BIOINFORMATICS Datamining \#1

Mark Gerstein, Yale University gersteinlab.org/courses/452

Large-scale Datamining

- Gene Expression
\diamond Representing Data in a Grid
\diamond Description of function prediction in abstract context
- Unsupervised Learning
\diamond clustering \& k-means
\diamond Local clustering
- Supervised Learning
\diamond Discriminants \& Decision Tree
\diamond Bayesian Nets
- Function Prediction EX
\diamond Simple Bayesian Approach for Localization Prediction

The recent advent and subsequent onslaught of microarray data

Gene Expression Information and Protein Features

Basics	Predictors																																			
	Sequence Features													Genomic Features																						
	$\begin{aligned} & \underline{\ddagger} \\ & \underline{0} \\ & \underline{0} \\ & \dot{0} \\ & 0 \\ & 0 \end{aligned}$	Amino Acid Composition						How many times does the sequence have these motif features?						Abs. expr. Level (mRNA copies / cell)		Prot. Abun- dance	Cell cycle timecourse																			
		A	C	D	3	\mathbf{w}								Gene- Chip expt. from RY Lab			III	$\frac{\overline{1}}{+1}$	N	$\begin{array}{\|l\|l} \text { II } \\ \hline \end{array}$	It	$\begin{array}{\|l\|l\|} \hline 10 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l} \hline 1 \\ \hline \end{array}$	N	$\begin{array}{\|l\|l} \hline \\ \hline \end{array}$	III	은	$\underset{ \pm}{\text { II }}$	$\underset{ \pm}{\underset{\sim}{N}}$	IN	$\underset{ \pm}{ \pm}$	$\begin{aligned} & \text { N } \\ & \hline 1 \\ & \hline \end{aligned}$	$\stackrel{0}{11}$			
YAL001C	1160	. 08	02	2.06	6	. 01	. 04	0	1	0	\|m		1	0	0	0.3	0	?	5	3	4	4	5	4	3	5	5	3	5	7	9	4	4	4	5	
YAL002W K	1176	. 09	02	2.06	6	. 01	04	0	0	0	0	0	1	0.2	?	?	8	4	2	3	4	3	4	5	5	3	4	4	6	4	5	4	3			
YAL003W ${ }^{\text {K }}$	206	. 08	. 02	2.06	6	. 01	. 04	0	0	0	0	0	0	19.1	19	23	70	73	91	69	105	52	112	88	64	159	106	104	75	103	140	98	126			
YAL004W ${ }^{\text {F }}$	215	. 08	02	2.06	6	. 01	. 04	0	0	0	0	0	0	?	0	?	18	12	9	5	5	,	6	4	4	3	3	5	5	4	5	4	6			
YAL005C	641	. 08	02	2.06	6	01	04	0	0	0	0	0	1	13.4	16	17	39	38	30	13	17	8	11	8	7	8	6	8	8	7	9	8	14			
YAL007C	190	. 08	02	2.06	6	01	. 04	0	0	0	0	,	4	2.2	8	?	15	20	32	20	21	19	29	19	16	22	20	26	23	22	25	16	17			
YAL008W	198	. 08	02	2.06	6	01	. 04	0	0	0	0	0	3	1.2	?	?	,	6	7	1	3	2	4	2	2	3	3	4	4	3	3	2	3			
YAL009W ${ }^{\text {E }}$	259	. 08	02	2.06	6	. 01	. 04	0	2	0	0	0	3	0.6	?	?	6	2	4	3	5	3	5	5	5	3	4	6	6	4	4	3	5			
YAL010C	493	. 08	. 02	2.06	6	. 02	. 04	0	0	0	0	0	1	0.3	?	?	11	6	4	5	6	4	7	8	7	4	5	6	7	5	6	6	6			
YAL011W ${ }^{\text {K }}$	616	. 08	02	2.06	6	. 01	. 04	0	8	0	\|			1	0	0	0.4	?	?	6	5	4	4	8	5	8	8	6	6	5	6	6	7	6	5	6
YAL012W	393	. 08	02	2.06	6	. 01	. 04	0	0	0	0	0	1	8.9	4	6.7	29	26	25	27	53	26	43	36	25	28	23	28	31	29	34	23	29			
YAL013W ${ }^{\text {F }}$	362	. 08	. 02	2.06	6	. 01	. 04	0	0	0	0	0	0	0.6	?	?	7	9	6	5	14	6	12	14	10	9	9	9	10	9	8	6	10			
YAL014C	202	. 08	02	2.06	6	. 01	. 04	0	0	0	0	0	0	1.1	?	?	12	13	10	8	10	10	12	13	12	14	11	11	11	10	11	9	12			
YAL015C	399	. 08	. 02	2.06	6	. 01	. 04	0	1	0	0	0	0	0.7	0	1	19	18	14	10	14	12	17	17	14	13	11	13	16	11	14	12	13			
YAL016W ${ }^{\text {K }}$	635	. 08	02	2.06	6	. 01	. 04	0	0	0	0	0	1	3.3	5	?	15	20	20	102	20	20	30	22	18	19	18	20	21	21	23	16	16			
YAL017W ${ }^{\text {Y }}$	1356	. 08	02	2.06	6	. 01	. 04	0	0	0	0	0	0	0.4	?	?	14	3	3	4	8	5	6	6	5	5	8	9	10	6	5	4	7			
YAL018C ${ }^{\text {K }}$	325	. 08	. 02	2.06	6	. 01	. 04	0	0	0		0	4	?	?	?	4	2	2	2	1	1	2	2	2	1	2	1	2	2	1	2	1			

Prediction of Function on a Genomic Scale from Array Data \& Sequence Features

$\begin{aligned} & 0 \\ & \stackrel{1}{0} \\ & 0 \\ & 0 \end{aligned}$	Array Experiments							
			Expression Timecourse					
			인	IT		$\stackrel{\square}{11}$		
YALOO1C	0.3	0.3	5	3	\|l	l		5
YAL002W	0.2	0.2	8	4				
YAL003W	19.1	0.909	70	73		126		
YALOOUW		0.632						
YALOO5C	13.4	0.339	39	38		14		

6000+
Different Aspects of function: molecular action, cellular role, phenotypic manifestation Also: localization, interactions, complexes

Arrange data in a tabulated form, each row representing an example and each column representing a feature, including the dependent experimental quantity to be predicted.

	predictor1	Predictor2	predictor3	predictor4	response
G1	$\mathrm{A}(1,1)$	$\mathrm{A}(1,2)$	$\mathrm{A}(1,3)$	$\mathrm{A}(1,4)$	Class A
G2	$\mathrm{A}(2,1)$	$\mathrm{A}(2,2)$	$\mathrm{A}(2,3)$	$\mathrm{A}(2,4)$	Class A
G3	$\mathrm{A}(3,1)$	$\mathrm{A}(3,2)$	$\mathrm{A}(3,3)$	$\mathrm{A}(3,4)$	Class B

(adapted from Y Kluger)

Typical Predictors and Response for Yeast

Basics		Predictors																					Response			
		Sequence Features													Genomic Features								Function			
				Am Com		no A posit				Ho mes se ha fe		w man does quence e the notif tures			Ab exp Lev (mR copi ce	s. pr. vel NA ies / II)	Prot. Abun- dance									
Yeast Gene ID			A	C	D		W					nuc2			$\begin{array}{\|l\|} \hline \text { Gene- } \\ \text { Chip } \\ \text { expt. } \\ \text { from } \\ \text { RY } \\ \text { Lab } \\ \hline \end{array}$	sage tag freq.	(1000 copie s /cell)		-		$\\| \frac{n}{\operatorname{II}}$	$\underset{\sim}{6}$	function ID(s) (from MIPS)	function description		
YAL001C	MNIFEMLRI	1160	. 08	02	2.06	06	. 01	1.04	0	1	10	0	0	0	0.3	0	?	5	3		4	5	04.01.01;04.03	TFIIIC (transcription initi	N	
YAL002W	KVFGRCELA	1176	. 09	. 02	2.06	06	01	1. 04	40	0	0	$0 \cdot \mid$ \|	0	0	1	0.2	?	?	,	4		4	3	06.04;08.13	vacuolar sorting protein,	C
YAL003W	KMLQFNLRW	206	. 08	02	2.06	. 6 \|mmm	01	1.04	40	0	0	$0\|\|\|\mid$	0	0	19.1	19	23	70	73		98	126	05.04;30.03	translation elongation fac	N	
YAL004W	RPDFCLEPP	215	. 08	. 02	2.06	${ }^{3} 6.1 \mathrm{mmm}$. 01	1.04	40	0	0	$0\|\|\|\mid$	0	0 ?	?	0	?	18	12		4	6	01.01.01		N	
YAL005C	VINTFDGVA	641	. 08	8.02	2.06	${ }^{3} 6$	01	1. 04	40	0	0	0)\| 0	0	1	13.4	16	17	39	38		8	14	06.01;06.04;08	heat shock protein of HS	????	
YAL007C	KKAVINGEQ	190	. 08	02	2.06	06	. 01	1. 04	40	0	0	0)\|	m 0	,	4	2.2	8 ?	?	15	20		16	17	99	????	????
YAL008W	HPETLVKVK	198	. 08	02	2.06	6	. 01	1.04	40	0	0	$0\|\|\|\mid$	0	3	1.2	?	?	9	6		2	3	99	????	????	
YAL009W	PTLEWFLSH	259	. 08	02	2.06	${ }^{06}$ mmm	. 01	1.04	40	2	20	$0 \cdot \mid m$	0	3	0.6	?	?	,	2		3	5	03.10;03.13	meiotic protein	????	
YAL010C	MEQRITLKD	493	. 08	. 02	2.06	. 6 m	. 02	2. 04	40	0	0	0)\| 0	0	1	0.3	?	?	11	6		6	6	30.16	involved in mitochondrial	????	
YAL011W	KSFPEVVGK	616	. 08	8.02	2.06	. 06	01	1.04	40	8	0	0	0	0	0.4	?	?	6	5		5	6	30.16;99	protein of unknown funct ?	????	
YAL012W	GVQVETISP	393	. 08	8.02	2.06	6	. 01	1. 04	40	0	0	$0\|\|\mid$	0	1	8.9	4	6.7	29	26		23	29	01.01.01;30.03	cystathionine gamma-lya	C	
YAL013W	RTDCYGNVN	362	. 08	02	2.06	06	01	. 04	40	0	0		0	0	0.6	?	?	7	9		6	10	01.06.10;30.03	regulator of phospholipid	N	
YAL014C	GDVEKGKKI	202	. 08	02	2.06	${ }^{5} 6$. 01	. 04	40	0	0	0)\|	0	0	0	1.1	?	?	12	13		9	12	99	????	N
YAL015C	MTPAVTTYK	399	. 08	02	2.06	${ }^{3} 6$ mmmen	01	1.04	40	1	10	0	0	0	0.7	0	1	19	18		12	13	11.01;11.04	DNA repair protein	N	
YAL016W	KKPLTQEQL	635	. 08	. 02	2.06	. 06 llmm	. 01	1.04	40	0	0	$0\|\|1\| 0$	0	1	3.3	5	?	15	20	dumd	16	16	03.01;03.04;03	ser/thr protein phosphata	????	

Represent predictors in abstract high dimensional space

"Tag" Certain Points

Abstract high-dimensional space representation

Large-scale Datamining

- Gene Expression
\diamond Representing Data in a Grid
\diamond Description of function prediction in abstract context
- Unsupervised Learning
\diamond clustering \& k-means
\diamond Local clustering
- Supervised Learning
\diamond Discriminants \& Decision Tree
\diamond Bayesian Nets
- Function Prediction EX
\diamond Simple Bayesian Approach for Localization Prediction

"cluster" predictors

[^0]
Use clusters to predict Response

[^1]
K-means

K-means

Top-down vs. Bottom up

Top-down when you know how many subdivisions

k-means as an example of top-down

1) Pick ten (i.e. k?) random points as putative cluster centers.
2) Group the points to be clustered by the center to which they are closest.
3) Then take the mean of each group and repeat, with the means now at the cluster center.
4) I suppose you stop when the centers stop moving.

Large-scale Datamining

- Gene Expression
\diamond Representing Data in a Grid
\diamond Description of function prediction in abstract context
- Unsupervised Learning
\diamond clustering \& k-means
\diamond Local clustering
- Supervised Learning
\diamond Discriminants \& Decision Tree
\diamond Bayesian Nets
- Function Prediction EX
\diamond Simple Bayesian Approach for Localization Prediction

"Tag" Certain Points

Find a Division to Separate Tagged Points

Extrapolate to Untagged Points

Fisher discriminant analysis

- Use the training set to reveal the structure of class distribution by seeking a linear combination
- $\mathrm{y}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$ which maximizes the ratio of the separation of the class means to the sum of each class variance (within class variance). This linear combination is called the first linear discriminant or first canonical variate. Classification of a future case is then determined by choosing the nearest class in the space of the first linear discriminant and significant subsequent discriminants, which maximally separate the class means and are constrained to be uncorrelated with previous ones.

Fischer's Discriminant

(Adapted from ???)

Fisher cont.

$$
m_{i}=\vec{w} \cdot \vec{m}_{i} \quad s_{i}^{2}=\sum_{y \in r_{i}}\left(y-m_{i}\right)^{2}
$$

Solution of $1^{\text {st }}$
variate

$$
\vec{w}=S_{W}^{-1}\left(\vec{m}_{1}-\vec{m}_{2}\right)
$$

[^2]
Find a Division to Separate Tagged Points

[^3]
Retrospective Decision Trees

Retrospective
 Decision Trees
 Nomenclature

356 total

Has a hydrophobic stretch? (Y/N)

Retrospective
 Decision Trees

Analysis of the Suitability of 500 M. thermo. proteins to find optimal sequences purification

Overfitting, Cross Validation, and Pruning

Decision Trees

- can handle data that is not linearly separable.
- A decision tree is an upside down tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a classification or decision. One classifies instances by sorting them down the tree from the root to some leaf nodes. To classify an instance the tree calls first for a test at the root node, testing the feature indicated on this node and choosing the next node connected to the root branch where the outcome agrees with the value of the feature of that instance. Thereafter a second test on another feature is made on the next node. This process is then repeated until a leaf of the tree is reached.
- Growing the tree, based on a training set, requires strategies for (a) splitting the nodes and (b) pruning the tree. Maximizing the decrease in average impurity is a common criterion for splitting. In a problem with noisy data (where distribution of observations, from the classes overlap) growing the tree will usually over-fit the training set. The strategy in most of the cost-complexity pruning algorithms is to choose the smallest tree whose error rate performance is close to the minimal error rate of the over-fit \leq larger tree. More specifically, growing the trees is based on splitting the node that maximizes the reduction in deviance (or anyo other impurity-measure of the distribution at a node) over all allowed binary splits of all terminal nodes. Splits are not chosen based on misclassification rate .A binary split for a continuous feature variable v is of the form $v<t h r e s h o l d$ versus $v>$ threshold ${ }^{-}$ and for a "descriptive" factor it divides the factor's levels into two classes. Decision tree-models have been successfully applied in a broad range of domains. Their popularity arises from the following: Decision trees are easy to interpret and use when the d predictors are a mix of numeric and nonnumeric (factor) variables. They are invariant to scaling or re-expression of numeric variables. Compared with linear and additive models they are effective in treating missing values and capturing non-additive behavior. They can also be used to predict nonnumeric dependent variables with more than two levels. In addition, decisiontree models are useful to devise prediction rules, screen the variables and summarize the multivariate data set in a comprehensive fashion. We also note that ANN and decision tree learning often have comparable prediction accuracy [Mitchelf p. 85] and SVM algorithms are slower compared with decision tree. These facts suggest that the decision tree method should" 0 be one of our top candidates to "data-mine" proteomics datasets. C4.5 and CART are among the most popular decision tree algorithms.

Effect of Scaling

(adapted from ref?)

Large-scale Datamining

- Gene Expression
\diamond Representing Data in a Grid
\diamond Description of function prediction in abstract context
- Unsupervised Learning
\diamond clustering \& k-means
\diamond Local clustering
- Supervised Learning
\diamond Discriminants \& Decision Tree
\diamond Bayesian Nets
- Function Prediction EX
\diamond Simple Bayesian Approach for Localization Prediction

Represent predictors in abstract high dimensional space

Tagged Data

Probabilistic Predictions of Class

Yeast Tables for Localization Prediction

Large-scale Datamining

- Gene Expression
\diamond Representing Data in a Grid
\diamond Description of function prediction in abstract context
- Unsupervised Learning
\diamond clustering \& k-means
\diamond Local clustering
- Supervised Learning
\diamond Discriminants \& Decision Tree
\diamond Bayesian Nets
- Function Prediction EX
\diamond Simple Bayesian Approach for Localization Prediction

Spectral Methods Outline \& Papers

- Simple background on PCA (emphasizing lingo)
- More abstract run through on SVD
- Application to
\diamond O Alter et al. (2000). "Singular value decomposition for genome-wide expression data processing and modeling." PNAS vol. 97: 10101-10106
\diamond Y Kluger et al. (2003). "Spectral biclustering of microarray data: coclustering genes and conditions." Genome Res 13: 703-16.

PCA

PCA section will be a "mash up" up a number of PPTs on the web

- pca-1 - black ---> www.astro.princeton.edu/~gk/A542/PCA.ppt
- by Professor Gillian R. Knapp gk@astro.princeton.edu
- pca-2 - yellow ---> myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
- by Hal Whitehead.
- This is the class main url http://myweb.dal.ca/~hwhitehe/BIOL4062/ handout4062.htm
- pca.ppt - what is cov. matrix ----> hebb.mit.edu/courses/9.641/lectures/pca.ppt
- by Sebastian Seung. Here is the main page of the course
- http://hebb.mit.edu/courses/9.641/index.html
- from BIIS_05lecture7.ppt ----> www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt
- by R.S.Gaborski Professor

abstract

Principal component analysis (PCA) is a technique that is useful for compression and classification of data. The purpose is to reduce the dimensionality of a data set (sample) by finding a new set of variable smaller than the original set of variables, that nonetheless retains mo of the sample's information.

By information we mean the variation present in the sample, given by the correlations between the original variables. The new variables, called principal components (PCs), are uncorrelated, and a ordered by the fraction of the total information each retains.

Geometric picture of principal components (PCs)

A sample of n observations in the 2-D space $\mathbf{X}=\left(x_{1}, x_{2}\right)$

Goal: to account for the variation in a sample in as few variables as possible, to some accuracy

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.pp

Geometric picture of principal components (PCs)

- the $1^{\text {st }} \mathrm{PC} Z_{1}$ is a minimum distance fit to a line in \mathbf{X} space
- the $2^{\text {nd }} \mathrm{PC} \mathcal{Z}_{2}$ is a minimum distance fit to a line in the plane perpendicular to the $1{ }^{\text {st }} \mathrm{PC}$

PCs are a series of linear least squares fits to a sample, each orthogonal to all the previous.

PCA: General methodology

From k original variables: $x_{1}, x_{2}, \ldots, x_{k}$:
Produce k new variables: $y_{1}, y_{2}, \ldots, y_{\mathrm{k}}$:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 \mathrm{k}} x_{\mathrm{k}} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 \mathrm{k}} x_{\mathrm{k}}
\end{aligned}
$$

$$
y_{\mathrm{k}}=a_{\mathrm{k} 1} x_{1}+a_{\mathrm{k} 2} x_{2}+\ldots+a_{\mathrm{kk}} x_{\mathrm{k}}
$$

such that:
r_{10} 's are unqorreiated (orthogonal)
 y_{2} explains as much as possible of remaining variance etc.

PCA: General methodology

From k original variables: $x_{1}, x_{2}, \ldots, x_{\mathrm{k}}$:
Produce k new variables: $y_{1}, y_{2}, \ldots, y_{\mathrm{k}}$:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 \mathrm{k}} x_{\mathrm{k}} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 \mathrm{k}} x_{\mathrm{k}} \\
& \ldots \\
& y_{\mathrm{k}}=a_{\mathrm{k} 1} x_{1}+a_{\mathrm{k} 2} x_{2}+\ldots+a_{\mathrm{kk}} x_{\mathrm{k}}
\end{aligned}
$$

y_{k} 's are
Principal
Components
such that:
y_{k} 's are uncorrelated (orthogonal)
y_{1} explains as much as possible of original variance in data set
y_{2} explains as much as possible of remaining variance etc.

Principal Components Analysis

Principal Components Analysis

- Rotates multivariate dataset into a new configuration which is easier to interpret
- Purposes
- simplify data
- look at relationships between variables
- look at patterns of units

Principal Components Analysis

- Uses:
- Correlation matrix, or
- Covariance matrix when variables in same units (morphometrics, etc.)

Principal Components Analysis

$\left\{a_{11}, a_{12}, \ldots, a_{1 \mathrm{k}}\right\}$ is 1 st Eigenvector of
correlation/covariance matrix, and coefficients of first principal component
$\left\{a_{21}, a_{22}, \ldots, a_{2 \mathrm{k}}\right\}$ is 2 nd Eigenvector of correlation/covariance matrix, and coefficients of 2 nd principal component
...
$\left\{a_{\mathrm{k} 1}, a_{\mathrm{k} 2}, \ldots, a_{\mathrm{kk}}\right\}$ is $k \mathrm{th}$ Eigenvector of correlation/ covariance matrix, and coefficients of k th principal component

Digression \#1: Where do you get covar matrix?

Variance

- A random variable fluctuating about

$$
\delta x=x-\langle x\rangle
$$ its mean value.

$$
\left\langle(\delta x)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

- Average of the square of the fluctuations.

Covariance

- Pair of random variables, each

$$
\delta x_{1}=x_{1}-\left\langle x_{1}\right\rangle
$$ fluctuating about its mean value.

$$
\delta x_{2}=x_{2}-\left\langle x_{2}\right\rangle
$$

$$
\left\langle\delta x_{1} \delta x_{2}\right\rangle=\left\langle x_{1} x_{2}\right\rangle-\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle
$$

- Average of product of fluctuations.

Covariance examples

Covariance matrix

- N random variables
- $N \mathrm{x} N$ symmetric matrix

$$
C_{i j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle
$$

- Diagonal elements are variances

Principal Components Analysis

$\left\{a_{11}, a_{12}, \ldots, a_{1 \mathrm{k}}\right\}$ is 1 st Eigenvector of
correlation/covariance matrix, and coefficients of first principal component
$\left\{a_{21}, a_{22}, \ldots, a_{2 \mathrm{k}}\right\}$ is 2nd Eigenvector of correlation/covariance matrix, and coefficients of 2 nd principal component
...
$\left\{a_{\mathrm{k} 1}, a_{\mathrm{k} 2}, \ldots, a_{\mathrm{kk}}\right\}$ is k th Eigenvector of correlation/ covariance matrix, and coefficients of k th principal component

Digression \#2:
 Brief Review of Eigenvectors

k th Eigenvector

eigenvalue problem

- The eigenvalue problem is any problem having the following form:

$$
\mathbf{A} \cdot \mathbf{v}=\lambda . \mathbf{v}
$$

A: nx n matrix v : n x 1 non-zero vector λ : scalar
Any value of λ for which this equation has a solution is called the eigenvalue of A and vector v which corresponds to this value is called the eigenvector of A .

eigenvalue problem

$$
\begin{aligned}
& \text { A . } \mathbf{v} \quad=\lambda . \mathbf{v}
\end{aligned}
$$

Therefore, $(3,2)$ is an eigenvector of the square matrix \mathbf{A} and 4 is an eigenvalue of \mathbf{A}

Given matrix A, how can we calculate the eigenvector and eigenvalues for \mathbf{A} ?

Principal Components Analysis

So, principal components are given by:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 \mathrm{k}} x_{\mathrm{k}} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 \mathrm{k}} x_{\mathrm{k}} \\
& \ldots \\
& y_{\mathrm{k}}=a_{\mathrm{k} 1} x_{1}+a_{\mathrm{k} 2} x_{2}+\ldots+a_{\mathrm{kk}} x_{\mathrm{k}}
\end{aligned}
$$

x_{j} 's are standardized if correlation matrix is
used (mean 0.0, SD 1.0)

Principal Components Analysis

Score of i th unit on j th principal component

$$
y_{i, j}=a_{j 1} x_{i 1}+a_{j 2} x_{i 2}+\ldots+a_{j k} x_{i k}
$$

PCA Scores

Principal Components Analysis

Amount of variance accounted for by: 1 st principal component, λ_{1}, 1st eigenvalue 2 nd principal component, λ_{2}, 2 nd eigenvalue
$\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4} \geq \ldots$

Average $\lambda_{\mathrm{j}}=1$ (correlation matrix)

PCA: Terminology

- j th principal component is j th eigenvector of correlation/covariance matrix
- coefficients, a_{jk}, are elements of
eigenvectors and relate original variables (standardized if using correlation matrix) to components
- scores are values of units on components (produced using coefficients)
- amount of variance accounted for by component is given by eigenvalue, λ_{j}
- proportion of variance accounted for by as component is given by $\lambda_{\mathrm{j}} / \Sigma \lambda_{\mathrm{j}}$

How many components to use?

- If $\lambda_{\mathrm{j}}<1$ then component explains less variance than original variable (correlation matrix)
- Use 2 components (or 3) for visual ease
- Scree diagram:

Principal Components Analysis on:

- Covariance Matrix:
- Variables must be in same units
- Emphasizes variables with most variance
- Mean eigenvalue $\neq 1.0$
- Useful in morphometrics, a few other cases
- Correlation Matrix:
- Variables are standardized (mean 0.0, SD 1.0)
- Variables can be in different units
- All variables have same impact on analysis
- Mean eigenvalue $=1.0$

PCA: Potential Problems

- Lack of Independence
- NO PROBLEM
- Lack of Normality
- Normality desirable but not essential
- Lack of Precision
- Precision desirable but not essential

- Many Zeroes in Data Matrix SPARSE
- - Problem (use Correspondence Analysis)

PCA applications -Eigenfaces

- the principal eigenface looks like a bland androgynous average human face

http://en.wikipedia.org/wiki/

Eigenfaces - Face Recognition

- When properly weighted, eigenfaces can be summed together to create an approximate gray-scale rendering of a human face.
- Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces
- Hence eigenfaces provide a means of applying data compression to faces for identification purposes.

Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt

SVD

Puts together slides prepared by Brandon Xia with images from Alter et al. and Kluger et al.

SVD

- $A=U S V^{T}$
- A (m by n) is any rectangular matrix (m rows and n columns)
- $U(\mathrm{~m}$ by n$)$ is an "orthogonal" matrix
- $S(\mathrm{n}$ by n$)$ is a diagonal matrix
- $V(\mathrm{n}$ by n$)$ is another orthogonal matrix
- Such decomposition always exists
- All matrices are real; $m \geq n$

SVD for microarray data (Alter et al, PNAS 2000)

- A is any rectangular matrix ($\mathrm{m} \geq \mathrm{n}$)
$\# 100$ Row space: vector subspace generated by the row vectors of A
- Column space: vector subspace generated by the column vectors of A
$1 O D O D$
- The dimension of the row \& column

410 space is the rank of the matrix A : $r(\leq n)$

- A is a linear transformation that maps vector x in row space into vector $A x$
$\stackrel{\text { II }}{\text { Genes }}$ in column space

$$
A=U S V^{T}
$$

- U is an "orthogonal" matrix ($\mathrm{m} \geq \mathrm{n}$)
- Column vectors of U form an orthonormal basis for the column space of A: $U^{T} U=I$

$$
U=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in U are eigenvectors of $A A^{T}$

$-A A^{T}=U S V^{T} V S U^{T}=U S^{2} U^{T}$
- "Left singular vectors"

$$
A=U S V^{T}
$$

- V is an orthogonal matrix (n by n)
- Column vectors of V form an orthonormal basis for the row space of A: $V^{T} V=V V^{T}=I$

$$
V=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- $\boldsymbol{v}_{l}, \ldots, \boldsymbol{v}_{n}$ in V are eigenvectors of $A^{T} A$
$-A^{T} A=V S U^{T} U S V^{T}=V S^{2} V^{T}$
- "Right singular vectors"

$A=U S V^{T}$

- S is a diagonal matrix (n by n) of nonnegative singular values
- Typically sorted from largest to smallest
- Singular values are the non-negative square root of corresponding eigenvalues of $A^{T} A$ and $A A^{T}$

$$
A V=U S
$$

- Means each $A \boldsymbol{v}_{i}=s_{i} \boldsymbol{u}_{i}$
- Remember A is a linear map from row space to column space
- Here, A maps an orthonormal basis $\left\{\boldsymbol{v}_{i}\right\}$ in row space into an orthonormal basis $\left\{\boldsymbol{u}_{i}\right\}$ in column space
- Each component of u_{i} is the projection of a row onto the vector v_{i}

Full SVD

- We can complete U to a full orthogonal matrix and pad S by zeros accordingly

Reduced SVD

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
- The columns of U are orthonormal
- Cheaper form for computation and storage

$\begin{array}{llll}A & U & S\end{array}$

SVD of $A(m$ by $n)$: recap

- $A=U S V^{T}=$ (big-"orthogonal")(diagonal)(sq-orthogonal)
- $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ in U are eigenvectors of $A A^{T}$
- $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ in V are eigenvectors of $A^{T} A$
- s_{l}, \ldots, s_{n} in S are nonnegative singular values of A
- $A V=U S$ means each $A \boldsymbol{v}_{i}=s_{i} \boldsymbol{u}_{i}$
- "Every A is diagonalized by 2 orthogonal matrices"

SVD as sum of rank-1 matrices

- $A=U S V^{T}$
- $A=s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}{ }^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}{ }^{T}+\ldots+s_{n} \boldsymbol{u}_{n} \boldsymbol{v}_{n}{ }^{T}$
- $s_{1} \geq s_{2} \geq \ldots \geq s_{n} \geq 0$

- What is the ranker matrix \hat{A} that best approximates A ?
- Minimize

$$
\operatorname{LSQ}_{2} \quad \vec{u}_{1} \cdot \vec{v}_{1}
$$

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\hat{A}_{i j}-A_{i j}\right)^{2}
$$

- $A=s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}{ }^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}{ }^{T}+\ldots+s_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}{ }^{T}$
- Very useful for matrix approximation

Examples of (almost) rank-1 matrices

- Steady states with fluctuations $\left(\begin{array}{lll}101 & 103 & 102 \\ 302 & 300 & 301 \\ 203 & 204 & 203 \\ 401 & 402 & 404\end{array}\right)$
- Array artifacts? $\left(\begin{array}{lll}101 & 303 & 202 \\ 102 & 300 & 201 \\ 103 & 304 & 203 \\ 101 & 302 & 204\end{array}\right)$
- Signals?

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$A v_{i}=s u_{i}$
 Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_{l} \boldsymbol{u}_{l} \boldsymbol{v}_{l}^{T}$ is the best rank-1 matrix approximation for A
- Geometrically: \boldsymbol{v}_{l} is the direction of
 the best approximating rank-1 subspace that goes through origin
- $s_{1} \boldsymbol{u}_{1}$ gives coordinates for row vectors in rank-1 subspace

$$
A \mathbf{v}_{\mathbf{i}}=s_{i} \mathbf{u}_{\mathbf{i}}
$$

- v_{l} Gives coordinates for row space basis vectors in rank-1 subspace

$$
I \mathbf{v}_{\mathbf{i}}=\mathbf{v}_{\mathbf{i}^{84}}
$$

Geometry of SVD in row space

A

This line segment that goes through origin approximates the original data set

The projected data set $_{85}$ approximates the original data set

Geometry of SVD in row space

- A as a collection of m row vectors (points) in the row space of A
- $s_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+s_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}{ }^{T}$ is the best rank-2 matrix approximation for A
- Geometrically: \boldsymbol{v}_{1} and v_{2} are the directions of the best approximating
 rank-2 subspace that goes through origin
- $s_{1} \boldsymbol{u}_{1}$ and $s_{2} \boldsymbol{u}_{2}$ gives coordinates for row vectors in rank-2 subspace
- v_{1} and v_{2} gives coordinates for row space

$$
A \mathbf{v}_{\mathbf{i}}=S_{i} \mathbf{u}_{\mathbf{i}}
$$ basis vectors in rank-2 subspace

$$
I \mathbf{v}_{\mathbf{i}}=\mathbf{v}_{\mathbf{i}}^{\boldsymbol{\beta}}
$$

What about geometry of SVD in column space?

- $A=U S V^{T}$
- $A^{T}=V S U^{T}$
- The column space of A becomes the row space of A^{T}
- The same as before, except that U and V are switched

Geometry of SVD in row and column spaces

- Row space
- $s_{i} \boldsymbol{u}_{i}$ gives coordinates for row vectors along unit vector v_{i}

$$
A \mathbf{v}_{\mathbf{i}}=s_{i} \mathbf{u}_{\mathbf{i}}
$$

- v_{i} gives coordinates for row space basis vectors along unit vector v_{i}
- Column space
- $s_{i} \boldsymbol{v}_{i}$ gives coordinates for column vectors along unit vector \boldsymbol{u}_{i}
- \boldsymbol{u}_{i} gives coordinates for column space basis vectors along unit vector \boldsymbol{u}_{i}
- Along the directions \boldsymbol{v}_{i} and \boldsymbol{u}_{i}, these two spaces look pretty much the same!
- Up to scale factors s_{i}
- Switch row/column vectors and row/column space basis vectors
$\searrow_{\text {_ Biplot.... }}$

Biplot

- A biplot is a two-dimensional representation of a data matrix showing a point for each of the n observation vectors (rows of the data matrix) along with a point for each of the p variables (columns of the data matrix).
- The prefix 'bi' refers to the two kinds of points; not to the dimensionality of the plot. The method presented here could, in fact, be generalized to a threedimensional (or higher-order) biplot. Biplots were introduced by Gabriel (1971) and have been discussed at length by Gower and Hand (1996). We applied the biplot procedure to the following toy data matrix to illustrate how a biplot can be generated and interpreted. See the figure on the next page.
- Here we have three variables (transcription factors) and ten observations (genomic bins). We can obtain a two-dimensional plot of the observations by plotting the first two principal components of the TF-TF correlation matrix R1.
- We can then add a representation of the three variables to the plot of principal components to obtain a biplot. This shows each of the genomic bins as points and the axes as linear combination of the factors.
- The great advantage of a biplot is that its components can be interpreted very easily. First, correlations among the variables are related to the angles between the lines, or more specifically, to the cosines of these angles. An acute angle between two lines (representing two TFs) indicates a positive correlation between the two corresponding variables, while obtuse angles indicate negative correlation.
- Angle of 0 or 180 degrees indicates perfect positive or negative correlation, respectively. A pair of orthogonal lines represents a correlation of zero. The distances between the points (representing genomic bins) correspond to the similarities between the observation profiles. Two observations that are relatively similar across all the variables will fall relatively close to each other within the two-dimensional space used for the biplot. The value or score for any observation on any variable is related to the perpendicular projection form the point to the line.
- Refs
- Gabriel, K. R. (1971), "The Biplot Graphical Display of Matrices with Application to Principal Component Analysis," Biometrika, 58, 453-467.
- Gower, J. C., and Hand, D. J. (1996), Biplots, London: Chapman \& Hall.

Biplot Ex

2	3	4	5	6	7	8	9	10
.700 .69	0.77	0.54	0.99	0.95	0.65	0.98	0.97	

 $\begin{array}{lllllllllllll}.79 & 0.78 & 0.85 & 0.64 & 1.00 & 0.98 & 0.74 & 1.00 & 0.93\end{array}$
 $\begin{array}{lllllllllllllll}.00 & 1.00 & 0.98 & 0.99 & 0.74 & 0.86 & 1.00 & 0.80 & 0.43\end{array}$

10 D scatterplots are used here for illustrative purpose only.
PCA: the correlation matrix is eigen-decomposed; then the principal components are added to the original space. Projection: the points and axes in the original space are projected onto the plane defined by the top two principal components.
$A \mathbf{v}_{\mathbf{i}}=s_{i} \mathbf{u}_{\mathbf{i}}$
$A^{T} \mathbf{u}_{\mathbf{i}}=s_{i} \mathbf{v}_{\mathbf{i}}$

Assuming $s=1$,
$A \mathbf{v}_{i}=\mathbf{u}$;
$\mathrm{A}^{\top} \mathbf{u}_{i}=\mathbf{v}_{l}$

Biplot Ex \#3

When is SVD = PCA?

- Centered data

When is SVD different from PCA?

Translation is not a linear operation, as it moves the ofrigin!

Additional Points $A A^{\prime}$

Time Complexity Issues with SVP

Application of SVD to text mining $C \cup B / C$

$$
A=\frac{\operatorname{TERMS}}{}(\square) \cdot \frac{\text { COMPLEXITY }}{\text { SPARSE }} \begin{gathered}
\text { LATENT } \\
\begin{array}{c}
\text { SEMANTIC } \\
\text { INDEXING }
\end{array}
\end{gathered}
$$

Conclusion

- SVD is the "absolute high point of linear algebra"
- SVD is difficult to compute; but once we have it, we have many things
- SVD finds the best approximating subspace, using linear transformation
- Simple SVD cannot handle translation, nonlinear transformation, separation of labeled data, etc.
- Good for exploratory analysis; but once we know what we look for, use appropriate tools and model the structure of data explicitly!

[^0]:

[^1]:

[^2]:

[^3]: $\stackrel{\sim}{\sim}$

