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Binding sites of restriction enzymes
and transcription factors

e Restriction endonucleases:
— EcoRI: G|AATTC

* Transcription factors:

— glucocorticoid response element ("GRE"):
5'-GGTACANnNnTGTTCT-3'



Two problems in motif analysis

* Given a collection of binding sites, develop a
representation of those sites that can be used
to search new sites and reliably predict where
additional binding sites occur.

* Given a set of sequences known to contain
oinding sites for a common factor, but not
<nowing where the sites are, discover the
ocation of the sites in each sequence and a
representation of the protein.




Motif Searching Tools

Searching tools (pattern matching tools) take as input one or
more sequences and a pattern. They decide whether the
pattern matches the input sequence(s) and if so, where.

Learning tools.

— supervised pattern-recognition tool: take as input as set of sequences
and discover a pattern that all of the sequences share.

— unsupervised pattern-recognition tool: take as input as set of
sequences and discover a pattern that some of the sequences share.



Finding TF-binding sequences

* ChlIP-on-chip or ChIP-seq: Immunoprecipitate
DNA-TF complexes, then either hybridize them
to a microarray chip or sequence them.

* List promoter regions of co-regulated genes.

e SELEX: Systematic Evolution of Ligands by
Exponential Enrichment (or in vitro selection).
A library of random oligonucleotides are
bound to a purified protein, then the bound
ones are identified.



Chromatin Immunoprecipitation and Microarray (ChIP-chip)
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Consensus sequences

ATCGATYxxxRATCGAT or ATCGATYxxxxRATCGAT

This pattern may be written as a “regular
expression”:

ATCGAT[TC].{3,4} [GA]ATCGAT

.... where " means any character, {m,n} means
preceding character repeated between m and n
times, [ABCD] means one character that can be
either A, B, C or D.

Other conventions exist to represent sequence
patterns.



How to define a consensus sequence

TACGAT
TATAAT
TATAAT The -10 region of six promoters

GATACT (Pribnow, 1975)
TATGAT
TATGTT

TATAAT consensus sequence
TATRNT alternate consensus seguence

With no mismatch with 1 mismatch with 2 mismatches
TATAAT 2/6 1/4000 bp 3/6 1/200bp 6/6 1/30 bp
TATRNT  4/6 1/200bp 6/6 1/30 bp



MATRICES

A position frequency
matrix (PFM) records the
position-dependent
frequency of each residue
or nucleotide. PFMs can be
experimentally determined
or computationally
discovered.

A position weight matrix
(PWM) contains log odds
weights for computing a
match score. A cutoff is
needed to specify whether
an input sequence matches
the motif or not. PWMs
are calculated from PFMs.

Pos[A_lc |G [T
01 6 2 8 1

02 3 5 9 0
03 O 0 0 17
04 O 0 17 O
05 17 O 0 0
o6 O 16 O 1
07 3 2 3 9
08 4 7 2 4
09 9 6 1 1
10 4 3 7 3
11 6 3 1 7

sz 2z 40 >» 0 4 v =

IUPAC Meaning
Code
G G

A A
T T

© C



A Position Weight Matrix of log
odds scores

A | —38 19 I 12 10 —48
c| -I5 -3 -8 -10 -3 =32
G| -13 —-48 -6 -7 =10 —48
T 17 —32 8 -9 —6 19

Fig. 2. Weight matrix represenation for —10 region of E.coli pro-
moters. The boxed elements correspond to the consensus sequence
TATAAT.

m;; = log(p;; / b;), where p;; is the probability of

observing symbol i at position j of the motif, and

b; is the probability of observing the symboliin a

background model. Stormo, 1988



Information content
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Eight known ROX1 genomic
binding sites in three S.
cerevisiae genes.

Degenerate consensus sequence.

Frequencies of nucleotides at each position.

Frequencies of nucleotides at each position.

Seqguence logo showing the frequencies scaled
relative to the information content (measure of

conservation) at each position. [=2+2f, log,f,
Energy normalized logo using relative

entropy to adjust for low GC content L D=f ] £,
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in S. cerevisiae. TRt &



Correlation between binding strength
and homology score

Berg and Hippel
(1987) showed by
using statistical
mechanics theory that
the log of base
frequencies should be
proportional to the
binding energy
contribution of the
bases. a0 50 % o R—

HOMOLOGY SCORE

Figure 3. Correlation belween log K k and the homology score calculaled for each promoler
listed in Table 1. The solid line (linear [east squares) has a slope of 0.1086 per homology score
% and an intercept of -0.3634 with a correlation coefficient of 0.83. The dashed lines are
drawn one (long dashes) and two (short dashes) standard deviations from the best fit line. 20
promoters fall within one standard deviation and eleven were belween one and lwo standard
deviations.  The value of log K k at the maximum homology score is 10.5 which would

correspond lo a value for K’kz of f.[S x 10" M7

Mulligan et al., 1984



Independence of bases within motif

e Limitation of position weight matrix is the
assumption that the positions in the site
contribute additively to the total binding
activity.

 Statistical methods (e.g. neural networks)

used to identify which pairs of sites are
dependent on each other.



Correlated bases

(a) (b)
2_
2, 2| ¢ G 1
=1- A 0.19
CC CGAA C 0.16 0.06
ol GGYVGC=EG f_: 0.09
FNOTOLONOO O T N [ | 044 0.06

Fig. 2. (a) Sequence logo plot for the E2F sites predicted by the
GMS-MP. The traditional consensus for the E2F motif 1s the one
trom positions 2 to 10. (b) The joint distribution of the position
pair (1,2), which has been found to be significantly correlated by
the GMS-MP.

Zhou and Liu, 2004



De novo discovery of motifs

MEME: uses expectation maximization
Gibbs Sampler:

PhyloGibbs: Uses pylogenetic information
Weeder: Enumerates motifs

... etc.



DISCOVERING SITES



Stormo and Hartzell, 1989

colel taatgtetgtgctggt TTTIGTGGCATCGGGCCAGAATagegcgtggtgtgaaagactgt TITTTTGATCCTTTTCACALLLAtggaagtccacagtcttgacag
ecoarabop gacaaaaacgcgtaacAAMAGTGTCTATAATCACGGCAgaaaagtccacattgaTTATTTGCACGGCGTCACACTTEgetatgccatageatttttatccatang
ecobglrl  acaaatcccaataacttaattattgggatttgttatatataactttatasattcctasanttacacaaagttaatAACTGTGAGCATGGTCATATTTttatcaat
ecocrp cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcat GTATGCAAAGGACGTCACATTACcgtgcagtacagttgatage
ecocya acggtgctacacttgtatgtagcgcatctttetttacggtcaatcagcadGETCTTAAMTTGATCACGTTTtagaccattttttcgtcgtganactanaaaaace
ecodeop agtgaaTTATTTGAACCAGATCGCATTAcagtgatgcaaacttgtaagtagatttccttAATTGTGATGTGTATCGAAGTGtgt tgcggagtagatgttagaata
ecogale gcgcataaaaaacggctasattettgtgtanacgattccacTAATTTATTCCATGTCACACTTE tcgeatctttgttatgctatggttatttcataccataagee
ecoilvbpr  getccggeggggttttttgttatctgeaattcagtacaAAACGTGATCAACCCCTCAATTE tccctttgotganaaattttccattgtcteccctgtanagetgt
ecolac 2acgcaatTAATGTGAGTTAGCTCACTCATtaggcaccccaggctttacactttatgettecggetegtatgttgtgtggAATTGTGAGCGGATAACAATTTCaC
ecomale acattaccgccaaTTCTGTAACAGAGATCACACAAagcgacggtggagcEtagEggcaaggaggatggasagaggttgccgtatasagasactagagtcegttta
ecomalk ggaggaggcgggaggatgagaacacggcTTCTGTGAACTAAACCGAGGTCat gtaaggaatttcgtgatgttgcttgcasaaatcgtggogattttatgtgegea
ecomalt gatcagcgtcgttttaggtgagttgttaataaagatttggAATTGTGACACAGTGCAMATTCagacacatasasaaacgtcatcgettgeattagaaaggtttct
ecoompa  gctgacaaaaaagattaaacataccttatacaagacttttttttcatATGCCTGACGGAGTTCACACTTgtaagttttcaactacgttgtagactttacatcgee
ecotnaa ttttttaaacattaaaattcttacgtaatttataatctttasaaaaagcatttaatattgetccccgaacGATTCTGATTCGATTCACATTTanacaatttcaga
ecouxul cccatgagagtgaaatTGTTGTGATGTGGTTAACCCAAttagaattcgggattgacatgtcttaccaaaaggtagaacttatacgecatcteatccgatgeaage
pbr-p4 ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgCGCTCTCAAATACCGCACACATgcgtanggaganaataccgcatcaggcgetc
trn9cat CTGTGACGGAAGATCACTTCgcagaataaatasatcctggtgtccctgtigataccgggaagecctgggccaacttttggcgalAATCAGACGTTGATCGGCACG
(tde) gatttttatactttaacttgttgatatttasaggtatttaattgtatancgatactctggaaagtattgaaagt taATTTGTGAGTGGTCGCACATAT gt

1. Each sequence is 105 bases long and contains at
least one CRP site.

2. The 86 20-long words of the first sequence constitute
the first PWM. Each of these is compared with each of
the 20-long words of the next sequence and the best
match to each matrix kept as a two-sequence matrix.

3. Each of those is the compared with the 20-long of the
next sequence and the best match to each matrix kept
again. Repeat for all 18 sequences.

4. The total number of matrices is 94. Plot histogram of
the information contents:

20
15
10

~pEon

9.07 9.55 10.03 10.51 10.99 11.47 11.95 12.43 12.91 13.39



Filtering background sequences

* Many yeast promoters have unxpectedly
common stretches of poly(A) and poly(T)
sequences, and these can appear to be patterns
sought by the motif searching program. But these
patterns occur in many promoters, not just the
ones that are co-regulated.

* |In such cases, one approach is to identify the
weight matrix that maximizes the probability of
binding to the promoters in the collection, given
the background of actual competing sites in the
genome.



Two classes of motif discovery
algorithms

* Multiple alignment methods.

— Return PWM; use local search techniques such as
Gibbs sampling or EM

* Deterministic combinatorial algorithms based
on word frequency counts.

— Search for various sized sequences exhaustively
and evaluate significance.



Enumerative techniques

dictionary-based methods count the number of
occurrences of all n-mers in the target sequences, and
calculate which ones are most overrepresented.

a number of similar overrepresented words may be
combined into a more flexible motif description.

Alternatively, one can search the space of all
degenerate consensus sequences up to a given length,
for example, using IUPAC codes for 2-nucleotide or 3-
nucleotide degenerate positions in the motif

WEEDER describes a motif as a consensus sequence
and an allowed number of mismatches, and uses an
efficient suffix tree representation to find all such
motifs in the target sequences



Consensus-based methods

Enumerate all the oligos of (or up to) a given length, in order to determine
which ones appear, with possible substitutions, in a significant fraction of
the input sequences, and finally to rank them according to statistical
measure of significance.

Drawbacks:
— For motif length of m, there are 4™ candidates to enumerate. O(4™) execution time.
— Too slow.

Motif search can be accelerated by pre-processing the data in an indexing
structure, such as a suffix tree.



Weeder

* Consensus-based method that enumerates
exhaustively all the oligos up to a maximum
length and collects their occurences (with
substitutions) from input sequences.



Suffix Tree

BANANAS %)\
ANANAS BANANAS A S

. ANAS S NAS
. NAS d b d b
) AS NAS S
. 3 Suffix Tree
Q/ b Construction time = O(N)

« Starting from the root of the tree,
each of the sufixes of BANANAS is
found in the trie.

» Because of this organization, you

i ? A A /ﬁk
can search for any substring of the :;> R B y, O palan
word by starting at the root and - b & o
following matches down the tree until i

exhausted. Construction of a suffix tree



Probabilistic Approaches

* Expectation Maximization: Search the PWM
space randomly

* Gibbs sampling: Search sequence space
randomly.



Expectation-Maximization (EM) algorithm

Used in statistics for finding maximum likelihood estimates of parameters in
probabilistic models, where the model depends on unobserved latent variables.
 EM alternates between performing

an expectation (E) step, which computes an expectation of the likelihood by including the latent
variables as if they were observed, and

a maximization (M) step, which computes the maximum likelihood estimates of the parameters by
maximizing the expected likelihood found on the E step.

The parameters found on the M step are then used to begin another E step, and
the process is repeated.



Expectation Maximization
method in motif finding

The weight matrix for the motif is initialized with a single n-mer subsequence, plus a small
amount of background nucleotide frequencies.

Next, for each n-mer in the target sequences, we calculate the probability that it was
generated by the motif, rather than by the background sequence distribution.

Expectation maximization then takes a weighted average across these probabilities to
generate a more refined motif model.

The algorithm iterates between calculating the probability of each site based on the current
motif model, and calculating a new motif model based on the probabilities.

It can be shown that this procedure performs a gradient descent, converging to a maximum
of the log likelihood of the resulting model.



How does EM algorithms work?

Sites in target sequences
AATCAGTTATCTGTTGTATACCCGGAGTCC
AGGTCGAATGCAAAACGGTTCTTGCACGTA
GAGATAACCGCTTGATATGACTCATTTGCC
ATATTCCGGACGCTGTGACGATCCGGTTTG
GAACGCAACCAGTTCAGTGCTTATCATGAA

AATCAGTTATCTGTTGTATACCCGGAGTCC
AGGTCGAATGCAAAACGGTTCTTGCACGTA
CAGATAACCGCTTGATATCACTCATTTGCC
ATATTCCGGACGCTGTGACGATCCGGTTTG
GAACGCAACCAGTTCAGTGCTTATCATGAA

Motif model

AATCACTT

AAéc.AAH

_ AQC.ACT.I.

Starting from a
single site,
expectation
maximization
algorithms such
as MEME*
alternate between
assigning sites to
a motif (left) and
updating the motif
model (right).

Note that only the
best hit per
sequence is shown
here, although
lesser hits in the
same sequence can
have an effect as
well.
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E step

J T
logL = N> > fi,slog(py) +
=1 b=A

T
N(L - ) 2: fb‘ologe(pbfo),
b=A

Let's say we are at the g'" iteration. From the previous steps, we have an
estimate of the population frequency estimates.

» We calculate the probability of observing the data in each sequence assuming
the site starts in each of the possible L-J+1 positions.

*Using these probabilities as weights, add across the positions to find the
expected number of the bases at each position in the site.

*E.g., assume that there is an A in the 15t position of the window that starts at
position 50 in the third sequence. If the probability that the site starts at position
50 in the third sequence is 0.01: add 0.01 A’s to the accumulating expected
number of As in the first position of the site.



M step

 Maximum likelihood estimates for the
population frequencies are just the sample
frequencies when complete data is available.

* Substitute into equation the expected number
of bases for each position in the site from the
E step for the (unavailable) observed number
of bases.

Pbo = fh,(_) = ny /(N |L J])

‘."DJ = fh,i = nh\;"lN~



MEME

* Subsequences which occur in the input DNA sequence are
used as the starting points from which EM converges
iteratively to locally optimal motifs. This increases the
likelihood of finding globally optimal motifs.

 Multiple occurrences of a motif are allowed. Algorithm is
allowed to ignore sequences with no appearance of a shared
motif. So, more resistance to noisy data.

* Motifs are probabilistically erased after they are found, so
more than one motif can be found.



Gibbs sampling

An algorithm to generate a sequence of samples from the joint probability
distribution of two or more random variables. The purpose of such a
sequence is to approximate the joint distribution, or to compute an
integral (such as an expected value).

Gibbs sampling is applicable when the joint distribution is not known
explicitly, but the conditional distribution of each variable is known. The
Gibbs sampling algorithm generates an instance from the distribution of
each variable in turn, conditional on the current values of the other
variables.



Gibbs sampling illustration
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Gibbs sampler (1)

* We have N sequences S, ..., Sy and we seek within each
sequence mutually similar segments of width W.

* The algorithm maintains two evolving data structures:

— a PWM consisting of variables q; 5, ... 9;y and a probabilistic
description of "background frequencies" p,, ..., pr.

— the alighment, a set of positions a,, for k from 1 to N.

* The objective is to identify the most probable common
pattern. This is obtained by locating the alignment that

maximizes the ratio of the corresponding pattern probability
to background probability.

Lawrence et al., 1993



Gibbs Sampler (2)

Initiate algorithm by choosing random starting positions within the various sequences. It then
proceeeds through any iterations to execute the following two steps

1. One of the N sequences, z is chosen either at random or in specified order. The patterns
description and background frequencies are then calculated from the current positions
a, in all sequences kin 1 ... N excluding z.

2. Sampling step. Every segment of width W within sequence z is considered as a possible
instance of the pattern.

* The probabilities Q, of generating each segment x according to the current pattern
probabilities qg;; are calculated, as are the probabilities P, of generating these
segments by the background probabilities p;.

* The weight A,=Q,/P, is assigned to segment x, and with each segment so weighted,
a random one selected. Its position becomes the new a,.

The more accurate the determination of its location in step #1, the more accurate the
determination of this location in step #2. Once some correct a, have been selected by
chance, g;; begin to reflect, albeit imperfectly, a pattern present in other sequences.



INTERPRETING THE BIOLOGICAL
ROLE OF MOTIFS



Regression-based techniques to

iy

10892

identify motifs

Rank all genes by expression and obtain their upstream
sequences

I

Use MDscan to find motifs from most induced
and most repressed genes

1 §

Score each upstream sequence for matches to
each MDscan reported motif

Perform simple linear regression between motif-matching
score and gene expression to remove insignificant motifs

|

Perform stepwise regression on the significant motifs to
find group of motifs acting together to affect expression

4= Pr(xfrom@,, )/Pr(rfromdg) Y, (1

3 S

Conlon et al. 2003



MDscan Motif Finding Algorithm

e Uses 100 highest expressed genes, finds 30
candidate motifs for each width [5,15]

* Confirms motifs using 500 highest expressed
genes

* Repeat for lowest expressed genes



Single Motif Regression
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Linear Regression Model

For each motif:
Y,=a+p,S,, e,

where
Y, = log,-ratio of expression

[ = regression coefficient

Smg = Ssequence score

€, = error




Over-expressing a Transcription Factor
Known binding site: TCTATTGTTT

Motif Regressor (p-value)

AlignAce

MEME

TCTATTGTT (<le-16]
TTTCTATTGT (<le-16)
CTATTGTTTTC (<le-16)
ACTTCTATTGT (<le-16)
TTTCTATTGTTTT (<le-1b]
TTTCTATTGTTTTT (<le-10)
CTATTOTT (l.lle-1b]
ATTGT (1.20e-14)
GGTGGC (1.38e-11)
TATTGTT (1.04e-10)

AARARAAAAAAG

AAGGAAAAAAAGAAAAAAALA
T

AARAAAAAGAAAAGAAAAALA
AAGGAAAAAAGAAA
AAGARAARARL

CGCCCCLEA
FAGCGCTCATGCCGCTGTTTT
AALATARAAALARARALAR
CTGCGGAAAR

[ EELEEELGEEL]

TTCCGCGGA




Multiple Regression Model to
Determine Motifs Working Together

M
Yg — a+2ﬂmSmg +€
m=1

where

Y, = log,-ratio of expression

[ = regression coefficient
S, = Sequence score
M = subset of significant motifs

e, = error




Multiple Motifs Influencing Expression

Motif #

Motif sequence logo

Motif
coefficient
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WHICH ALGORITHM TO USE?



Some motif search tools

Multi-purpose packages

Motif Seanning

TAMO

BEST

TOUCAN2

Expander

TAMO integrates several motf dscovery programs. It includes Ahab
wmmm $CoMNg, evakiation of statistical
significance, dustenng, comparscn CONVersion
MMMW“W
_nttp Mrpenkel mit eduiwebiamo/

Ahab webserver allows users 1o scan for motds in 8 set of sequences.
may be user-specified or selected from a database of pre-defined

BEST Is a sunte of four motd discovery 1ools integrated in a
graphical user interface. BEST incorporates the BioOptmizer
200! used 10 rank and improve the predictive power of the
discoverad mosfs.

it lwebsier o5 uga edul~Che/BEST/

identfies overrepresentod modfs in a set of 5equences, based on a
10rary of Mot matrices.

TOUCANZ provides an interface 10 the Ensembl and EMBL
databases of sequence and annctation. It NCOMPorates tols
for saquance alignment, motif discovery, and scanning.

tip.ihomes esat kuleuven bel-sseds/softwareioucan php
Expander &5 a 100l for analyzing expression data. !mmm
genes, identify over-represented functonal categories in

BloProspector search. BloProspector is a Gibb's sampling program.

AlignACE

CompareProspecion INCOrpOrales ComMparative gendmics,
Diasing the search 10 regions of high CONSSrvason.

niip seqmotits stanford edy

‘The Consensus program finds matfs in a set of unalgned
sequences. PhiyloCon builds on this framework by modeing
CONSenvation across orthologous genes from multiple species.
nttp il wist edu/

AN enumerative motif program that performed well in
a recent comparative analysis of fourteen algorithms.
ntptwww pesolelab it

“The popular EM-based mosf program. Part of the
MEME/MAST system for motif discovery and search.

A Gibbs sampiing algorthm that can identty multiple motifs in
8 50QUENCE 81 USING 8N Nerative MAsking Procecure.
nilp atias med harvard edw

Motif Discovery Programs

ST allows users 10 scan sequence databases for matches 10 motifs. It
duces detaled annotations and Sgures for maiches in the input




An assessment of motif discovery tools
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Pairs of motif finding tools work better

than individual ones.

Table 3 Correlation coefficient (nCC) for all pairs of tools?

QuickScore
GLAM
SeSiMCMC
MITRA
Consensus
Improbizer
AlignACE
MotifSampler
MEME3
MEME
Oligo/dyad
ANN-Spec
YMF
Weeder

Quick
score

0.049
0.042
0.067
0.065
0.088
0.071
0.089
0.091
0.073
0.085
0.094

GLAM

0.041

SeSi
MCMC

MITRA

Consen

Improb

0.052
0.068
0.083
0.082
0.077
0.052
0.111
0.103
0.102
0.091
0.082
0.100
0.100

Align ACE

0.068
0.066
0.071
0.084
0.079
0.089
0.068
0.099
0.093
0.095
0.099
0.085
0.114

Motif
sampler

0.072
0.084
0.091
0.097
0.109
0.117
0.097
0.068
0.124
0.120
0.136
0.122
0.146

MEME3

0.072
0.088
0.081
0.106
0.084
0.096
0.102
0.112
0.069
0.100
0.119
0.114
0.121

MEME

0.074
0.086
0.088
0.105
0.077
0.098
0.091
0.119
0.106
0.073
0.112
0.110
0.129

Oligo/
dyad

looss |
0.052
0.058
0.070
0.074
0.083
0.088
0.103
0.094
0.104
0.071
0.089
0.092

ANN-
Spec

0.064
0.082
0.103
0.101
0.082
0.112
0.091
0.127
0.129
0.123
0.106
0.074
0.131

YMF

0.061
0.090
0.104
0.103
0.081
0.091
0.115
0.130
0.126
0.121
0.107
0.118
0.084

Weecer

0.084
0.113
0.092
0.131
0.098
0.117
0.119
0.134
0.114
0.121
0.130
0.117
0.137

‘o164 0169 o162 o167 0157 oann oiec EHEEN otes o164 0173 0167 0167 0156

*The primary tool is listed in the row header and the secondary tool in the column header. The score shown for the same tool on both axes (that is, along the main diagonal) is the individual nCC
score from Figure 1. Numerical values are categorized by color, ranging from dark blue (poorer predictions) to red (better predictions).

Tompa et al., 2005



Motif Discovery Workflow
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Assemble input data. Results may be improved by
restricting the input to high-confidence sequences,
Some algorithms achieve improved performance by
using phylogenetic conservation information from
orthologous sequences or information about protein
DNA-binding domains.

Choose several motif discovery programs for the
analysis. For recommended programs see Figure 3.

Test the statistical significance of the resulting
motifs. Use control calculations to estimate the
empirical distribution of scores produced by each
program on random data.

Clustering and post-processing the motifs. Motif
discovery analyses often preduce many similar motifs,
which may be combined using clustering. Phylogenetic
conservation information may be used to filter out
statistically significant, but non-conserved motifs that
are more likely to correspond to spurious sequence
patterns.

Interpretation of motifs. Algorithms exist for linking
motifs to transcription factors and for combining motif
discovery with expression data.

Maclsaac & Fraenkel, 2006



How to cluster motifs?

TATAATTA
TATTATTA
ATAATTAAG
TATTAT
TATCATT
TAATT

TTACGTAA
TTATATAA
TATTTAAA
ATTATTTAA
TTATCTAA
GCCTTACCTAA



K-means clustering
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What is the “distance” between these motifs?



HOW TO PREDICT BINDING SITES



Scanning for Motifs with PWMs

Position Weight Matrices define an additive scheme for scoring sequence. Often,
the weights are simply log likelihood ratios of observing a nucleotide in a binding site
relative to genomic background. Sequences are scanned by scoring every site, on
both the forward and reverse complement strands, and identifying matches as
shown in the schematic below:

=>Scandirection
tgcggaatgg_g_gt_t_ggtttttatcaaaaaaaacacccgcacatgcatcagtgtcatat
1[2[3]4][5]6 MATCH
Al-5]-8[1]-1 -4 0 Yes
C -2 0 -3 2 = threshold
G -1 -2(5|0|1 No
T 1]-3]-7 RO NO MATCH

2+4+2-3+3- 3#5

A particular site is evaluated by adding up the entries from the scoring matrix at
each position, and comparing the sum to a match threshold. For log ratio PWMs, an
empirically chosen threshold of 60% of the maximum positive score has been used
by Harbison et al. and is approximately equal to cutoffs determined by the principled
cross-validated method presented in Maclsaac et al. More sophisticated algorithms
developed specifically for motif scanning are described briefly in Figure 3.

Maclsaac & Fraenkel, 2006



Receiving Operating Curve (ROC)
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Cross-validation

* the statistical practice of partitioning a sample
of data into subsets such that the analysis is
initially performed on a single subset, while
the other subset(s) are retained for
subsequent use in confirming and validating
the initial analysis.



Sequences chosen with uniform
probability

If motif is "incorrect”, the positive sequences are "randomly selected" from
among intergenic sequences, without any correlation or bias toward
sequences containing the incorrect motif.
K\ (N—-K
: - AT (k)(n—k)
Ph,yper(ll\' ‘ 1. ]\. ,4.\ ) — N

(n)

Where n is the number of positive sequences, N is the total number of
sequences (positive and negative) and K is the number of sequences in
which the word m occurs.

The p-value for the null hypothesis being true is the sum of the the
probability distribution for k' >= k.

p-value(k) = Z Phyper(K' | 0, K, N)
k'=k



Other measures of motif quality

Group specificity (or site specificity). The probability of having this many
target sequences containing the site (or this many sites within the target
sequences), considering the prevalence of the motif throughout the
genome.

Sequence specificity. Emphasizes both the number of sequences with
binding sites, and the number of sites per sequence.

Positional bias or uniformity. Measures how uniform the binding site
locations are distributed, with respect to the transcription start site of the
gene. Real transcription factor binding sites often (but not always) show a
marked preference for a specific region upstream of the genes they
regulate.



False positives

* Some sites conform to the sequence identified
by motif searching programs but in vivo do not
bind to the protein.

* These sites are probably not available to be
bound due to the conformation of the
chromatin



Practical guidelines

Given the rates of false positives and false negatives, any of these motif
discovery tools should be used with caution, and their results should be
examined carefully. Here are some useful guidelines for applying them
effectively.

1. If possible, remove spurious patterns from the target sequences. For
example, using RepeatMasker (http://www.repeatmasker.org/).

2. Use multiple motif prediction algorithms.

3. Run probabilistic algorithms multiple times—you may not get the best
scoring motif on the first run.

4. If possible, ask for multiple motifs to be returned—the highest scoring one
may not be the most biologically relevant.

5. If necessary, try a range of motif widths and expected number of sites
(some tools will automatically optimize these parameters for you).



Practical guidelines (2)

6. If needed, filter out motifs with biologically implausible distribution of
information content (see the “block filtering” approach by Huber and
Bulyk).

7. Combine similar motifs, for example by calculating their similarity using
AlignACE, clustering them, and taking the best representative from each
cluster.

8. Use AlignACE to match up with known motifs for the organism.

9. Evaluate the resulting motifs based on group specificity, set specificity,
positional bias, etc.

Lately, a few packages have become available that combine multiple motif
discovery algorithms, plus pre- and post-processing and analysis. Examples
include MultiFinder and RgS-Miner.



