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Protein-Protein
Interaction
Network of Yeast

Networks in biology
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Experimental data shown as
networks

(a) Regulatory network

(b) Synthetic lethal interactions network
A where edges correspond to pairs of
() (b) nodes whose loss causes the
disconnection of nodes A and F.

B D B D (c) Expression correlation network,
where pairs of genes whose
expression are correlated under

& \O/O E C E different conditions define edges.
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What do networks tell us?

1) The structure of these networks becomes now a new entity that can be studied.
* How these networks came about?
 How does the structure of the network or its components relates to their function?

2) We can make use of existing network information to interpret better new
experimental data:

 What interactions connect genes that are differentially regulated with a certain
treatment?

 What is the likeliest mechanism to explain the observed behavior of a number of
proteins?



Glossary
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Glossary

A cyclic graph M

OWOEO (&)
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Two isomorphous
graphs

A complete graph

Nodes 1,2,5
form aclique
of size 3.



Some Network Properties

How do you tell whether two networks are
"similar"?
* Global Network Properties
— Degree distribution
— Network diameter
— Clustering coefficients

* Local Network Properties



Degree distribution of a network

The degree of a node is the number of edges (connections)
linking to the node.

The degree distribution, P(k), describes the probability that a
node has degree k.

Erd6s—Rényi random networks have a Poisson degree
distribution

Scale-free networks have a power-law degree distribution P(k)
~ k™, where y is a positive number



Network diameter

e The smallest number of links that have to be

traversed to get from node x to node y in a network
is called the distance between nodes x and .

* A path through the network that achieves this
distance is called shortest path between x and .

* The average of shortest path lengths over all pairs of
nodes in a network is called the network diameter.
— Erd6s—Rényi random networks: ~ log n

— Scale-free random networks with degree exponent 2 <y <
3 (i.e., most real-world networks): ~log log n.



Clustering coefficient

The clustering coefficient of a vertex in a O
graph quantifies how close the node and its

neighbors are to being a clique (complete

graph)

The clustering coefficient of node v in an c=1
undirected network is defined as C, = 2e,/
[n,(n,=1)], where v is linked to n, neighboring
nodes and e, is the number of edges amongst
the n, neighbors of v.

For a directed network C,=e,/[n,(n,-1)]
The average of C,over all nodes v of a Q

network is the clustering coefficient C of the
whole network and it measures the tendency
of the network to form highly interconnected
regions called clusters.

Example
clustering
coefficient on
an undirected
graph for the
shaded node i.
Black line
segments are
actual edges
connecting
neighbors of J,
and dotted red
segments are
missing edges.



Local characteristics of networks

* Local characteristics within a network are
associated with individual nodes, edges or

subgraphs.

* These characteristics provide information
about the role of these network components

within the network as a whole.



Local Network properties

* Degree: Number of connections to a node (Divided into ‘in- QO Ga
degree’ and ‘out-degree’ for directed systems) PN,

* Centrality (importance of a node)

— Degree centrality (Important nodes have more connections to other
nodes) "Hubs"

— Closeness centrality (Important nodes have low average distance between
them and other nodes)

— Betweenness centrality (Important nodes are those that make paths
within the network short)

e Subgraphs
— Cliques (complete connected subgraph)
— Motifs (Graphlets) : a statistically overrepresented subgraph in a network



Graphlets (network motifs)
of up to 5 nodes
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Graph representations

a9
59
7@
An n x n adjacency matrix representation An adjacency list, an array of [1 ... n] lists
vertex 1 2 3 4 5 6 7 L. ([1,2),(1,3D
A L (21123
3 1 1.0 0 0 1 0 Ly: (13,1}, 13. 2}, 13. 6D
4 0 0 0 0 1 0 0 La: (14,5
5 00 0 1 0 0 1 Ls: (5,4}, {5.7D)
6 0 0 1 0 0 0 0 Lg: ({6,3))
7 0 0 0 0 1 0 0 L. ({7.5))



Trade-offs
Adjacency Matrix vs. Adjacency List

Each entry in a adjacency matrix requires one bit,
requiring ~ n?/8 bytes of storage space.

An adjacency list for an undirected graph requires 8e
bytes of storage (each edge -> two entries that use 4
bytes, on a 32-bit computer)

A graph can have at most n? edges (including loops),

Define density d=e/n?. So, when 8e> n?/8, an
adjacency list occupies more space, i.e., when d>1/64.

Thus, only sparse graphs are more efficiently stored as
adjacency list.



Trade-offs
Adjacency Matrix vs. Adjacency List (2)

* |tis easy to find all vertices adjacent to a given
node in an adjacency list. In an adjacency
matrix, you must scan an entire row (O(n)
time)

* |tis easy to find whether two nodes have an
edge connecting them in an adjacency matrix.
In an adjacency list, you need to scan a row in
(O(n) time, where n is minimum degree of
nodes in the adjacency list)



Degree distribution of complex
networks
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FIGURE 3.3 Degree distributions of complex networks. (a) A lattice-like network. Each
vertex has the same degree k (for periodic boundary conditions or large networks, such that
vertices at the border can be neglected). (b) An Erdos-Rényi random network. The degree
distribution is homogeneous, the degrees of the vertices are centered around the average value.
{¢) A scale-free network. The degree distribution is highly inhomogeneous and follows a power
law of the form p(k) ~ k7, where y denotes the degree exponent. While most vertices have a
low number of connections only, a smaller number of vertices is highly connected.



Some scale-free networks

Social networks, including collaboration networks.
Protein-Protein interaction networks.
Sexual partners in humans.

Many kinds of computer networks, including the World Wide Web.
Semantic networks.



Characteristics of scale-free
networks

Occurrence of "hubs" more frequent than in random
networks.

Tend to remain connected even if a few nodes are lost.
However, if hubs are lost then network usually falls apart into
several subnetworks.

The fraction P(k) of nodes in the network having k
connections to other nodes ~ k¥

For 2 <y < 3 will also have ultrasmall diameter d ~ In In N. The
diameter of a growing scale-free network might be considered
almost constant



Lethality and centrality in protein networks
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A Random network B Scale-free network
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Generative Models of Networks

- . (a) T . (b) (a) \J (b) w&.

VA
(c) (d)
@
(e) ()

Example of an equilibrium network, a A scale-free network (Barabasi-Albert
classical random graph (the Erdds- model). At each step a new node is
Réyi model). Pairs of randomly chosen added and two new edges from the
vertices are connected by edges. The new node to the old ones.

total number of vertices is fixed.



The origin of the scale-free topology and hubs
in biological networks

S
After duplication
Proteins s

Nature Reviews | Genetics



Geometric Network

 Geometric random graphs in 2-D Euclidian space are generated as follows:

 We place N nodes uniformly in the unit square and two nodes are
connected by an edge if and only if they are within Euclidian Distance r. (3
and 4-d cases are analogous)

* For protein-protein interactions, compute path lengths up to length K.
compute 2 most positive Eigen values and corresponding eigenvectors of
the scaling matrix from the connectivity data. Embed nodes in 2-
dimensional space. Search for an r such that the resulting geometric graph
matches the given network.



Random geometric network

-------



NETWORK MOTIFS
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transcription neuron synaptic ecologlcal
network connection network food web

X—Y represen X Y
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R. Milo et al., Science 298, 824 -827 (2002)



How to assess significance of

A B

randomized networks

real network

R. Milo et al., Science 298, 824 -827 (2002)



Common network motifs

Network Nreal Nteal Nreal
Gene regulation — X Feed- X Bi-fan
(transcription) V forward
Y loop
A4 Z w
> 7
Neurons — X Feed- X Y Bi-fan X Bi-
V forward | —>§ | v N parallel
Y loo Y, Z
7 ? Z W N ¥
> 7 w
Food webs X Three X Bi-
V chain £ N parallel
Y Y Z
Vv ¥
Z \id
Electronic circuits X Feed- X Y Bi-fan ¥ X N Bi-
(forward logic chips) Vv forward 7 parallel
Y loop N g
v Z W e
Z
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional ﬂ \ node node
multipliers) feedback feedback
Y&€— Z loop Z w 7 <—W loop
World Wide Web X Feedback X Fully X Uplinked
® with two Z’ N connected / \ mutual
mutual triad dyad
Y€ 72 Y<—> Z
7 dyads



Concentration of Feedforward loop
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R. Milo et al., Science 298, 824 -827 (2002)



Dynamic features of the SIM motif




Types of feed forward loops

a
Coherent FFL
Coherent Coherent Coherent Coherent
type] type 2 type 3 type 4
X X X X
[ Y [ Y [ | [ |
z z z z
Incoherent FFL
Incoherent Incoherent Incoherent Incoherent
typel type 2 type3 type4
X X X X
[ | [ ! [ Y [ Y
Z Z Z Z
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Dynamic features of the coherent
feedforward loop
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Why Pathway Analysis?

L

Chips / Patients

W Siage §
B Sage:
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Clinical data [ I B e

Genes

3533 455533535535 4%35581%

HEPATL

ARfieDIA  AlDOC

8 list members in 34 node network



Enrichment Analysis
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Enrichment Statistics

In probability theory and statistics, the hypergeometric distribution is a discrete
probability distribution that describes the number of successes in a sequence of n
draws from a finite population without replacement.

Nm —m

Sample

Group
A database contains N genes of which m
belong to a group (e.g., a network) The )

e X m\ {N—m

hypergeometric distribution describes | (A) ( ke )
the probability that exactly k objects f(/it; JV, m, n.‘) = - .
belong to this group in a sample of n (‘_n )

genes observed in an experiment:



Hypergeometric distribution

The probability that k or more objects belong to n ( m ) ( N-m
this group in a sample of n genes observed in an P= z k n-k
experiment is the sum of the probabilities for k,
k+1, ..., n: ( N )

k n

The hypergeometric test is identical to the corresponding one-tailed version
of Fisher's exact test

Note: for small k, it has been suggested to use k-1 to get a more robust estimate for
P called EASE score. Hosack et al. 2003, Genome Biol.



How to create a dense network

+ Assumption: Biological

function involves locally
dense networks

@—0—0

A dense network can be I \
created by adding genes -O_“_"_'Q.
\
along the shortest paths v - O—e®

that connect members of

your gene list (using
Dijkstra’s Shortest Path
Algorithm).

Object not included in network

Object included in network O . E—



Dijkstra's algorithm

* A graph search algorithm that solves the
single-source shortest path problem for a
graph with non negative edge path costs,
outputting a shortest path tree.



Dijkstra's Shortest Path Algorithm
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http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html



Algorithm running: red arrows point to nodes reachahle from the starthode.
N The distance to: b=4, d=1. Node d has the minimum distance.
Any other path to d visits another red node, and will he longer than 1.
MNode d will he colored orange to indicate 1 is the length of the shortest path to d.
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Step 2: Red arrows pointto nodes reachable from nodes that already have a final distance.
Al The distance to: b=4, e=33, g=23. Node h has the minimum distance.

Any other path to b visits another red node, and will be longer than 4.

MNode b will be colored orange to indicate 4 is the length ofthe shortest path to b.
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Step 3: Red arrows pointto nodes reachable from nodes that already have a final distance.
IN: The distance to: ¢c=6, e=16, g=23. Notice that the distance to e, has changed!

MNode ¢ has the minimum distance.

There are no other arrows coming into c.

vl MNode ¢ will be colored arange to indicate 6 is the length of the shortest path to ¢.
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* A few more steps ...



'Algorithm has finished, follow orange arrows from starthode to any node to get
IN: the shortest path to the node. The length of the path is written in the node.
press <RESET= to reset the graph, and unlock the screen.

12 ¢

@ Previous{d}=a
Previous{b}=a

12 Previous{c}=b
Previous{e}=d
Previous{j}=c
Previous{g}=d
Previous{f}=c
Previous{h}=g
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Dijkstra's Shortest Path Algorithm

(comments)

* The previous algorithm shows the shortest path from a
given node (a) to all the other nodes in the graph.

* |t can also be used for finding costs of shortest paths
from a single vertex to a single destination vertex by
stopping the algorithm once the shortest path to the
destination vertex has been determined

* If there are more than one shortest paths (say going
through nodes r and s) between source node a and
target node t, then the algorithm would be repeated to
find the shortest paths from rto tand s to t.



Network creation algorithm

(Ingenuity Pathway Analysis)

Assumption: Biological function involves locally dense networks

O
Genes In Genes in Specific
Color neighborhood network Connectivity
1 8 3 0.18
L] 7 2 0.12
[ ] 7 3 0.19

How to expand a network

most

1) Sort genes in focus list so we can start
with most interconnected genes.

2) Select most connected gene. Add to it
other genes one at a time, in a way as to
have the most connected pathway, until
maximum network size (35) is reached.
3) If maximum size cannot be reached,
combine smaller networks into larger
ones.

4) If network size is < 35, add some more
genes to provide biological context.

5) User may combine several small
networks to one of < 210 nodes.

connected



Auto-expand
algorithm

e Builds sub-networks around
every object from the

@
uploaded set consisting of VAR ) /
nearest neighbors. NI /'

e The expansion halts when the "_/,O\_”_"_’/O\_"
sub-networks intersect. - /o<—O—»o o _o;\—o'\
 The objects that do not o o/ \o—w

contribute to connecting sub-

networks are automatically
truncated and there is no user
control over the size of the
network. N




Auto-expand algorithm

1 B H
1 (A,B) H
=H

| 1 H prune
C 12 A #
D 12 A
E 1/2 B H
F 12 A
G 1/4 A

(Number of new nodes limited
to a preset max)

T MmO w >



Modification of Shortest Path Algorithm

Self regulations

require that a transcription factor be included in the path.



Direct interactions




Community Detection

Girvan-Newman algorithm
The algorithm's steps for
community detection are
summarized below:

1) The betweenness of all
existing edges in the network
is calculated first.

2) The edges with the highest
betweenness are removed.

3) The betweenness of all
edges affected by the removal
is recalculated.

4) Steps 2 and 3 are repeated
until no edges remain.



