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Large-scale Datamining

« Gene Expression
() Representing Data in a Grid
() Description of function prediction in abstract context

» Unsupervised Learning
() clustering & k-means
¢ Local clustering

« Supervised Learning

¢ Discriminants & Decision Tree
( Bayesian Nets

* Function Prediction EX
() Simple Bayesian Approach for Localization Prediction




The recent advent and subsequent
onslaught of microarray data
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Gene Expression Information and
Protein Features
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Prediction of Function on a Genomic Scale
from Array Data & Sequence Features
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Arrange data in a tabulated form, each row

representing an example and each

column representing a feature, including

the dependent experimental quantity to be

predicted.
predictor1 | Predictor2 | predictor3 | predictor4 |response
G1 |A(1,1) A(1,2) A(1,3) A(1,4) Class A
G2 |A(2,1) A(2,2) A(2,3) A(2,4) Class A
G3 |A(3,1) A(3,2) A(3,3) A(3,4) Class B

(adapted from Y Kluger)
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Typical Predictors and Response for Yeast
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Abstract high-dimensional space
representation
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Large-scale Datamining

« Gene Expression
() Representing Data in a Grid
() Description of function prediction in abstract context

» Unsupervised Learning
() clustering & k-means
¢ Local clustering

« Supervised Learning

¢ Discriminants & Decision Tree
( Bayesian Nets

* Function Prediction EX
() Simple Bayesian Approach for Localization Prediction
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“cluster” predictors
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Use clusters to predict Response




HRI

- Heuristicrats Research, Inc.

K-means

K-means algorithm in 2-D clustering

Initialize

Step 1
(assign points to centers)

Step 2
(recompute centers)

© Copyright 1995
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K-means

Top-down vs. Bottom up
Top-down when you know how many subdivisions

k-means as an example of top-down

1) Pick ten (i.e. k?) random points as putative cluster centers.

2) Group the points to be clustered by the center to which they are
closest.

3) Then take the mean of each group and repeat, with the means now at
the cluster center.

4) | suppose you stop when the centers stop moving.

16
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Large-scale Datamining

« Gene Expression
() Representing Data in a Grid
() Description of function prediction in abstract context

» Unsupervised Learning
() clustering & k-means
¢ Local clustering

« Supervised Learning

¢ Discriminants & Decision Tree
( Bayesian Nets

* Function Prediction EX
() Simple Bayesian Approach for Localization Prediction
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Find a Division to Separate Tagged Points
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Extrapolate to Untagged Points
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Discriminant to Position Plane
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Fisher discriminant analysis

« Use the training set to reveal the structure of class distribution
by seeking a linear combination

* Y =W, X, WX, + ... + W X Which maximizes the ratio of the
separation of the class means to the sum of each class
variance (within class variance). This linear combination is
called the first linear discriminant or first canonical variate.
Classification of a future case is then determined by choosing
the nearest class in the space of the first linear discriminant and
significant subsequent discriminants, which maximally separate
the class means and are constrained to be uncorrelated with
previous ones.

23



s Discriminant

Fischer
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Fisher cont.

m. =w- m. S

l l l

Solution of 15t
variate

— _1 — —
w=2_S, (m —m,)

25



Find a Division to Separate Tagged Points
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Retrospective
Decision Trees

356
Nomenclature

tqtal
Not S Express
Expressible™ " 143.:>2‘3 """" -ible

hydro

phobe

53 4 28 !

Q 900185

Has a hydrophob.ic stretch? (Y/N)



143 gg—213 Analysis of the

Retrospective o Suitability of 500
Decisi Y A A\ e M. thermo.
eclision & proteins to find
Trees QL cplx optimal
53 221 0\7 %1152 [2:33 sequences
DEi / R purification
52 13 |1\8
F
YW
28 _L 13 H
*VL
'G|A21 ) on] & o\s o /14 64 Ex';:ss Express
m e " éi B
W - s o




Overfitting, Cross Validation,

and Pruning
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Decision Trees

can handle data that is not linearly separable.

A decision tree is an upside down tree in which each branch node represents a choice between a number of alternatives, and
each leaf node represents a classification or decision. One classifies instances by sorting them down the tree from the root to
some leaf nodes. To classify an instance the tree calls first for a test at the root node, testing the feature indicated on this nade
and choosing the next node connected to the root branch where the outcome agrees with the value of the feature of that
instance. Thereafter a second test on another feature is made on the next node. This process is then repeated until a leaf of the
tree is reached.

Growing the tree, based on a training set, requires strategies for (a) splitting the nodes and (b) pruning the tree. Maximizing [the
decrease in average impurity is a common criterion for splitting. In a problem with noisy data (where distribution of observations
from the classes overlap) growing the tree will usually over-fit the training set. The strategy in most of the cost-complexity
pruning algorithms is to choose the smallest tree whose error rate performance is close to the minimal error rate of the over-fit
larger tree. More specifically, growing the trees is based on splitting the node that maximizes the reduction in deviance (or any
other impurity-measure of the distribution at a node) over all allowed binary splits of all terminal nodes. Splits are not chosen
based on misclassification rate .A binary split for a continuous feature variable v is of the form v<threshold versus v>threshaold
and for a “descriptive” factor it divides the factor’s levels into two classes. Decision tree-models have been successfully applied
in a broad range of domains. Their popularity arises from the following: Decision trees are easy to interpret and use when the
predictors are a mix of numeric and nonnumeric (factor) variables. They are invariant to scaling or re-expression of numeric
variables. Compared with linear and additive models they are effective in treating missing values and capturing non-additive
behavior. They can also be used to predict nonnumeric dependent variables with more than two levels. In addition, decision:
tree models are useful to devise prediction rules, screen the variables and summarize the multivariate data set in a
comprehensive fashion. We also note that ANN and decision tree learning often have comparable prediction accuracy [Mitcheff
p. 85] and SVM algorithms are slower compared with decision tree. These facts suggest that the decision tree method should
be one of our top candidates to “data-mine” proteomics datasets. C4.5 and CART are among the most popular decision tree
algorithms.

(adapted from Y Kluger)
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Effect of Scaling
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Large-scale Datamining

« Gene Expression
() Representing Data in a Grid
() Description of function prediction in abstract context

» Unsupervised Learning
() clustering & k-means
¢ Local clustering

« Supervised Learning

¢ Discriminants & Decision Tree
( Bayesian Nets

* Function Prediction EX
() Simple Bayesian Approach for Localization Prediction
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Represent predictors in abstract high

dimensional space
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Tagged Data
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Probabilistic Predictions of Class
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Yeast Tables for Localization Prediction

Bayesian Localization
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Large-scale Datamining

« Gene Expression
() Representing Data in a Grid
() Description of function prediction in abstract context

» Unsupervised Learning
() clustering & k-means
¢ Local clustering

« Supervised Learning

¢ Discriminants & Decision Tree
( Bayesian Nets

* Function Prediction EX
() Simple Bayesian Approach for Localization Prediction
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Spectral Methods Outline & Papers

« Simple background on PCA (emphasizing lingo)
* More abstract run through on SVD
 Application to

¢ O Alter et al. (2000). "Singular value decomposition for genome-wide
expression data processing and modeling." PNAS vol. 97:
10101-10106

O Y Kluger et al. (2003). "Spectral biclustering of microarray data:
coclustering genes and conditions." Genome Res 13: 703-16.
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PCA section will be a "mash up" up a

number of PPTs on the web

pca-1 - black ---> www.astro.princeton.edu/~gk/A542/PCA.ppt
by Professor Gillian R. Knapp gk@astro.princeton.edu

pca-2 - yellow ---> myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
by Hal Whitehead.

This is the class main url http://myweb.dal.ca/~hwhitehe/BIOL4062/
handout4062.htm

pca.ppt - what is cov. matrix ----> hebb.mit.edu/courses/9.641/lectures/pca.ppt
by Sebastian Seung. Here is the main page of the course
http://hebb.mit.edu/courses/9.641/index.html

from BIIS _05lecture?.ppt ----> www.cs.rit.edu/~rsg/BIIS_05lecture?.ppt
by R.S.Gaborski Professor
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abstract

Principal component analysis (PCA) 1s a technique that is useful for
compression and classification of data. The purpose 1s to reduce the
dimensionality of a data set (sample) by finding a new set of variablg
smaller than the original set of variables, that nonetheless retains mo
of the sample's information.

By information we mean the variation present in the sample,

given by the correlations between the original variables. The new
variables, called principal components (PCs), are uncorrelated, and
ordered by the fraction of the total information each retains.




Geometric picture of principal components (PCs)

A sample of n observations 1n the 2-D space X — (.T 1, L 2)

to account for the variation in a sample
in as few variables as possible, to some accuracy




Geometric picture of principal components (PCs)

the 1s a minimum distance fit to a line in X space

the 1s a minimum distance fit to a line
in the plane perpendicular to the 15 PC




PCA: General methodology

From £k original variables: x,,x,,....x,:
Produce £ new variables: y,,v,,...,),:
V1= X T Xy Tl T apXy

Vo = Ay X T AypXy T oo T Ay Xy

Vi = QX T QX T o T Qg Xy
such that:

ar,eunggrr‘??ted (orthogonal)
ykaexpl’ins as much as possible of original variance in data set
¥, explains as much as possible of remaining variance

etc. 45

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




PCA: General methodology

From £k original variables: x,,x,,....x,:

Produce £ new variables: y,,v,,...,),:

V= apXy tapk v tagX ~
V'S are

— Principal
Components

Vo = Ay1X| T AypXy T oo T Ay Xy

V= QX T QX T T agy

such that:

¥, 's are uncorrelated (orthogonal)

¥, explains as much as possible of original variance in data set

¥, explains as much as possible of remaining variance
etc. 46

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




Principal Components Analysis

2nd Pilﬂincipal|
Component, y,

2
4.0 4.5

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

Ist Principal
Component, y,

47



Principal Components Analysis

» Rotates multivariate dataset into a new
configuration which 1s easier to interpret

* Purposes
— simplify data
— look at relationships between variables

— look at patterns of units

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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Principal Components Analysis

e Uses:

— Correlation matrix, or

— Covariance matrix when variables 1n same units

(morphometrics, etc.)

X

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

Principal Components Analysis

{ai1,a15,---,a14 18 1st Eigenvector of
correlation/covariance matrix, and coefficients
of first principal component

{A,y1,05,..-,05} 18 2nd Eigenvector of
correlation/covariance matrix, and coefficients
of 2nd principal component

{ay1,015,---,a1 + 18 kth Eigenvector of correlation/
covariance matrix, and coefficients of Ath
principal component >



Digression #1:
Where do you get covar matrix?

correlation/

covariance matrix
51



Variance

A random variable
fluctuating about O =x—(x
1ts mean value.

(@)= =

» Average of the square of the fluctuations.

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt
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Covariance

e Pair of random
variables, each 0X| = X, — <x1>
fluctuating about &, = x, — < x2>
1ts mean value.

(0x,0x, ) = (XX, ) = (X, )( X,

» Average of product of fluctuations.

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt
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Covariance examples

positive covariance

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt

=

negative covariance

54



Covariance matrix

C_, |
N random variables - ;@G >

 NxN symmetric matrix o
Cy = <xl.xj> ~ <xi><xj>
» Diagonal elements are variances
N
A= AN
AR

Adapted from hebb.mit.edu/courses/9.641/lectures/pca.ppt




Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

C

Principal Components Analysis

{ai1,a15,---,a14 18 1st Eigenvector of
correlation/covariance matrix, and coefficients
of first principal component

{A,y1,05,..-,05} 18 2nd Eigenvector of
correlation/covariance matrix, and coefficients
of 2nd principal component

{ay1,015,---,a1 + 18 kth Eigenvector of correlation/
covariance matrix, and coefficients of Ath
principal component >



Digression #2:
Brief Review of Eigenvectors

kth Eigenvector
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eigenvalue problem

* The eigenvalue problem 1s any problem having
the following form:

A.V=A.V
A: n X n matrix
v: n X 1 non-zero vector
A: scalar

Any value of A for which this equation has a
solution is called the eigenvalue of A and
vector v which corresponds to this value 1s
called the eigenvector of A.

58

[from BIIS_05lecture7.ppt] Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture?.ppt




eigenvalue problem

2 s [ [ ] o3[
2 5 k)'42X

A .V =A. V

_— —

Therefore, (3,2) 1s an eigenvector of the squhTe matrix
A and 4 1s an eigenvalue of A

O 1o

Given matrix A, how can we calculate the
eigenvector and eigenvalues for A?

59

[from BIIS_05lecture7.ppt] Adapted from http://www.cs.rit.edu/~rsg/BIIS_05lecture7.ppt




Principal Components Analysis

So, principal components are given by:

V1= apX; T apX, T T apXy
Vo = Ay1X| T AypXy T oo T Ay Xy
Vi = QX T QioXy T oee T A Xy

xj’s are standardized if correlation matrix 1s
used (mean 0.0, SD 1.0)

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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Principal Components Analysis

Score of ith unit on jth principal component

ViiT QX T QpXp T T Xy

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

PCA Scores

5.5

6.0
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Principal Components Analysis

Amount of variance accounted for by:
Ist principal component, A, 1st eigenvalue

2nd principal component, A,, 2nd eigenvalue

Average ); = | (correlation matrix)

63

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




Principal Components Analysis:
Eigenvalues

H WG
Y

2
4.0 4.5 5.0 5.5 6.0

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




PCA: Terminology

* jth principal component is jth eigenvector
of correlation/covariance matrix

* coefficients, a;, are elements of
eigenvectors and relate original variables
(standardized 1f using correlation matrix) to
components

 scores are values of units on components
(produced using coefficients)

« amount of variance accounted for by
component 18 given by eigenvalue, A,

. M@#ﬁomhmaqce accounted for by ¢
Adapted from®nttp://my&eb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

component 1s given by A,/ X A,

R R L Y A AR T | _--‘-‘-1-1- e 1



How many components to use?

o If Kj <] then component explains less variance
than original variable (correlation matrix)

e Use 2 components (or 3) for visual ease

* Scree diagram:

p— N
ek ¥ ] (8] ]
1 1 1

Eigenvalue

e
h

1 2 3 4 5

Component number 66
Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




Principal Components Analysis on:

* Covariance Matrix:
— Variables must be in same units
— Emphasizes variables with most variance
— Mean eigenvalue #1.0
— Useful in morphometrics, a few other cases

o Correlation Matrix:
— Variables are standardized (mean 0.0, SD 1.0)
— Variables can be in different units

— All variables have same impact on analysis

— Mean eigenvalue = 1.0 67

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




PCA: Potential Problems

» Lack of Independence
— NO PROBLEM /

* Lack of Normality

— Normality desirable but not essential

Lack of Precision

— Precision desirable but not essential

» Many Zeroes in Data Matrix <pALS

— Problem (use Correspondence Analysis)
68

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt




PCA applications -Eigenfaces

Adapted from http://www.cs.rit.edu/~rsg/BIIS _05lecture7.ppt

* the principal eigenface looks like a bland androgynous
average human face

L

http://en.wikipedia.org/wiki/
Image:Eigenfaces.png

2
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Eigenfaces — Face Recognition

* When properly weighted, eigenfaces can be summed
together to create an approximate gray-scale rendering of
a human face.

« Remarkably few eigenvector terms are needed to give a
fair likeness of most people's faces

* Hence eigenfaces provide a means of applying data
compression to faces for identification purposes.

— e ————
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Puts together slides
prepared by Brandon Xia
with images from Alter et
al. and Kluger et al.
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A

o) SVD

°i AFUSVT

* 4 (m by n) is any rectangular matrix

(m rows and n columns)

U (m by n) is an “orthogonal” matrix
S (n by n) is a diagonal matrix
V (n by n) is another orthogonal matrix

Such decomposition always exists
All matrices are real; m = n

72



Genes

SVD for microarray data
(Alter et al, PNAS 2000)

Arrays Eigenarrays Eigengenes Arrays
EEEEEEEEEE EEEEEEEEEE
EEECOOOOOOOOO EEECOOOOOOOO0
E00ONILN0 —H<H~OMWO SOOI HH~O MO0
O MO HANIOINNM MO OO ——OIOINM N
CL LTl OrHNM < OHNM<H LTt
VULVVLVLVLOVLVVLOLD OISO~ Yy —OIEPLONO~00 N VYLVLLYVLVVVLOLOD
1 1
0
> 4 o 2
0 S 5 o 5
-— O 0 [ v 6
[} =) 8 a 8
v o .9 o 9
o 10 910
-~ 11 = 11
M| 12 12
13 13
14 14

< s




. )

A A=US VT pe
S et
. A IS any rectangular matrix (m = N) J . /?D
0
Bow space: vector subspace Aiéjz
(‘9 generated by the row vectors of A E5EEZR S oes

T T T A B I
VVVVVLVVVLVVOW

 Column space: vector subspace
_generated by the column vectors of A

WD _ The dimension of the row & column
210 space is the rank of the matrix A: r (£ n)

* Ais a linear transformation that maps

Genes

Genes

vector x in row space into vector Ax

In column space
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A=USr

* U is an “orthogonal” matrix (m = n)

 Column vectors of U form an
orthonormal basis for the column
space of A: U'U=I

(1 A

U=|u u, - u

n

0o

* u, .., u in U are eigenvectors of 447
— AAT=USVTVSU" =US* U
— “Left singular vectors”

Genes

Eigenarrays

Or—HNM<H
ONNHLONO O A

75

Eigenarrays



A=USI"

* Vs an orthogonal matrix (n by n)

Column vectors of V form an Arrays
orthonormal basis for the row space of g%fé?%?%%ﬁl
| 1|
A VTV: VVT:[ ) VOVVOVLVVVD OO

L3

(N

010

V=|v, Vv, =V @ 3

14

0o

* v, ..., v, in J are eigenvectors of 474
— ATA =VSUT USVT=VS? VT

— "Right singular vectors” 76



A =USV"

* S is a diagonal matrix (n by n) of non-
negative singular values

 Typically sorted from largest to
smallest

« Singular values are the non-negative
square root of corresponding
eigenvalues of 474 and 44"

Eigenarrays

T T

H W DO O\O O~ WU WO

Eigengenes

Or—HNM<H
—OINHLONO 00N

Eigengenes

a4



AV = US

Means each Av, = s.u,

Remember A is a linear map from row
space to column space

Here, A maps an orthonormal basis {v;} in
row space into an orthonormal basis {« } in
column space

Each component of u, is the projection of a

row onto the vector v ﬁ% M%




Full SVD

* We can complete U to a full orthogonal
matrix and pad S by zeros accordingly

79



Reduced SVD

* For rectangular matrices, we have two
forms of SVD. The reduced SVD looks like

this:
— The columns of U are orthonormal

— Cheaper form for computation and storage
N

(R

N

o




SVD of A (m by n): recap

e 4 = USVTZ (big-"orthogonal")(diagonal)(sqg-orthogonal)

* u, .., u in U are eigenvectors of 447
e v, ..., v, in J are eigenvectors of 474

* s, ..., §, In § are nonnegative singular values of
A

* AV =US means each Av, = s.u,

* "Every 4 is diagonalized by 2 orthogonal
matrices”

81



SVD as sum of rank-1 matrlces

» A =USI" ( > }/,

c A=suyv  +suyv,  +.. +tsuyv?!
_—

528, 2.2, 2 ()

W,

« What is the rank-r matrix 4 that best
" approximates 4 ? )
PRTOXI [5Q v,

— Minimize
A - A S
LIK\Za] ] )Z ul \/ -
et T T T
* A=Suy,; TSUY, T TS WY,

* Very useful for matrix approximation 82




Examples of (almost) rank-1 matrices

(101 103 102
» Steady states with fluctuations 302 300 301

203 204 203
401 402 404
 Array artifacts? (101 303 202
102 300 201
103 304 203
101 302 204
« Signals?
1 2 -1
2 4 =2
-1 -2 1
0O 0 O 83




A= s ol
Geometry of SVD in row space

A as a collection of m row vectors
(points) in the row space of A

« s,u,v,’is the best rank-1 matrix
approximation for A

» Geometrically: v, is the direction of B
the best approximating rank-1
subspace that goes through origin

 s,u, gives coordinates for row Av. = su
vectors in rank-1 subspace i i

» v, Gives coordinates for row space Iv = v
basis vectors in rank-1 subspace i - Vig




Geometry of SVD in row space

Y
V] A
'x
Y Y s
/ Ocpdgooocp@

= > -
X X
This line segment that goes The projected data set.
through origin approximates approximates the original

the original data set data set



Geometry of SVD in row space

A as a collection of m row vectors 1
(points) in the row space of A )
s,uwv,"+ s,u,v,’ is the best rank-2 matrix \
approximation for A

Geometrically: v, and v, are the A
directions of the best approximating

rank-2 subspace that goes through
origin

s,u; and s,u, gives coordinates for row
vectors in rank-2 subspace Av

v, and v, gives coordinates for row space
basis vectors in rank-2 subspace




What about geometry of SVD in
column space”?
« A=USVT
o« AT = VSUT

* The column space of 4 becomes the row
space of A7

 The same as before, except that U and V

are switched U

™) VECT
NI
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Geometry of SVD in row and
column spaces

Row space A
— s;u;gives coordinates for row vectors along \f

unit vector v,

— v, gives coordinates for row space basis
vectors along unit vector v, I/ \F

Column space

— s,v;gives coordinates for column vectors AT
along unit vector u; U,

— u, gives coordinates for column space basis

vectors along unit vector u,
Along the directions v; and u,, these two spaces i

~
o
|

\Iook pretty much the same!

— Up to scale factors s,

— Switch row/column vectors and row/column
space basis vectors

— Biplot....

88




Biplot

A biplot is a two-dimensional representation of a data matrix showing a point for each
of the n observation vectors (rows of the data matrix) along with a point for each of
the p variables (columns of the data matrix).

—  The prefix ‘bi’ refers to the two kinds of points; not to the dimensionality of the plot. The method presented here could, in fact, be
generalized to a threedimensional (or higher-order) biplot. Biplots were introduced by Gabriel (1971) and have been discussed at
length by Gower and Hand (1996). We applied the biplot procedure to the following toy data matrix to illustrate how a biplot can be
generated and interpreted. See the figure on the next page.

Here we have three variables (transcription factors) and ten observations (genomic
bins). We can obtain a two-dimensional plot of the observations by plotting the Tirst—
two principal components of the TF-TF correlation matrix R1.

—  We can then add a representation of the three variables to the plot of principal components to obtain a biplot. This shows each of
the genomic bins as points and the axes as linear combination of the factors.

The great advantage of a biplot is that its components can be interpreted very easily. First,
correlations among the variables are related to the angles between the lines, or more specifically,
to the cosines of these angles. An acute angle between two lines (representing two TFs) indicates
a positive correlation between the two corresponding variables, while obtuse angles indicate

negative correlation.

— Angle of 0 or 180 degrees indicates perfect positive or negative correlation, respectively. A pair of orthogonal lines represents a
correlation of zero. The distances between the points (representing genomic bins) correspond to the similarities between the
observation profiles. Two observations that are relatively similar across all the variables will fall relatively close to each other
within the two-dimensional space used for the biplot. The value or score for any observation on any variable is related to the
perpendicular projection form the point to the line.

Refs

— Gabiriel, K. R. (1971), “The Biplot Graphical Display of Matrices with Application to Principal Component
Analysis,” Biometrika, 58, 453—467.

— Gower, J. C., and Hand, D. J. (1996), Biplots, London: Chapman & Hall. 89




Transcription factor

a
b
C

TF TF
a b c a b [«
1 21 16 28 1 0.84 -0.23 -0.20
2| 14 18 25 2 |-1.06 0.29 -0.82
g 3wz | . 3|-l.e6 0.03 -1.43
£ 4| 14 19 33 a“adeg?wr"") S5 4 |-1.06 .55 0.82
o 5| 172328 Sendadzaton o 5).0.24 1.59 -0.20
5 6| 201434 —» § 6| 0.57 -0.75 1.02
5 7| 222130 $ 7| 1.11 1.07 0.20
O g 1518 22 O 8 |-0.78 0.29 -1.43
9| 18 13 36 9| 0.03 -1.01 1.43
10 | 24 10 32 10 | 1.65 -1.86 0.61
Data matrix Standardized data matrix
Transpose
Genomic bin

1 2 3 45 6 7 8 910

21 14 14 14 17 20 22 15 18 24
16 18 17 19 23 14 21 18 13 10
28 25 22 33 28 34 30 22 36 32

Data matrix (transposed)

Variable (column)
standardization

1 2 3

Genomic bin

4 5 6 7 8 9 10

a
=
c | 1.05

-0.11 -0.90 -0.91 -0.81
-0.94 -0.18 -0.16 -0.30
1.8 1.07 1.12

-1.03 -0.26 -0.47
0.06 -0.84 -0.68
0.97 1.10 1.15

-0.95 -0.36 0.18
-0.09 -0.77 -1.08
1.04 1.13 0.90

Standardized data matrix (transposed)

L a| 1.00 -0.44 0.48
= b |-0.44 1.00 -0.40
\‘ngkac\O‘S C| ©.48 -0.40 1.00
re\all
e Correlation matrix Ry
3D
Scay, 10
s,
"Dlog 3
1
a 2
6
9
7
c b o
4
Dsca“em\o‘
10!

&
3
@
3
§
Q
(e
2
B

Genomic bin

1 2 3 4 5 6 7 8 9 10

1 1.00 0.70 0.69 0.77 0.54 0.99 0.95 0.65 0.98 0.97

2 0.70 1.00 1.00 ©.99 0.98 0.79 0.89 1.00 0.84 0.50

3 0.69 1.00 1.60 0.99 0.98 0.78 0.89 1.00 0.83 0.49

£ 4 0.77 0.99 0.99 1.00 0.95 0.85 0.94 0.98 0.89 0.59
o 5 0.54 0.98 0.98 0.95 1.00 0.64 0.78 0.99 0.71 0.31
E 6 0.99 0.79 0.78 0.85 0.64 1.00 0.98 0.74 1.00 0.93
% 7 0.95 0.89 0.89 0.94 0.78 0.98 1.00 0.86 0.99 0.84
o 38 0.65 1.00 1.00 0.98 0.99 0.74 0.86 1.00 0.80 0.43
9 0.98 0.84 0.83 0.89 6.71 1.00 0.99 0.80 1.00 0.89

10 0.97 0.50 0.49 0.59 0.31 0.93 0.84 0.43 0.89 1.00

Correlation matrix Ry

PCA

PCA"

Biplot
EX
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Correlation matrix Ry

PCA*

PCA™*

Genomic bin
2 3 4 5 6 7 8 9 10

.70 0.69 0.77 0.54 0.99 0.95 0.65 0.98 0.97
.00 1.00 0.99 0.98 0.79 0.89 1.00 0.84 0.50
.00 1.00 0.99 0.98 0.78 0.89 1.00 0.83 0.49
.99 0.99 1.00 0.95 0.85 0.94 0.98 0.89 0.59
.98 0.98 0.95 1.00 0.64 0.78 0.99 0.71 0.31
.79 0.78 0.85 0.64 1.00 0.98 0.74 1.00 0.93
.89 0.89 0.94 0.78 0.98 1.00 0.86 0.99 0.84
.00 1.00 0.98 0.99 0.74 0.86 1.00 0.80 0.43
.84 0.83 0.89 0.71 1.00 0.99 0.80 1.00 0.89
.50 0.49 0.59 0.31 0.93 0.84 0.43 0.89 1.00

Correlation matrix Ry

*

Projection *

e

Projection *

>

Principal component V2

Principal component U2

T T T
-1.0 -05 0.0 05 1.0

Principal component V1

T

The same rank-2 approximation
of the original data matrix

-1.0 -05 0.0 05 1.0

Principal component U1

10D scatterplots are used here for illustrative purpose only.

PCA: the correlation matrix is eigen-decomposed; then the principal components are added to the original space.

Projection: the points and axes in the original space are projected onto the plane defined by the top two principal components.

Biplot
EX #2
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1.0

Biplot
Ex #3

AV su

i I

[

Principal component V2
0.5

-0.5

-1.0 -05 0.0 0.5 1.0

Principal component V1

T
A u = sV,

Assuming s=1,
AV; = U,
ATU',= \'J

The same rank-2 approximation
of the original data matrix

Principal component U2

-10 -05 00 05 1.0
Principal component U1



When is SVD = PCA?

 Centered data
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When is SVD different from PCA?

PCA -

| > SVD
x /
X

Translation is not a linear operation, as it moves the @rigin !



Additional Points

2.
'ala
Time Complexity Issues withm
o S\ D

Application of SVD to text mining_ (5] <
pocs CoMRLT 17

TRMS
A — [0 . SPARSE
| #TENT
SCMMITIC
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Conclusion

SVD is the “absolute high point of linear algebra”

SVD is difficult to com once we have It,
we have many things

SVD finds the best approximating subspace,
using linear transformation

Simple SVD cannot handle translation, non-

linear transformation, separation of labeled data,
etc.

Good for exploratory analysis; but once we know
what we look for, use appropriate tools and
model the structure of data explicitly! %



