microstates
and assume the high degree of structural similarity within a
state implies a kinetic similarity, �2� validate that this state
decomposition is Markovian, and optionally �3� lump the
microstates into some number of macrostates based on ki-
netic criteria and ensure that this macrostate model is Mar-
kovian. There are also a number of tools for analyzing and
visualizing the model at both the microstate and macrostate
levels.

In this work we demonstrate that MSMBUILDER is able to
construct MSMs for full protein systems in an automated
fashion by applying it to the villin headpiece �HP-35
NleNle�.19,20 Unlike the peptides that have been studied with
automated methods in the past,11 villin has all the hallmarks
of a protein, such as a hydrophobic core and tertiary contacts.
It is also fast folding, so it is possible to carry out simulations
on timescales comparable to the folding time.21

Our hope is that this work will serve as a guide for future
users of MSMBUILDER. Thus, we will discuss failed models,
the insights these models gave us, and how these insights led
to the final model. We will also discuss some of the remain-
ing limitations in the automated construction of MSMs. In
addition, we will demonstrate that our model yields accurate
structure prediction and that the longest timescales corre-
spond to folding. However, our main emphasis will be on the
methodology of building MSMs that faithfully represent the
raw simulation data. In particular, we will focus on the mi-
crostate level as this is the finest resolution and bounds the
performance of lower resolution models. The full biophysical
implications of the model and their relation to experimental
results will be discussed more thoroughly in a later work.

II. METHODS

A. Simulation details

The data set used in this study was taken from Ensign et
al.21 and is described briefly below. It consists of �450
simulations ranging from 35 ns to 2 �s in length and is
publicly available at the SimTK website �https://simtk.org/
home/foldvillin�.

First, the crystal structure �PDB structure 2F4K�19 was
relaxed using a steepest descent algorithm in GROMACS �Ref.
22� using the AMBER03 force field.23 The resulting structure
was placed in an octahedral box of dimensions 4.240
�4.969�4.662 nm3 and solvated with 1306 TIP3P water

124101-2 Bowman et al. J. Chem. Phys. 131, 124101 �2009�

Downloaded 25 Feb 2010 to 128.36.196.126. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



molecules. Nine 10 ns high temperature simulations �at 373
K�, each with different initial velocities drawn from a
Maxwell–Boltzmann distribution, were run from this sol-
vated structure. The final structures from each of these un-
folding simulations were then used as the initial points for
�450 folding simulations at 300 K.

Folding simulations were preceded by 10 ns equilibra-
tion simulations at constant volume with the protein coordi-
nates fixed. For all MD simulations, the SHAKE �Ref. 24�
and SETTLE �Ref. 25� algorithms were used with the default
GROMACS 3.3 parameters to constrain bond lengths. Periodic
boundary conditions were employed. To control temperature,
protein and solvent were coupled separately to a Nosé–
Hoover thermostat26 with an oscillation period of 0.5 ps. The
system was coupled to a Parrinello–Rahman barostat27 at 1
bar, with a time constant of 10 ps, assuming a compressibil-
ity of 4.5�10−5 bar−1. Velocities were assigned randomly
from a Maxwell–Boltzmann distribution. The linear center-
of-mass motion of the protein and solvent groups were re-
moved every ten steps. A cutoff at 0.8 nm was employed for
both the Coulombic and van der Waals interactions. During
these simulations, the long-range electrostatic forces were
treated with a reaction field assuming a continuum dielectric
of 78, and the van der Waals was treated with a switch from
0.7 to 0.8 nm. The neighborlist was set to 0.7 nm for com-
putational performance.

B. MSM construction

All the MSMs used in this paper were constructed with
MSMBUILDER,14 the relevant components of which are re-
viewed below. A significant modification of the code was the
introduction of sparse matrix types, which allows the con-
struction of MSMs with many more states than previously
possible by making more efficient use of the available
memory. Sparse matrices will be included in the next release
of MSMBUILDER.

1. Clustering

An approximate k-centers clustering algorithm was used
to generate the microstates in all the MSMs used in this
study.28,29 The algorithm works as follows: �1� choose an
arbitrary point as the first cluster center, �2� compute the
distance between every point and the new cluster center, �3�
assign points to this new cluster center if they are closer to it
than the cluster center they are currently assigned to, �4�
declare the point that is furthest from every cluster center to
be the next new cluster center, and �5� repeat steps 2–4 until
the desired number of clusters have been generated. The
computational complexity of this algorithm is O�kN� where k
is the number of clusters and N is the number of data points
to be clustered. The algorithm is intended to give clusters
with approximately equal radii, where the radius of a cluster
is defined as the maximum distance between the cluster cen-
ter and any other data point in the cluster. Given that MD
simulations are Markovian,10 it should be possible to gener-
ate a Markov model for simulation dynamics by constructing
sufficiently small �or numerous� states. However, the size of
a given data set will limit how many clusters can be gener-

ated because reducing the number of conformations in each
state will eventually result in an unacceptable level of statis-
tical uncertainty.

Based on the Boltzmann relationship, we can calculate
the free energy of a state as −kT log�p�, where p is the prob-
ability of being in the state. Though small variations in the
radii of microstates may imply quite large variations in their
volumes due to the high dimensionality of the phase space of
biomolecules, empirically we find that assuming the clusters
have equal volume is useful. In particular, we find that inter-
preting lower free energy microstates as having higher den-
sities and evaluating models based on the correlation be-
tween the free energy and RMSD of each microstate agrees
with other measures of the validity of an MSM, such as
implied timescales plots as discussed below. Because this
relationship is not guaranteed to hold the correlation between
microstate free energy and RMSD should never be used as
the sole assessment of a model. As discussed in the Sec. III,
it is quite useful for identifying potential shortcomings of a
given model. These issues are not a concern at the mac-
rostate level.

All clustering in this work was based on the heavy-atom
RMSD between pairs of conformations. However, we note
that pairs of atoms in the same side chain that are indistin-
guishable with respect to symmetry operations were ex-
cluded from the RMSD computations. Representative con-
formations from some clusters are shown using VMD.30

2. Transition probability matrices

Transition probability matrices are at the heart of
MSMs.10 Row normalized transition probability matrices are
used in this study. The element in row i and column j of such
a matrix gives the probability of transitioning from state i to
state j in a certain time interval called the lag time ���.

The transition probability matrix serves many purposes.
For example, a vector of state probabilities may be propa-
gated forward in time by multiplying it by the transition
probability matrix.

p�t + �� = p�t�T��� , �1�

where t is the current time, � is the lag time, p�t� is a row
vector of state probabilities at time t, and T��� is the row
normalized transition probability matrix with lag time �.

The eigenvalue/eigenvector spectrum of a transition
probability matrix gives information about aggregate transi-
tions between subsets of the states in the model and what
timescales these transitions occur on.10 More specifically, the
eigenvalues are related to an implied timescale for a transi-
tion, which can be calculated as

k =
− �

ln���
, �2�

where � is the lag time and � is an eigenvalue. The corre-
sponding left eigenvector specifies which states are involved
in the aggregate transition. That is, states with positive eigen-
vector components are transitioning with those with negative
components and the degree of participation for each state is
related to the magnitude of its eigenvector component.10
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3. Implied timescales plots

Implied timescales plots are one of the most sensitive
indicators of whether or not a model is Markovian.31 These
plots are generated by graphing the implied timescales of an
MSM for a series of lag times. If the model is Markovian at
a certain lag time then the implied timescales should remain
constant for any greater lag time. The minimal lag time at
which the implied timescales level off is the Markov time, or
the smallest time interval for which the model is Markovian.
The implied timescales for a non-Markovian model tend to
increase with the lag time instead of leveling off. Unfortu-
nately, increasing the lag time decreases the amount of data
and, therefore, increases the uncertainty in the implied times-
cales. Thus, implied timescales plots can be very difficult to
interpret.

In this study error bars on implied timescales plots were
obtained using a bootstrapping procedure. Five randomly se-
lected subsets of the available trajectories were selected with
replacement and the averages and variances of the implied
timescales for each lag time were calculated.

4. Time evolution of observables

The time evolution of the mean and variance of any
molecular observable can be calculated from an MSM. Cal-
culating the time evolution of an observable X requires cal-
culating the average of X in each state i �Xi� and the average
of X2 �Xi

2�. In this study we took averages over five ran-
domly selected conformations from each state. An initial
state probability vector may then be propagated in time as in
Eq. �1�. At each time step the mean and variance can be
calculated as

�X� = �
i=1

N

pi�t�Xi, �3�

�2 = �X2� − �X�2, �4�

where N is the number of states, pi�t� is the probability of
state i at time t, � is the standard deviation and

�X2� = �
i=1

N

pi�t�Xi
2. �5�

III. RESULTS AND DISCUSSION

A. An initial model

Given the computational cost of running extensive MD
simulations an important consideration in constructing an
MSM is to maximize one’s use of the available data. Of
course, one’s hardware always sets hard upper limits on the
amount of data that may be used at each stage of building an
MSM. In particular, it may not always be possible to fit all of
the available conformations into memory for the initial clus-
tering phase of constructing an MSM with MSMBUILDER. A
convenient way of overcoming this bottleneck is to use a
subset of the available data to generate a set of clusters. Data
that was left out during the clustering phase may then be
assigned to these clusters.

To maximize the use of our data while satisfying the
memory constraints of our system we first subsampled our
data set by a factor of 10 and clustered the resulting confor-
mations into 10 000 states. Snapshots were stored every 50
ps during our MD simulations, which will henceforth be re-
ferred to as the raw data. Thus, the effective trajectories used
during our clustering consisted of snapshots separated by
500 ps. The remaining 90% of the data was subsequently
assigned to this 10 000 state model. Fortunately, it is possible
to parallelize this assignment phase because the cluster defi-
nitions are never updated after the initial clustering.

As discussed in the introduction, the first criterion for
assessing the validity of our model is whether or not it is
capable of capturing the native state. The next criterion is
whether or not the thermodynamics of the model are correct.
An initial assessment of these two criteria may be obtained
from a scatter plot of the free energy of each state as a
function of the RMSD of the state center from the native
state.

There is some correlation between the free energy of a
microstate and the RMSD of its center from the crystal struc-
ture in this model, as shown in Fig. 1�a�. However, the most
nativelike RMSD of any of the state centers is 4.15 Å,
whereas the simulations reach conformations with RMSD
values as low as 0.52 Å. This discrepancy is a first indication
that there may be significant heterogeneity within the states
of this model. In particular, more near-native conformations
must have been absorbed into one or more other states.
Highly heterogeneous states are likely to violate the assump-
tion that the degree of geometric similarity within a mi-
crostate implies a kinetic similarity, preventing the construc-
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FIG. 1. Scatter plots of the free energy of each microstate �in kcal/mol� vs
its RMSD. �a� The initial 10 000 state model, �b� the 30 000 state model, �c�
the final 10 000 state model, and �d� the final 10 000 state model except that
the average RMSD across five structures in each state is used instead of the
RMSD of the state center.
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tion of a valid MSM. This conclusion is supported by the fact
that the average distance between any conformation and the
nearest cluster center is over 4.5 Å.

Final confirmation of the imperfections of the current
10 000 state model comes from examining the implied times-
cales as a function of the lag time. If the division into mi-
crostates were fine enough to ensure the absence of any large
internal barriers the largest implied timescales should be in-
variant with respect to the lag time for any lag time greater
than the Markov time.31 Figure 2 shows that the implied
timescales for this model continue to grow monotonically as
the lag time is increased. While the growth is not too severe
it should be possible to improve upon this model given the
amount of sampling in the data set.

Besides the structural and kinetic heterogeneity within
states, the monotonic growth of the implied timescales may
also be due to the low number of counts in some states and
the resulting uncertainty in transition probabilities from these
states. For example, there are less than 10 data points in over
100 of the states at the smallest lag time. Even for a state
with ten data points no transition probability can be resolved
beyond a single significant digit. Increasing the lag time will
reduce the number of data points in every state, having par-
ticularly deleterious effects on estimates of transition prob-
abilities from states with low counts in the first place.

B. More states are not always better

As a first attempt at improving our original model we
increased the number of states from 10 000 to 30 000. Our
objective in doing so was to avoid internal barriers by divid-
ing phase space into smaller states. In addition, we hoped to
find more near-native states by pulling low RMSD confor-
mations into their own clusters.

Clustering the data into more states did indeed result in
more near-native states, as shown in Fig. 1�b�. The most
nativelike state center in the 30 000 state model has an
RMSD of 3 Å and there is still a general correlation between
low free energy and low RMSD. The average distance be-
tween any conformation and its nearest state center was also
reduced from 4.5 to 3.5 Å.

However, increasing the number of states also had some
negative effects on the model. In the 10 000 state model
about 1% of the states had 10 or less conformations in them,

whereas in the new 30 000 state model 6% of the states have
10 or fewer conformations. Thus, the uncertainty in the tran-
sition probabilities from many states will be greater. In addi-
tion, while increasing the number of states did create a hand-
ful of more near-native states, it also more than doubled the
number of states with an RMSD over 10 Å. These phenom-
ena are consistent with the fact that the approximate
k-centers clustering algorithm used in this work tends to cre-
ate clusters with approximately equal radii.28,29 When adding
more clusters, this property will tend to result in most of the
new clusters appearing in large sparse regions of phase space
in the tails of the distribution of conformations. As a result of
these shortcomings, the 30 000 state model was found to
have monotonically increasing implied timescales similar to
those for the 10 000 state model and, therefore, is not sig-
nificantly more Markovian than the previous model �data not
shown�.

C. Disregarding outliers during clustering yields
a Markovian model

One approach to dealing with outliers would be to use all
the data during the clustering phase and then discard those
clusters that behave in unphysical ways, such as clusters that
act as sinks. However, such an approach could discard legiti-
mate trapped states. In addition, the tendency of our approxi-
mate k-centers algorithm to select outliers as cluster centers
could easily result in a large fraction of clusters being
discarded.

To deal with the limitations of our clustering algorithm
we reverted to using 10 000 states and increased the amount
of subsampling at the clustering stage from a factor of 10 to
a factor of 100, which is equivalent to using trajectories with
conformations stored at a 5 ns interval for this data set. This
change compensates for the tendency of our approximate
k-centers algorithm to select outliers as cluster centers by
reducing the number of available data points in the tails of
the distribution of conformations at the clustering stage.
Thus, increasing the degree of subsampling at our clustering
stage focuses more clusters in dense regions of phase space
where more of the relevant dynamics are occurring. The re-
maining data can then be assigned to these clusters, so no
data is thrown out entirely. Incorporating the remaining data
in this manner will tend to enlarge clusters on the periphery
of phase space because they will absorb data points in the
tails of the distribution of conformations. More central clus-
ters, on the other hand, will tend to stay approximately the
same size. The number of data points in every cluster should
increase though, allowing better resolution of the transition
probabilities from each state.

A very simple kinetically inspired clustering scheme
could be implemented by subsampling to select N evenly
spaced conformations �in time� as cluster centers. In this case
a large number of clusters would appear in dense regions of
phase space while there would be very few clusters in sparse
regions. Our current approach is an intermediate between
such a kinetically inspired clustering and the purely geo-
metrically defined clustering used in our first two models. It
is intended to have some of the strengths of both
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FIG. 2. Top ten implied timescales for the initial 10 000 state model.
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approaches—i.e., fine resolution everywhere as in the geo-
metric approach but even more so in dense regions of phase
space as in the kinetic approach.

In fact, subsampling more at the approximate k-centers
clustering stage and then assigning the remaining data to
these clusters does improve the structural, thermodynamic,
and kinetic properties of the model. Based on our experience
with this data set and a few others �RNA hairpins and small
peptides, data not shown� a good starting point is to sub-
sample such that 10N conformations are used to generate N
clusters and conformations used during the clustering are
separated by at least 100 ps. The remaining data should then
be assigned to these clusters. The degree of subsampling and
number of clusters may then be adjusted to improve the
model as necessary as the optimal parameters will depend on
the system. In particular, the optimal strategy may be quite
different for much smaller or larger systems.

Structural agreement: Fig. 1�c� shows that our new
model has state centers with RMSDs as low as 3.4 Å, which
is somewhat higher than the 30 000 state model but better
than the original model. Examination of randomly selected
structures from a number of states revealed that the mi-
crostate center is not always a good representative of the
state. In particular, some near-native states have a dense
pocket of very low RMSD conformations and a handful of
outliers. In such cases our approximate k-centers clustering
algorithm will select a conformation in between the dense
pocket of low RMSD states and the outliers28 when really a
structure from the denser region would be more representa-
tive of the state. A further improvement in the structural
characterization of the model is made possible by calculating
the average RMSD over five randomly selected conforma-
tions from each state instead of just the state center, as shown
in Fig. 1�d�. This analysis reveals that the most nativelike
state has an average RMSD of about 1.8 Å. To illustrate the
agreement between this state and the crystal structure Fig.
3�a� shows an overlay of three randomly selected conforma-
tions from this state with the crystal structure. An interesting
future direction would be to further validate near-native
states by comparing them directly with the experimental data
rather than the model thereof.

Thermodynamic agreement: As discussed in the intro-
duction, we cannot calculate the equilibrium distribution of
villin analytically so we do not have an absolute reference
point to judge our model against. However, there are some
promising features of the thermodynamics of the model that
lend it credibility. The most populated state has about 4% of
the total population and has an average RMSD of 2.3 Å.
Figure 3�b� illustrates the agreement between three random
conformations from this state and the crystal structure. The
state with the lowest average RMSD also has the fifth high-
est population, which is about 2% of the total population,
and about 12% of the conformations are in states with aver-
age RMSD values less than 3 Å. There is also a reasonable
correlation between the RMSD and the free energy, as shown
in Fig. 1�d�. Our results seem to be robust with respect to the
method used for calculating the equilibrium distribution as
well, as discussed in Appendix A. Finally, the populations
from the MSM are consistent with those from averaging over

the raw data in successive windows of the simulation time,
indicating that the MSM thermodynamics are in agreement
with the underlying potential if not experiment �data not
shown�.

Here it is important to note that none of the simulations
were started from the native state. While this is not formally
a blind prediction �since the crystal structure has been previ-
ously reported20�, it is promising that so many simulations
folded under the given potential, allowing one to not merely
reach the folded state but predict its structure ab initio. It will
be interesting to see if this procedure can yield similar results
in a blind prediction, or at least when structural criteria are
not used as a basis for adjusting the model as in this work.

Kinetic agreement: Another promising feature of this
model is that there are no fewer than 12 data points in every
state, indicating that this model may be able to better resolve
the transition probabilities for most states. In fact, the im-
plied timescales for this model do seem to level off as the lag
time is increased. Figure 4�a� shows that the longest times-
cales level off at a lag time of about 15 ns but increase
moderately at longer lag times. Figure 4�b�, however, shows
that the implied timescales are level within error from 15 to
60 ns. After about 35 ns there is an increase in the statistical
uncertainty in the implied timescales, explaining their appar-
ent growth in Fig. 4�a�. After 60 ns the statistical uncertainty
becomes enormous so implied timescales beyond this point
are not shown. Thus, this model appears to be Markovian at
lag times of 15 ns and beyond.

The longest implied timescale for this model is about
8 �s. While this is quite long relative to the experimentally

A

B

FIG. 3. Three representative structures for �a� the lowest RMSD state in the
final model and �b� the most probable state in the final model overlaid with
the crystal structure �red�. The phenylalanine core is shown explicitly for
each molecule.
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predicted folding time of 720 ns at 300 K,19 it is consistent
with previous simulation work suggesting that the experi-
mental measurements may be monitoring structural proper-
ties which relax faster than the complete folding process.21 In
that study, the authors found that a surrogate for the experi-
mental observable was consistent with the experimental mea-
surements but that longer timescales on the order of 4 �s
were present when monitoring the relaxation of a more glo-
bal metric for folding. Ensign et al.21 also found timescales
as high as �50 �s by applying a maximum likelihood esti-
mator to a subset of the data with little folding. While this
timescale is much longer than any of the implied timescales
in our MSM, it is not inconsistent with our model because
the rates for transitioning between some states in an MSM,
when fit using a two-state kinetics assumption, may be
slower than the implied timescales. Ensign et al.21 likely
identified one of these slow rates by focusing on a subset of
the data. For a more detailed discussion of this topic with a
simple example see Appendix B.

The components of the left eigenvector corresponding to
the longest timescale give information about what is occur-
ring on this timescale. That is, states with positive eigenvec-
tor components are interchanging with states with negative
components and the degree of participation in this aggregate
transition is given by the magnitude of the components.10

Figure 5 demonstrates that the longest timescale in our
model does correspond to folding by showing that it corre-
sponds to transitions between high and low RMSD states.

Numerous states do not participate strongly in this transition,
explaining the streak of points with eigenvector components
near zero.

For further confirmation that the MSM is an accurate
model of the simulation data we compared the predicted time
evolution of the population of the native state with the raw
simulation data, where the native state was defined as all
microstates with an average C� RMSD to the crystal struc-
ture less than 3 Å. Figure 6 shows that there is good agree-
ment between the MSM and raw data.

While the time evolution of state populations is a good
test of our MSM, often we will want to compute the time
evolution of some observable to make comparisons with and
predictions of experiments. As an example we compare the
predicted time evolution of the C� RMSD to the actual time
evolution of the RMSD in the raw data for each of the nine
initial configurations. The means by which we calculated the
RMSD from the MSM is described in the Sec. II. Measuring
the time evolution of the RMSD from the raw data is simply
a matter of measuring the average RMSD over the simula-
tions started from the given initial structure at every time
point. We also included a reduced representation of the raw
data in this comparison. In the reduced representation each
trajectory is represented as a series of states rather than a
series of conformations. The average RMSD at a given time
point is then calculated by averaging the RMSD of the states
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FIG. 4. Top ten implied timescales for the final model. �a� The implied
timescales at intervals of 1 ns. �b� The implied timescales with error bars
obtained by doing five iterations of bootstrapping at an interval of 5 ns.
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each of the relevant trajectories is in. It is important to note
that we used the average RMSD across five randomly se-
lected conformations �and the variance thereof� for each state
rather than the RMSD of the state centers in these compari-
sons. Just using the RMSD of the state centers resulted in
poor comparisons since they are not truly representative of
the state, as discussed above.

Very good agreement �i.e., within the uncertainties of the
observables� was found between all three representations for
seven of the nine starting configurations, an example of
which is shown in Fig. 7�a�. In these cases the MSM was
found to capture both the mean and variance of the time
evolution of the RMSD to high precision. The agreement
was less strong for the two remaining starting conformations,
as shown in Fig. 7�b�. In these cases the reduced representa-
tion agreed well with the raw data, showing that our states
are structurally sufficient to capture the correct behavior. The
mean RMSD from the MSM does not agree as well with the
other two representations, though the true mean is still within
the variance of the prediction from the MSM. Note that this
variance, as well as all the other variances shown in Fig. 7,
are just due to the variance in the RMSD within each state
and do not include any of the statistical uncertainty in the
model. Their large magnitude is an indication of the hetero-
geneity of villin folding.

The discrepancy between the MSM predictions and the
other two representations for two of the starting structures
indicates that our model still has some subtle memory issues
in a subset of the states. Interestingly, the two conformations

where the MSM agreed less well with the raw data were
found to be faster folding than the other seven initial con-
figurations in a previous study.21 It would appear that the
slower folding trajectories are dominating the equilibrium
distribution, causing all the MSM predictions to level off at
about 6 Å, which is too high for the two fast folding initial
configurations. Similar results were found with other observ-
ables, such as the distance between the Trp23 and His27
residues that was previously used as a surrogate for the ex-
perimental observable used to measure the folding time21

�data not shown�.

D. Remaining issues

The most probable cause of any subtle memory issues in
our model is the existence of internal barriers within some
states. As discussed previously, a state with a sufficiently
high internal barrier could cause transition probabilities from
that state to depend on the identity of the previous state. In
particular, simulations started from one initial configuration
could tend to enter and exit a state in one way while simu-
lations started from a different initial configuration could
tend to enter and exit the same state in a completely different
way.

To test for the existence of internal barriers we calcu-
lated independent MSMs for each initial configuration. Each
of these MSMs used the same state definitions, however,
only simulations started from the given starting conformation
were used to calculate the transition probabilities between
states. All of these models agreed well with the raw data. For
example, Fig. 8 shows good agreement for the starting struc-
ture previously used as an example of the poorest agreement
between the full model and the raw data �shown in Fig. 7�b��.

This improved agreement indicates that some states do
indeed have internal barriers. Moreover, the seven conforma-
tions for which the full model best reproduced the raw data
probably have the same behavior in these states while the
two initial configurations with poorer agreement between the
full MSM and the raw data have a different behavior in these
states. The discrepancy then occurs because transition prob-
abilities for these states in the full MSM will be a weighted
average of the two types of behavior. The two starting con-
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FIG. 7. Comparison between the time evolution of the RMSD in the MSM
�blue�, the reduced representation �yellow�, and the raw data �black� for �a�
an example of good agreement and �b� an example of the worst case sce-
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FIG. 8. Improved agreement between the MSM and raw data for the ex-
ample of poor agreement from Fig. 7�b� obtained by building the transition
probability matrix from simulations started from this starting structure
alone. The error bars represent one standard deviation in the RMSD.
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formations that contribute less heavily to this weighted aver-
age are then captured less well by the full MSM.

In an attempt to address this problem we tried increasing
the number of states to 30 000. This model may have had
some structural advantages and given a slightly lower Mar-
kov time, however, it still suffered from the same subtle
memory issues as the 10 000 state version �data not shown�.
Models with even more states were not attempted as they
would greatly increase the number of states with very few
counts and, therefore, increase uncertainty in the model.
These issues may be resolved by identifying those states with
internal barriers and splitting them further. However, such
hand-tuning is beyond the scope of this work, which focuses
on the performance of automated procedures for constructing
MSMs.

IV. CONCLUSIONS

Our analysis of the villin headpiece shows that the auto-
mated construction of MSMs using MSMBUILDER is now at a
point where it can be applied to full protein systems, a step
beyond the small peptides that have been studied in the
past.11,32 This advance was made possible by the proper ap-
plication of our approximate k-centers clustering algorithm.
A naïve application of this algorithm to a molecular simula-
tion data set may result in a mediocre state decomposition
because outliers in sparse regions of phase space are likely to
be selected as cluster centers. To compensate for this ten-
dency, one can subsample at the clustering stage, effectively
disregarding many of the outliers and focusing the clusters in
more relevant regions of conformational space. Data not in-
cluded in the clustering phase may then be assigned to the
resulting model to maximize the use of the available data.
General guidelines for applying this result are given in Sec.
III C.

To demonstrate that our MSM is a reasonable map for
villin’s underlying free energy landscape, we showed that it
is capable of accurate structure prediction and its thermody-
namics and kinetics are consistent with the raw simulation
data. Thus, we have laid a foundation for implementing an
automated adaptive sampling scheme capable of constructing
models with the minimum possible computational cost. The
fact that our model captures both the mean behavior and
heterogeneity of villin folding will also allow for more accu-
rate comparisons with experiments and predictions of other
experimental observables in a future work on the biophysics
of villin folding. By applying this methodology to multiple
systems we hope to understand general principles of protein
folding. Of course, there is still room for improvement. Fu-
ture work on estimating reversible transition matrices from
simulation data, clustering, adaptive sampling, and exploring
the connections between MSMs and transition path
sampling18,33 could extend the accuracy and applicability of
MSMBUILDER.
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APPENDIX A: ESTIMATING TRANSITION MATRICES
AND EQUILIBRIUM DISTRIBUTIONS

Given our simulation data and assignments thereof to
states, it is necessary to estimate the transition probability
matrix and the corresponding equilibrium distribution. We
have experimented with a number of such methods, all of
which give results that are similar to within error for this data
set. However, this property should not be assumed of other
data sets a priori.

First, we show the standard method for estimating the
transition probability matrix T��� �or just T for simplicity�.
The entries of T are the probabilities of transitions from state
i to state j in time �, that is, Tij = P�i→ j�. To estimate this, let
Cij =C�i→ j� be the number of observed transitions from i to
j. Then a reasonable estimate �a maximum likelihood esti-
mate� is Tij =Cij /Ci, where

Ci = �
j

Cij �A1�

is the number of observed transitions starting in state i.
To estimate the equilibrium distribution of T, one merely

has to find the stationary eigenvector of T. Under ideal con-
ditions �if the model is ergodic and irreducible�,34 the station-
ary eigenvector e is unique and can easily be computed by
repeated multiplication of some initial probability density by
T, as in Eq. �1�. Similarly, one could use standard eigenvalue
routines to find the eigenvector corresponding to an eigen-
value of 1.

A possible problem with the standard estimate for T is
that the resulting model might not satisfy detailed balance

eiTij = ejTji, �A2�

where ei is the equilibrium probability of state i. The naïve
solution to this is to symmetrize the count matrix by adding
its transpose, which amounts to including the counts that
would have arisen from viewing the simulations in reverse.
Clearly this procedure is inappropriate for situations not at
equilibrium; nonetheless, we sometimes find this procedure
useful for equilibrium data due to its ease. Furthermore, if
the underlying count matrix is symmetric, one can show that
the equilibrium distribution can be obtained simply by divid-
ing the number of observations in each state by the total
number of observations.

A somewhat more complicated procedure to ensure re-
versibility is using a maximum likelihood estimate con-
strained to the set of models satisfying detailed balance. To
achieve this, assume that we are given the observed count
matrix C. By exploiting the equivalence between this count
matrix and a random walk on an edge-weighted undirected
graph,35 we then estimate an additional count matrix, X,
which we require to be symmetric. We compute X by maxi-
mizing the likelihood of X given C; this assumption gives a
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set of equations that allow the self-consistent calculation of
X. More formally, if C is the observed counts, and X is a
symmetric matrix that approximates C, then the likelihood is

L�X	C� = 

i,j
�Xij

Xi
�Cij

. �A3�

Maximizing the likelihood yields the following equation,
which we solve by self-consistent iteration,

Xij =
Cij + Cji

Ci

Xi
+

Cj

Xj

, �A4�

where Ci and Xi are defined as the row sums of C and X,
respectively, as in Eq. �A1�. In our experience, this method
works but it can be slow for the large matrices we consider.
Furthermore, statistical noise in the count data can dominate
the resulting equilibrium distribution and even cause the self-
consistent iterations to diverge.

A final method is that of Bacallado et al.,36 which uses
Bayesian inference with a prior on the space of matrices
satisfying detailed balance. This method is formally the most
sound, as it uses Bayesian inference and includes a powerful
prior. However, it is much more computationally demanding
than the other methods. Thus, this method was also applied
to the data in order to assess the validity of the simpler
methods.

We find that the four methods mentioned above give
similar results for the underlying equilibrium distribution of
this data set, indicating that we have achieved equilibrium
sampling. As such, we have used the naïve method of sym-
metrizing the matrix due to its computational efficiency �and
the fact that we have so much data that our data set is very
close to having reached equilibrium�. However, in general,
we stress that either the maximum likelihood or Bayesian
methods should be used.

APPENDIX B: THE POSSIBILITY OF LONGER
TIMESCALES THAN THE IMPLIED TIMESCALES

Here we show a simple model demonstrating that the
rates for transitioning between some states in an MSM under
a two-state assumption �as used in the maximum likelihood
approach of Ensign et al.21� may be slower than the implied
timescales. First we define a four state system that satisfies
detailed balance

T��� = 
0.949, 0.050, 0.001, 0.000

0.001, 0.949, 0.000, 0.050

0.001, 0.000, 0.998, 0.001

0.000, 0.001, 0.001, 0.998
� .

This system is depicted in Fig. 9�a�.
The eigenvalues of this system are 1, 0.997, 0.95559,

and 0.94141 and we will assume a lag time of 1 in arbitrary
units. Thus, disregarding the eigenvalue of one correspond-
ing to the equilibrium distribution, there are three implied
timescales: 332.785, 22.0139, and 16.5627.

We can write the probability of transitioning between
two states as

p = 1 − e−�/�, �B1�

where � is the average timescale for the transition �this no-
tation deviates from the standard notation of � but avoids
confusion with the lag time�. Rearranging, we find

� =
− �

ln�1 − p�
. �B2�

Plugging our transition probabilities into this equation we
arrive at the average timescales for transitioning between
each pair of states shown in Fig. 9�b�. Many of these times-
cales are as high as 1000 units, much greater than the largest
implied timescale of �332 units. In principle, one could
monitor these average timescales, resulting in apparent ti-
mescales longer than the implied timescales of the system.
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