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BIOINFORMATICS 
Datamining #1 

Mark Gerstein, Yale University 
gersteinlab.org/courses/452 
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Large-scale Datamining 

•  Gene Expression 
◊  Representing Data in a Grid 
◊  Description of function prediction in abstract context 

•  Unsupervised Learning 
◊  clustering & k-means 
◊  Local clustering  

•  Supervised Learning 
◊  Discriminants & Decision Tree 
◊  Bayesian Nets 

•  Function Prediction EX 
◊  Simple Bayesian Approach for Localization Prediction 
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2nd gen., 
Proteome 

Chips 
(Snyder) 

 The recent advent and subsequent 
onslaught of microarray data 

1st 
generation, 
Expression 

Arrays 
(Brown) 
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Gene Expression Information and 
Protein Features 

… 
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Functional 
Classification 

GenProtEC 
(E. coli, Riley) 

MIPS/PEDANT 
(yeast, Mewes) 

“Fly”  
(fly, Ashburner) 
now extended to  
GO (cross-org.) 

ENZYME 
(SwissProt  
Bairoch/ 
Apweiler, 
just enzymes, 
cross-org.) 

Also: 

Other 
SwissProt 
Annotation 

WIT, KEGG 
(just pathways) 

TIGR EGAD 
(human ESTs) 

SGD (yeast) 

COGs 
(cross-org.,  
just conserved, NCBI 
Koonin/Lipman) 



6 
  (

c)
 M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

Prediction of Function on a Genomic Scale 
from Array Data & Sequence Features 

+ 

6000+ 

Different Aspects of function: molecular 
action, cellular role, phenotypic manifestation 
Also: localization, interactions, complexes 

Cor
e 
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Arrange data in a tabulated form, each row 
representing an example and each 
column representing a feature, including 
the dependent experimental quantity to be 
predicted. 

predictor1 Predictor2 predictor3 predictor4 response 

G1 A(1,1) A(1,2) A(1,3) A(1,4) Class A 

G2 A(2,1) A(2,2) A(2,3) A(2,4) Class A 

G3 A(3,1) A(3,2) A(3,3) A(3,4) Class B 

(adapted from Y Kluger) 
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Typical Predictors and Response for Yeast 
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Represent predictors in abstract high 
dimensional space 

Cor
e 
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“Tag” Certain Points 
Cor

e 
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Abstract high-dimensional space 
representation 
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Large-scale Datamining 

•  Gene Expression 
◊  Representing Data in a Grid 
◊  Description of function prediction in abstract context 

•  Unsupervised Learning 
◊  clustering & k-means 
◊  Local clustering  

•  Supervised Learning 
◊  Discriminants & Decision Tree 
◊  Bayesian Nets 

•  Function Prediction EX 
◊  Simple Bayesian Approach for Localization Prediction 



13
   

(c
) M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

“cluster” predictors 
Cor

e 



14
   

(c
) M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

Use clusters to predict Response 
Cor

e 
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K-means 
Cor

e 
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K-means 

Top-down vs. Bottom up 

Top-down when you know how many subdivisions 

k-means as an example of top-down 
1) Pick ten (i.e. k?) random points as putative cluster centers.   
2) Group the points to be clustered by the center to which they are 
closest.  
3) Then take the mean of each group and repeat, with the means now at 
the cluster center. 
4) I suppose you stop when the centers stop moving. 



17
   

(c
) M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

Bottom up clustering 
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Large-scale Datamining 

•  Gene Expression 
◊  Representing Data in a Grid 
◊  Description of function prediction in abstract context 

•  Unsupervised Learning 
◊  clustering & k-means 
◊  Local clustering  

•  Supervised Learning 
◊  Discriminants & Decision Tree 
◊  Bayesian Nets 

•  Function Prediction EX 
◊  Simple Bayesian Approach for Localization Prediction 
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“Tag” Certain Points 
Cor

e 
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Find a Division to Separate Tagged Points 
Cor

e 
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Extrapolate to Untagged Points 
Cor

e 



22
   

(c
) M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

Discriminant to Position Plane 
Cor

e 
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Fisher discriminant analysis 
•  Use the training set to reveal the structure of class distribution 

by seeking a linear combination  
•  y = w1x1 + w2x2 + ... + wnxn which maximizes the ratio of the 

separation of the class means to the sum of each class 
variance (within class variance). This linear combination is 
called the first linear discriminant or first canonical variate. 
Classification of a future case is then determined by choosing 
the nearest class in the space of the first linear discriminant and 
significant subsequent discriminants, which maximally separate 
the class means and are constrained to be uncorrelated with 
previous ones. 
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Fischer’s Discriminant 

(Adapted from ???) 
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Fisher cont. 

Solution of 1st 
variate 
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Find a Division to Separate Tagged Points 
Cor
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Analysis of the 
Suitability of 500 

M. thermo. 
proteins to find 

optimal 
sequences 
purification 

Retrospective 
Decision 

Trees 

Cor
e 
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Express
-ible 

Not 
Expressible 

Retrospective 
Decision Trees 
Nomenclature 356 

total 

Has a hydrophobic stretch? (Y/N) 

Cor
e 
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Analysis of the 
Suitability of 500 

M. thermo. 
proteins to find 

optimal 
sequences 
purification 

Express 
Not  

Express 

Retrospective 
Decision 

Trees 
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Overfitting, Cross Validation, 
and Pruning 
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Decision Trees 
•  can handle data that is not linearly separable.  
•  A decision tree is an upside down tree in which each branch node represents a choice between a number of alternatives, and 

each leaf node represents a classification or decision. One classifies instances by sorting them down the tree from the root to 
some leaf nodes. To classify an instance the tree calls first for a test at the root node, testing the feature indicated on this node 
and choosing the next node connected to the root branch where the outcome agrees with the value of the feature of that 
instance. Thereafter a second test on another feature is made on the next node. This process is then repeated until a leaf of the 
tree is reached. 

•  Growing the tree, based on a training set, requires strategies for (a) splitting the nodes and (b) pruning the tree. Maximizing the 
decrease in average impurity is a common criterion for splitting. In a problem with noisy data (where distribution of observations 
from the classes overlap) growing the tree will usually over-fit the training set. The strategy in most of the cost-complexity 
pruning algorithms is to choose the smallest tree whose error rate performance is close to the minimal error rate of the over-fit 
larger tree. More specifically, growing the trees is based on splitting the node that maximizes the reduction in deviance (or any 
other impurity-measure of the distribution at a node) over all allowed binary splits of all terminal nodes. Splits are not chosen 
based on misclassification rate .A binary split for a continuous feature variable v is of the form v<threshold versus v>threshold 
and for a “descriptive” factor it divides the factor’s levels into two classes. Decision tree-models have been successfully applied 
in a broad range of domains. Their popularity arises from the following: Decision trees are easy to interpret and use when the 
predictors are a mix of numeric and nonnumeric (factor) variables. They are invariant to scaling or re-expression of numeric 
variables. Compared with linear and additive models they are effective in treating missing values and capturing non-additive 
behavior. They can also be used to predict nonnumeric dependent variables with more than two levels. In addition, decision-
tree models are useful to devise prediction rules, screen the variables and summarize the multivariate data set in a 
comprehensive fashion. We also note that ANN and decision tree learning often have comparable prediction accuracy [Mitchell 
p. 85] and SVM algorithms are slower compared with decision tree. These facts suggest that the decision tree method should 
be one of our top candidates to “data-mine” proteomics datasets. C4.5 and CART are among the most popular decision tree 
algorithms. 

Optional: not needed for Quiz (adapted from Y Kluger) 
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Effect of Scaling 

(adapted from ref?) 
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Large-scale Datamining 

•  Gene Expression 
◊  Representing Data in a Grid 
◊  Description of function prediction in abstract context 

•  Unsupervised Learning 
◊  clustering & k-means 
◊  Local clustering  

•  Supervised Learning 
◊  Discriminants & Decision Tree 
◊  Bayesian Nets 

•  Function Prediction EX 
◊  Simple Bayesian Approach for Localization Prediction 
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Represent predictors in abstract high 
dimensional space 
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Tagged Data 



36
   

(c
) M

ar
k 

G
er

st
ei

n,
 1

99
9,

 Y
al

e,
 b

io
in

fo
.m

bb
.y

al
e.

ed
u 

Probabilistic Predictions of Class 
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Yeast Tables for Localization Prediction 
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Large-scale Datamining 

•  Gene Expression 
◊  Representing Data in a Grid 
◊  Description of function prediction in abstract context 

•  Unsupervised Learning 
◊  clustering & k-means 
◊  Local clustering  

•  Supervised Learning 
◊  Discriminants & Decision Tree 
◊  Bayesian Nets 

•  Function Prediction EX 
◊  Simple Bayesian Approach for Localization Prediction 
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Spectral Methods Outline & Papers 

•  Simple background on PCA (emphasizing lingo) 
•  More abstract run through on SVD 
•  Application to  

◊  O Alter et al. (2000). "Singular value decomposition for genome-wide 
expression data processing and modeling."  PNAS vol. 97: 
10101-10106 

◊  Y Kluger et al. (2003). "Spectral biclustering of microarray data: 
coclustering genes and conditions." Genome Res 13: 703-16. 
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PCA 
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PCA section will be a "mash up" up a 
number of PPTs on the web 

•  pca-1 - black ---> www.astro.princeton.edu/~gk/A542/PCA.ppt 
•  by Professor Gillian R. Knapp gk@astro.princeton.edu 

•  pca-2 - yellow ---> myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
•  by Hal Whitehead. 
•  This is the class main url http://myweb.dal.ca/~hwhitehe/BIOL4062/

handout4062.htm 

•  pca.ppt - what is cov. matrix ----> hebb.mit.edu/courses/9.641/lectures/pca.ppt 
•  by Sebastian Seung. Here is the main page of the course 
•  http://hebb.mit.edu/courses/9.641/index.html 

•  from BIIS_05lecture7.ppt ----> www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt 
•  by R.S.Gaborski Professor 
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abstract 

Principal component analysis (PCA) is a technique that is useful for the 
compression and classification of data.  The purpose is to reduce the 
dimensionality of a data set (sample) by finding a new set of variables, 
smaller than the original set of variables, that nonetheless retains most 
of the sample's information. 

By information we mean the variation present in the sample, 
given by the correlations between the original variables.  The new 
variables, called principal components (PCs), are uncorrelated, and are 
ordered by the fraction of the total information each retains. 

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt 
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Geometric picture of principal components (PCs) 

A sample of n observations in the 2-D space  

Goal:  to account for the variation in a sample 
           in as few variables as possible, to some accuracy 

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt 
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Geometric picture of principal components (PCs) 

•  the 1st PC         is a minimum distance fit to a line in      space 

PCs are a series of linear least squares fits to a sample, 
each orthogonal to all the previous.  

•  the 2nd PC        is a minimum distance fit to a line 
   in the plane perpendicular to the 1st PC  

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt 
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PCA: General methodology 
From k original variables: x1,x2,...,xk: 

 Produce k new variables: y1,y2,...,yk: 
 y1 = a11x1 + a12x2 + ... + a1kxk 
 y2 = a21x1 + a22x2 + ... + a2kxk 
 ... 
 yk = ak1x1 + ak2x2 + ... + akkxk 
such that: 

yk's are uncorrelated (orthogonal) 
y1 explains as much as possible of original variance in data set 
y2 explains as much as possible of remaining variance 
etc. 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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PCA: General methodology 
From k original variables: x1,x2,...,xk: 

 Produce k new variables: y1,y2,...,yk: 
 y1 = a11x1 + a12x2 + ... + a1kxk 
 y2 = a21x1 + a22x2 + ... + a2kxk 
 ... 
 yk = ak1x1 + ak2x2 + ... + akkxk 
such that: 
yk's are uncorrelated (orthogonal) 
y1 explains as much as possible of original variance in data set 
y2 explains as much as possible of remaining variance 
etc. 

yk's are 
Principal 

Components 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 

1st Principal  
Component, y1 

2nd Principal  
Component, y2 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 

•  Rotates multivariate dataset into a new 
configuration which is easier to interpret 

•  Purposes 
–  simplify data 
–  look at relationships between variables 
–  look at patterns of units 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 

•  Uses: 
– Correlation matrix, or 
– Covariance matrix when variables in same units 

(morphometrics, etc.) 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 
{a11,a12,...,a1k} is 1st Eigenvector of  

 correlation/covariance matrix, and coefficients 
of first principal component 

{a21,a22,...,a2k} is 2nd Eigenvector of 
 correlation/covariance matrix, and coefficients 

of 2nd principal component 
… 

{ak1,ak2,...,akk} is kth Eigenvector of  correlation/
covariance matrix, and  coefficients of kth 
principal component 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Digression #1: 
Where do you get covar matrix? 
{a11,a12,...,a1k} is 1st Eigenvector of  

 correlation/covariance matrix, and coefficients 
of first principal component 

{a21,a22,...,a2k} is 2nd Eigenvector of 
 correlation/covariance matrix, and coefficients 

of 2nd principal component 
… 

{ak1,ak2,...,akk} is kth Eigenvector of  correlation/
covariance matrix, and  coefficients of kth 
principal component 
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Variance 

•  A random variable 
fluctuating about  
its mean value. 

•  Average of the square of the fluctuations. 

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt 
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Covariance 

•  Pair of random  
variables, each  
fluctuating about  
its mean value. 

•  Average of product of fluctuations. 

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt 
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Covariance examples 

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt 
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Covariance matrix 

•  N random variables 
•  NxN symmetric matrix 

•  Diagonal elements are variances 

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt 
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Principal Components Analysis 
{a11,a12,...,a1k} is 1st Eigenvector of  

 correlation/covariance matrix, and coefficients 
of first principal component 

{a21,a22,...,a2k} is 2nd Eigenvector of 
 correlation/covariance matrix, and coefficients 

of 2nd principal component 
… 

{ak1,ak2,...,akk} is kth Eigenvector of  correlation/
covariance matrix, and  coefficients of kth 
principal component 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Digression #2:  
Brief Review of Eigenvectors 

{a11,a12,...,a1k} is 1st Eigenvector of  
 correlation/covariance matrix, and coefficients 

of first principal component 

{a21,a22,...,a2k} is 2nd Eigenvector of 
 correlation/covariance matrix, and coefficients 

of 2nd principal component 
… 

{ak1,ak2,...,akk} is kth Eigenvector of  correlation/
covariance matrix, and  coefficients of kth 
principal component 
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eigenvalue problem 
•  The eigenvalue problem is any problem having 

the following form: 
   A . v = λ . v 
 A: n x n matrix 
 v: n x 1 non-zero vector 
 λ: scalar 
 Any value of λ for which this equation has a 
solution is called the eigenvalue of A and 
vector v which corresponds to this value is 
called the eigenvector of A. 

[from BIIS_05lecture7.ppt] Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt 
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eigenvalue problem 

   2  3   3     12      3   
   2  1   2      8      2 
     A     .  v   =  λ .   v  
 Therefore, (3,2) is an eigenvector of the square matrix 
A and 4 is an eigenvalue of A 

 Given matrix A, how can we calculate the 
eigenvector and eigenvalues for A? 

x = 4 x= 

[from BIIS_05lecture7.ppt] Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt 
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Principal Components Analysis 

So, principal components are given by: 

 y1 = a11x1 + a12x2 + ... + a1kxk 
 y2 = a21x1 + a22x2 + ... + a2kxk 
 ... 
 yk = ak1x1 + ak2x2 + ... + akkxk 

xj’s are standardized if correlation matrix is 
used (mean 0.0, SD 1.0) 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 

Score of ith unit on jth principal component 
 yi,j = aj1xi1 + aj2xi2 + ... + ajkxik 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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PCA Scores 

xi2 

xi1 

yi,1 yi,2 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis 

Amount of variance accounted for by: 
1st principal component, λ1, 1st eigenvalue 
2nd principal component, λ2, 2nd eigenvalue 
 ... 

 λ1 > λ2 > λ3 > λ4 > ... 

Average λj = 1 (correlation matrix)  
Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis: 
Eigenvalues 

λ1 
λ2 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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PCA:  Terminology 
•  jth principal component is jth eigenvector 

of  correlation/covariance matrix 
•  coefficients, ajk, are elements of 

eigenvectors and relate original variables 
(standardized if using correlation matrix) to 
components 

•  scores are values of units on components 
(produced using coefficients) 

•  amount of variance accounted for by 
component is given by eigenvalue, λj 

•  proportion of variance accounted for by 
component is given by  λj / Σ λj 

•  loading of kth original variable on jth 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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How many components to use? 

•  If λj < 1 then component explains less variance 
than original variable (correlation matrix) 

•  Use 2 components (or 3) for visual ease 
•  Scree diagram: 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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Principal Components Analysis on: 
•  Covariance Matrix: 

– Variables must be in same units 
– Emphasizes variables with most variance 
– Mean eigenvalue ≠1.0 
– Useful in morphometrics, a few other cases 

•  Correlation Matrix: 
– Variables are standardized (mean 0.0, SD 1.0) 
– Variables can be in different units 
– All variables have same impact on analysis 
– Mean eigenvalue = 1.0 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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PCA: Potential Problems 

•  Lack of Independence 
– NO PROBLEM 

•  Lack of Normality 
– Normality desirable but not essential 

•  Lack of Precision 
– Precision desirable but not essential 

•  Many Zeroes in Data Matrix 
– Problem (use Correspondence Analysis) 

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt 
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PCA applications -Eigenfaces 

•  the principal eigenface looks like a bland androgynous 
average human face 

http://en.wikipedia.org/wiki/
Image:Eigenfaces.png 

Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt 
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Eigenfaces – Face Recognition 

•  When properly weighted, eigenfaces can be summed 
together to create an approximate gray-scale rendering of 
a human face.  

•  Remarkably few eigenvector terms are needed to give a 
fair likeness of most people's faces  

•  Hence eigenfaces provide a means of applying data 
compression to faces for identification purposes. 

Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt 
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SVD 

Puts together slides 
prepared by Brandon Xia 
with images from Alter et 
al. and Kluger et al. 
papers 
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SVD 

•  A = USVT 
•  A (m by n) is any rectangular matrix 

(m rows and n columns) 

•  U (m by n) is an “orthogonal” matrix 
•  S (n by n) is a diagonal matrix 
•  V (n by n) is another orthogonal matrix 

•  Such decomposition always exists 
•  All matrices are real; m ≥ n 
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SVD for microarray data 
(Alter et al, PNAS 2000) 
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A = USVT 

•  A is any rectangular matrix (m ≥ n) 
•  Row space: vector subspace 

generated by the row vectors of A 
•  Column space: vector subspace 

generated by the column vectors of A 
–  The dimension of the row & column 

space is the rank of the matrix A: r (≤ n) 
•  A is a linear transformation that maps 

vector x in row space into vector Ax 
in column space 
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A = USVT 

•  U is an “orthogonal” matrix (m ≥ n) 
•  Column vectors of U form an 

orthonormal basis for the column 
space of A: UTU=I 

•  u1, …, un in U are eigenvectors of AAT 

–  AAT =USVT VSUT =US2 UT 

–  “Left singular vectors” 
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A = USVT 

•  V is an orthogonal matrix (n by n) 
•  Column vectors of V form an 

orthonormal basis for the row space of 
A:  VTV=VVT=I 

•  v1, …, vn in V are eigenvectors of ATA 

–  ATA =VSUT USVT =VS2 VT 

–  “Right singular vectors” 
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A = USVT 

•  S is a diagonal matrix (n by n) of non-
negative singular values 

•  Typically sorted from largest to 
smallest 

•  Singular values are the non-negative 
square root of corresponding 
eigenvalues of ATA and AAT 
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AV = US 

•  Means each Avi = siui 
•  Remember A is a linear map from row 

space to column space 
•  Here, A maps an orthonormal basis {vi} in 

row space into an orthonormal basis {ui} in 
column space 

•  Each component of ui is the projection of a 
row onto the vector vi 
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Full SVD 

•  We can complete U to a full orthogonal 
matrix and pad S by zeros accordingly 

= 
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Reduced SVD 

•  For rectangular matrices, we have two 
forms of SVD. The reduced SVD looks like 
this: 
– The columns of U are orthonormal 
– Cheaper form for computation and storage 

= 
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SVD of A (m by n): recap 

•  A = USVT = (big-"orthogonal")(diagonal)(sq-orthogonal) 

•  u1, …, um in U are eigenvectors of AAT 

•  v1, …, vn in V are eigenvectors of ATA 
•  s1, …, sn in S are nonnegative singular values of 

A 

•  AV = US means each Avi = siui 
•  “Every A is diagonalized by 2 orthogonal 

matrices” 
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SVD as sum of rank-1 matrices 

•  A = USVT 
•  A = s1u1v1

T + s2u2v2
T +… + snunvn

T 

•  s1 ≥ s2  ≥ … ≥ sn ≥ 0 
•  What is the rank-r matrix A that best 

approximates A ? 
– Minimize  

•  A = s1u1v1
T + s2u2v2

T +… + srurvr
T 

•  Very useful for matrix approximation 
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Examples of (almost) rank-1 matrices 

•  Steady states with fluctuations 

•  Array artifacts? 

•  Signals?  
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Geometry of SVD in row space 

•  A as a collection of m row vectors 
(points) in the row space of A 

•  s1u1v1
T is the best rank-1 matrix 

approximation for A 
•  Geometrically: v1 is the direction of 

the best approximating rank-1 
subspace that goes through origin 

•  s1u1 gives coordinates for row 
vectors in rank-1 subspace 

•  v1 Gives coordinates for row space 
basis vectors in rank-1 subspace 

x 

y 
v1 
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Geometry of SVD in row space 

x 

y 
v1 

x 

y 

This line segment that goes 
through origin approximates 

the original data set 

The projected data set 
approximates the original 

data set 

x 

y s1u1v1
T 

A 
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Geometry of SVD in row space 

•  A as a collection of m row vectors 
(points) in the row space of A 

•  s1u1v1
T + s2u2v2

T is the best rank-2 matrix 
approximation for A 

•  Geometrically: v1 and v2 are the 
directions of the best approximating 
rank-2 subspace that goes through 
origin 

•  s1u1 and s2u2 gives coordinates for row 
vectors in rank-2 subspace 

•  v1 and v2 gives coordinates for row space 
basis vectors in rank-2 subspace 

x 

y 
x’ y’ 
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What about geometry of SVD in 
column space? 

•  A = USVT 

•  AT = VSUT 

•  The column space of A becomes the row 
space of AT 

•  The same as before, except that U and V 
are switched 
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Geometry of SVD in row and 
column spaces 

•  Row space 
–  siui gives coordinates for row vectors along 

unit vector vi 
–  vi gives coordinates for row space basis 

vectors along unit vector vi 
•  Column space 

–  sivi gives coordinates for column vectors 
along unit vector ui 

–  ui gives coordinates for column space basis 
vectors along unit vector ui 

•  Along the directions vi and ui, these two spaces 
look pretty much the same! 
–  Up to scale factors si 
–  Switch row/column vectors and row/column 

space basis vectors 
–  Biplot.... 
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Biplot 
•  A biplot is a two-dimensional representation of a data matrix showing a point for each 

of the n observation vectors (rows of the data matrix) along with a point for each of 
the p variables (columns of the data matrix).  

–  The prefix ‘bi’ refers to the two kinds of points; not to the dimensionality of the plot. The method presented here could, in fact, be 
generalized to a threedimensional (or higher-order) biplot. Biplots were introduced by Gabriel (1971) and have been discussed at 
length by Gower and Hand (1996). We applied the biplot procedure to the following toy data matrix to illustrate how a biplot can be 
generated and interpreted. See the figure on the next page.  

•  Here we have three variables (transcription factors) and ten observations (genomic 
bins). We can obtain a two-dimensional plot of the observations by plotting the first 
two principal components of the TF-TF correlation matrix R1.  

–  We can then add a representation of the three variables to the plot of principal components to obtain a biplot. This shows each of 
the genomic bins as points and the axes as linear combination of the factors.  

•  The great advantage of a biplot is that its components can be interpreted very easily. First, 
correlations among the variables are related to the angles between the lines, or more specifically, 
to the cosines of these angles. An acute angle between two lines (representing two TFs) indicates 
a positive correlation between the two corresponding variables, while obtuse angles indicate 
negative correlation.  

–  Angle of 0 or 180 degrees indicates perfect positive or negative correlation, respectively. A pair of orthogonal lines represents a 
correlation of zero. The distances between the points (representing genomic bins) correspond to the similarities between the 
observation profiles. Two observations that are relatively similar across all the variables will fall relatively close to each other 
within the two-dimensional space used for the biplot. The value or score for any observation on any variable is related to the 
perpendicular projection form the point to the line.  

•  Refs 
–  Gabriel, K. R. (1971), “The Biplot Graphical Display of Matrices with Application to Principal Component 

Analysis,” Biometrika, 58, 453–467. 
–  Gower, J. C., and Hand, D. J. (1996), Biplots, London: Chapman & Hall.  



90 

Biplot 
Ex 
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Biplot 
Ex #2 
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Biplot 
Ex #3 

Assuming s=1, 
Av = u 
ATu = v 
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When is SVD = PCA? 
•  Centered data 

x 

y 

x’ 
y’ 
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When is SVD different from PCA? 

x 

y 
x’ 

y’ 

y’’ 
x’’ 

Translation is not a linear operation, as it moves the origin ! 

PCA 

SVD 
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Additional Points 

A 

Application of SVD to text mining 

Time Complexity Issues with SVD 
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Conclusion 

•  SVD is the “absolute high point of linear algebra” 
•  SVD is difficult to compute; but once we have it, 

we have many things 
•  SVD finds the best approximating subspace, 

using linear transformation 
•  Simple SVD cannot handle translation, non-

linear transformation, separation of labeled data, 
etc. 

•  Good for exploratory analysis; but once we know 
what we look for, use appropriate tools and 
model the structure of data explicitly! 


