BIOINFORMATICS Simulation

(last edit in fall '06, handout version, including in-class changes)

Start of class M8 [2006,11.27]

Overview: Electrostatics + Basic Forces

- Electrostatics
- Simple Systems First
\triangleleft Polarization
\diamond Multipoles, dipoles
\checkmark VDW Forces
\diamond Electrostatic Interactions
- Basic Forces
\diamond Electrical non-bonded interactions
\diamond bonded, fundamentally QM but treat as springs
\diamond Sum up the energy

Overview:
 Methods for the Generation and Analysis of Macromolecular Simulations

1 Simulation Methods
\diamond Potential Functions
\diamond Minimization
\diamond Molecular Dynamics
\checkmark Monte Carlo
\diamond Simulated Annealing
2 Types of Analysis
\diamond liquids: RDFs, Diffusion constants
\diamond proteins: RMS, Volumes, Surfaces

- Established Techniques (chemistry, biology, physics)
- Focus on simple systems first (liquids). Then explain how extended to proteins.

Potential Functions

- $E=$ electric field = direction that a positive test charge would move
- Force/q = E
- Potential = W/q = work per unit charge $=\mathrm{Fx} / \mathrm{q}=$ Ex
$\diamond E=-\operatorname{grad} \phi ; E=$ (d $\phi / d x, d \phi / d y, d \phi / d z)$

Electric potential, a quick review

Maxwell's Equations

- 1st Pair (curl's)
\checkmark A changing electric field gives rise to magnetic field that circles around it \& vice-versa. Electric Current also gives rise to magnetic field. [no discuss here]
- 2nd Pair (div’s)
\diamond Relationship of a field to sources
\diamond no magnetic monopoles and magnetostatics: div $\mathrm{B}=0$ [no discuss here]
- All of Electrostatics in Gauss's Law!!
$\operatorname{curl} \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
$\operatorname{curl} \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}+\frac{4 \pi}{c} \mathbf{J}$
$\operatorname{div} \mathbf{E}=4 \pi \rho$
$\operatorname{div} \mathbf{B}=0$

Multipole Expansion

- Routinely done when an
 atom's charge distribution is replaced by a point charge or a point charge and a dipole
\diamond Ignore above dipole here
\diamond Harmonic expansion of pot.
- Only applicable far from the charge distribution
\diamond Helix Dipole not meaningful close-by
- Terms drop off faster with distance
$\Phi(\mathbf{x})=\frac{q}{r}+\frac{\mathbf{p}^{\bullet} \mathbf{x}}{r^{3}}+\frac{1}{2} \sum_{i, j} Q_{i j} \frac{x_{i} x_{j}}{r^{5}}+\cdots$
$\Phi(\mathbf{x})=\frac{K_{1} q}{r}+\frac{K_{2} q}{r^{2}}+\frac{K_{3} q}{r^{3}}+\cdots$
Replace continuous charge distribution with point moments: charge
(monopole) + dipole + quadrupole + octupole + ...

Polarization

Symmetrical molecules
(a) No external field

- Charge shifts to resist field
\diamond Accomplished perfectly in conductor -- surface charge, no field inside
- Induced dipole
\diamond charge/ion movement (slowest)
\diamond dipole reorient
\diamond molecular distort (bond length and angle)
\diamond electronic (fastest)

$$
q^{\prime} d=P d^{3}
$$

Dielectric const.

- Macro manifestation of polarization
- Values
(measured in debye)
\diamond Air, 1
\diamond Water, 80
\diamond Paraffin Wax, 2
\diamond Methanol, 33
\diamond Non-polar protein, 2
\checkmark Polar protein, 4
- High-frequency
\diamond water re-orient, 1ps
\checkmark bond, angle stretch
\diamond electronic, related to index of refraction

- $P=\alpha E$
$\mathrm{P}=$ dipole moment per unit volume
- $\alpha=$ electric susceptability
- $\alpha=(\varepsilon-1) / 4 \pi$
- $\varepsilon=$ dielectric const.
- Effective Field Inside Reduced by Polarization

Molecular
 Mechanics: Simple electrostatics

- $\mathrm{U}=\mathrm{kqQ} / \mathrm{r}$
- Molecular mechanics uses partial unpaired charges with monopole
\diamond usually no dipole
\diamond e.g. water has apx. -. 8 on O and +.4 on Hs
\diamond However, normally only use monopoles for unpaired charges (on charged atoms, asp O)
- Longest-range force
\diamond Truncation? Smoothing

VDW Forces: Induced dipole-induced dipole

- Too complex to derive induced-dipole-induced dipole formula, but it has essential ingredients of dipoledipole and dipole-induced dipole calculation, giving an attractive $1 / r^{6}$ dependence.
\diamond London Forces
- Thus, total dipole cohesive force for molecular system is the sum of three $1 / r^{6}$ terms.
- Repulsive forces result from electron overlap.
\diamond Usually modeled as $\mathrm{A} / \mathrm{r}^{12}$ term. Also one can use $\exp (-\mathrm{Cr})$.
- VDW forces: $\mathrm{V}(\mathrm{r})=\mathrm{A} / \mathrm{r}^{12}-\mathrm{B} / \mathrm{r}^{6}=4 \varepsilon\left((\mathrm{R} / \mathrm{r})^{12}-(\mathrm{R} / \mathrm{r})^{6}\right)$
$\diamond \varepsilon \sim .2 \mathrm{kcal} /$ mole, $\mathrm{R} \sim 3.5 \mathrm{~A}, \mathrm{~V} \sim .1 \mathrm{kcal} /$ mole [favorable]

Packing ~ VDW force

- Longer-range isotropic attractive tail provides general cohesion
- Shorter-ranged repulsion determines detailed geometry of interaction
- Billiard Ball model, WCA Theory

$$
\begin{aligned}
& \text { Electron } \\
& \text { Overlap } \\
& \text { Replusion } \\
& \text { Dispersion } \quad U=\varepsilon\left(\frac{r_{0}}{r}\right)^{12} \\
& \text { Attraction }
\end{aligned}
$$

H-bonds subsumed by electrostatic interactions

- Naturally arise from partial charges
\diamond normally arise from partial charge
- Linear geometry
- Were explicit springs in older models

FIGURE 4.4
The geometries of $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds observed in crystal structures of small molecules. The defin tions of the angles ϕ and θ are illustrated a: the top, and the relative frequencies of their observed values in intermolecular hydrogen bonds (R. Taylor et al., /. Amer. Chem. Soc. 105:5761-5766. 1983) are given by the con:ours. The angle ϕ measures departures from linearity of the $\mathrm{C}=\mathrm{O}$ bond and the H atom; the most frequently observed values are in the region of $50^{\circ}-60^{\circ}$. The angle θ measures the ex tent to which the H atom lies out of the plane defined by the R . C, and O atoms: the most commonly observed value are in the region of $0^{\circ}-7^{\circ}$. The lone-pair electrons of the oxygen atom are believed to project at angles of $\phi=60^{\circ}$ $\theta=0^{\circ}$. The spherical polar coordinate system used here gives a bias toward small values of θ that could be corrected by plotting $\sin \theta$.
Table 4.7 Lengths of $\mathrm{H}-\mathrm{N} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds ${ }^{\text {a }}$
Mean $\mathrm{H} \cdots$ O Distance for Different Acceptors (\dot{A})

Donor	Carboxylb	Carboxylate $^{\text {c }}$	Amide
$\mathrm{N}-\mathrm{H}^{d}$	2.002 ± 0.012	1.928 ± 0.012	1.934 ± 0.005
$\mathrm{~N}^{+}-\mathrm{He}$	1.983 ± 0.055	1.869 ± 0.028	1.858 ± 0.043
NH_{4}^{+}	1.916 ± 0.041	1.886 ± 0.018	1.988 ± 0.075
$\mathrm{R}-\mathrm{NH}_{3}{ }^{+}$	1.936 ± 0.014	1.841 ± 0.008	1.891 ± 0.034
$\mathrm{R}_{2}-\mathrm{NH}_{2}{ }^{+}$	1.887 ± 0.047	1.796 ± 0.014	1.793 ± 0.070
$\mathrm{R}_{3}-\mathrm{NH}^{+}$		1.722 ± 0.025	1.845 ± 0.014

-The $\mathrm{N}-\mathrm{H}$ distance is generally $1.03 \dot{A}$: adding this value to the tabulated distances gives the distance between the N and O atoms.
${ }^{\circ} \mathrm{C}=\mathrm{O}$ oxygen atom of unionized carboxylic acids and esters.
' Oxygen atom of carboxyl anions ($-\mathrm{CO}_{2}{ }^{-}$).

- Uncharged donor.
- Charged donor with trigonal geometry.

From R. Taylor and O. Kennard, Acc. Chem. Res. 17:320-326 (1984).

Hydrophobic interactions

Bond Length Springs

- Freq from IR spectroscopy
$\diamond->$ w $=\operatorname{sqrt}(\mathrm{k} / \mathrm{m}), \mathrm{m}=$ mass => spring const. k
$\diamond \mathrm{k} \sim 500 \mathrm{kcal} / \mathrm{mole}^{*} \mathrm{~A}^{2}$ (stiff!), w corresponds to a period of 10 fs
- Bond length have 2-centers

Bond angle, More Springs

- torque $=\tau=\kappa \theta->E=\kappa \theta^{2} / 2$
- 3-centers

Torsion angle

- 4-centers
- $U(A)=K(1-\cos (n A+d))$
$\checkmark \cos x=1+x^{2} / 2+\ldots$, so minima are quite spring like, but one can hoop between barriers
- K ~ $2 \mathrm{kcal} /$ mole

Torsion Angle A -->

Potential Functions

- Putting it all together
- Springs + Electrical Forces

Summary of the Contributions to the Potential Energy

Some of the Simplifications in the Conventional Macromolecular Potential Functions

- Dielectric and polarization effects
- "Motionless" point charges and dipoles
- Bonds as springs

Sum up to get total

 energy- Each atom is a point mass (m and \mathbf{x})
- Sometimes special pseudo-forces: torsions and improper torsions, H-bonds, symmetry.

$$
\begin{aligned}
& E_{\text {empirical }}= \\
& \sum_{\text {bonds }} k_{o}\left(b-b_{0}\right)^{2} \\
& +\sum_{\text {angles }} k_{\Phi}\left(\Phi-\Phi_{0}\right)^{2} \\
& +{ }_{\text {dihecerrals }} k_{\Psi} \cos (n \Psi+\delta) \\
& +{ }_{\text {chiral.plonar centers }} k_{\omega}\left(\omega-\omega_{0}\right)^{2} \\
& +\sum_{\text {non -bonded }}\left(Q r^{-1}+A r^{-12}-B r^{-6}\right) \\
& +\underset{\text { symmetry non-bonded }}{ }\left(Q r^{-1}+A r^{-12}-B r^{-6}\right)^{2}
\end{aligned}
$$

Elaboration on the Basic Protein Model

- Geometry
\diamond Start with X, Y, Z's (coordinates)
\diamond Derive Distance, Surface Area, Volume, Axes, Angle, \&c
- Energetics
\diamond Add Q's and k's (Charges for electrical forces, Force Constants for springs)
\diamond Derive Potential Function $U(x)$
- Dynamics
\checkmark Add m's and t (mass and time)
\diamond Derive Dynamics ($\mathrm{v}=\mathrm{dx} / \mathrm{dt}, \mathrm{F}=\mathrm{m} \mathrm{dv} / \mathrm{dt}$)

Minimization and Simulation Algorithms for Macromolecules

Goal:
Model
Proteins and
Nucleic
Acids as Real
Physical
Molecules

Ways to Move Protein on its Energy Surface

Minimization

Monte Carlo (MC)

Vary the coordinates (XYZs) at a time point t , giving a new Energy E . This can be mimimized with or without derivatives

Steepest Descent Minimization

- Particles on an "energy landscape." Search for minimum energy configuration
\diamond Get stuck in local minima
- Steepest descent minimization
\diamond Follow gradient of energy straight downhill
\diamond i.e. Follow the force:

step \sim F $=-\nabla U$
so
$\mathbf{x}(\mathrm{t})=\mathbf{x}(\mathrm{t}-1)+\mathrm{a} \mathbf{F} /|\mathrm{F}|$

Multi-dimensional Minimization

- In many dimensions, minimize along lines one at a time
- Ex: $U=x^{2}+5 y^{2}, F=(2 x, 10 y)$

Figure 4-5. Minimization Path following a Steepest-Descents Path without Line Searches

The searching starts from point a and converges on the minimum in about 12 iterations. Athough the number of iterations is sightly larger than in Figure 4-4, the total minimization is five times faster since, on average, each iteration used only $\mathbf{1 . 3}$ lunction eval uations. Noie that, in most applications in molecular mechanics, the function evaluation is the most time-consuming portion of the calculation.

Figure 4-4. Minimization Path following a Steepest-Descents Path
When complete line searches starting from point a are used, the minimum is reached in about 12 iterations. Here, where a rigorous line search is carried out, approximately 8 function evaluations are needed for each line search using a quadratic interpolation scheme. Note how steepest descents consistently overshoots the best path to the mininnum, resulling in an inefficient, oscillating trajectory.

Other Minimization Methods

- Simplex, grid search
\diamond no derivatives
- Conjugate gradient step $\sim F(t)-b F(t-1)$
\diamond partial 2nd derivative
- Newton-Raphson
\diamond using 2nd derivative, find minimum assuming it is parabolic
$\diamond V=a x^{2}+b x+c$
$\diamond V^{\prime}=2 a x+b \quad \& V^{\prime \prime}=2 a$
$\diamond \mathrm{V}^{\prime}=0->\mathrm{x}^{*}=-\mathrm{b} / 2 \mathrm{a}$
- Problem is that get stuck in local minima
- Steepest descent, least clever but robust, slow at end
- Newton-Raphson faster but 2nd deriv. can be fooled by harmonic assumption
- Recipe: steepest descent 1st, then Newton-raph. (or conj. grad.)

Adiabatic mapping

- Interpolate then minimize
\diamond Gives apx. energy (H) landscape through a barrier
\diamond can sort of estimate transition rate rate $=(\mathrm{kT} / \mathrm{h}) \exp (-$ dG/kT)
\diamond Used for ring flips, hinge motions

Molecular Dynamics

- Give each atoms a velocity.
\diamond If no forces, new position of atom (at $t+d t$) would be determined only by velocity $\mathbf{x}(\mathrm{t}+\mathrm{dt})=\mathbf{x}(\mathrm{t})+\mathbf{v d t}$
- Forces change the velocity, complicating things immensely
$\diamond F=d p / d t=m d v / d t$

Molecular Dynamics (cont)

- Step must be very small
- On computer make very small steps so force is nearly constant and velocity change can be calculated (uniform a)
$[$ Avg. \mathbf{v} over $\Delta \mathrm{t}]=(\mathbf{v}+\Delta \mathbf{v} / 2)$
- Trivial to update positions:
(atom moves $1 / 500$ of its diameter)
\checkmark This is why you need fast computers
- Actual integration schemes slightly more complicated
\diamond Verlet (explicit half-step)
\checkmark Beeman, Gear
(higher order terms than acceleration)

Phase Space Walk

- Trajectories of all the particles traverses space of all possible configuration and velocity states (phase space)
- Ergodic Assumption: Eventually, trajectory visits every state in phase space
- Boltzmann weighting:

Throughout, trajectory samples states fairly in terms of system's energy levels
\checkmark More time in low-U than high-U states
\diamond Probability of being in a state $\sim \exp (-U / k T)$

- Consequently, statistics (average properties) over trajectory are thermodynamically correct

Monte Carlo

- Other ways than MD to sample states fairly and compute correctly weighted averages?
Yes, using Monte Carlo calculations.
- Basic Idea: Move through states randomly, accepting or rejecting them so one gets a correct "Boltzmann weighting"
- Formalism:
\diamond System described by a probability distribution $\rho(n)$ for it to be in each state n
\diamond Random ("Markov") process π operates on the system and changes distribution amongst states to $\pi \rho(n)$
\diamond At equilbrium original distribution and new distribution have to be same as

Monte Carlo (cont)

- Metropolis Rule (for specifying ${ }^{\pi}$)
1 Make a random move to a particle and calculate the energy change dU
2 dU < 0 -> accept the move
3 Otherwise, compute a random number R between 0 and 1 :
$R<\sim \exp (-U / k T)$-> accept the move
otherwise -> reject the move

- "Fun" example of MC Integration
\diamond Particle in empty box of side $2 r$ (energy of all states same)
$\diamond \pi=6 \times$ [Fraction of times particles is within r of center]

MC vs/+ MD

- MD usually used for proteins. Difficult to make moves with complicated chain.
- MC often used for liquids. Can be made into a very efficient sampler.
- Hybrid approaches (Brownian dynamics)
- Simulated Annealing. Heat simulation up to high T then gradually cool and minimize to find global minimum.

Practical Aspects of Simulation

Typical
 Systems: DNA +
 Water

Typical Systems: Protein + Water

Practical Aspects: simulation cycle I

- Divide atoms into types (e.g. alpha carbon except for Gly, carbonyl oxygen)
- Initially
\checkmark Associate each atom with a mass and a point charge
\diamond Give each atom an initial velocity
- Calculate Potential
- Calculating non-bonded interactions take up all the time

\diamond Electrostatics hardest since longest

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Practical Aspects: simulation cycle II

- Update Positions with MD equations, then recalculate potential and continue
- Momentum conservation
- Energy Conserved in NVE ensemble
- Hydrophobic interaction naturally arises from water behavior

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Periodic Boundary Conditions

- Make simulation system seem larger than it is
- Ewald

Summation for electrostatics
(Fourier transform)

End of class M8 [2006,11.27] Start of class M9 [2006,11.29]

Analysis: What can be Calculated from Simulation?

Average over simulation

- Deceptive Instantaneous Snapshots (almost anything can happen)
- Simple thermodynamic averages
\diamond Average potential energy <U>
$\diamond \mathrm{T} \sim<$ Kinetic Energy $>=1 / 2 \mathrm{~m}<\mathrm{v}^{2}>$
- Some quantities fixed, some fluctuate in different ensembles
\diamond NVE protein MD ("microcanonical")
\diamond NVT liquid MC ("canonical")
\diamond NPT more like the real world

Energy and Entropy

- Energy
\checkmark At each point $i\left(\right.$ with coordinates x_{i}) on the pot. energy surface there is a well-defined "energy" $\mathrm{U}\left(\mathrm{x}_{\mathrm{i}}\right)$
- Probability of occurrence
$\diamond P_{i}=\exp \left(-U_{i} / k T\right) / Q$
\diamond The boltzmann distribution
$\diamond Q=$ Sum over all P_{i}, to normalize probabilities to 1

X_{i}
- Entropy
$\diamond S(A)=k \sum\left(P_{i} \ln P_{i}\right)$, where the sum is over points in A
- Free Energy
$\diamond G(A)=U(A)-T S(A)$
- Entropy and Free Energy are only defined for distinctly diff. "states" -e.g. A ("unfolded")and B ("folded")
\diamond State B has a lower U and its minimum is more probable than State A
\checkmark However, state A has a broader minimum that can be occupied in more ways
- Relative Prob
$\Delta P(A) / P(B)=$ $\exp (-G(A) / k T)$
$\exp (G(B) / k T)$

Number Density

= Number of atoms per unit volume averaged over simulation divided by the number you expect to have in the same volume of an ideal "gas"

Spatially average over all directions gives
1D RDF =
[Avg. Num. Neighbors at r]
[Expected Num. Neighbors at r]

"at r" means contained in a thin shell of thickness dr and radius r .

Number Density (cont)

- Advantages: Intuitive, Relates to scattering expts
- D/A: Not applicable to real proteins
\diamond 1D RDF not structural
\diamond 2D proj. only useful with "toy" systems
- Number densities measure spatial correlations, not packing
\diamond Low value does not imply cavities
\diamond Complicated by asymmetric molecules
\diamond How things pack and fit is property of instantaneous structure - not average

mobcules

Measurement of Dynamic Quantities I

- The time-course of a relevant variable is characterized by
(1) Amplitude (or magnitude), usually characterized by an RMS value $\mathrm{R}=\operatorname{sqrt}\left[<(\mathrm{a}(\mathrm{t})-<\mathrm{a}(\mathrm{t})>)^{2} \quad>\right.$] $\mathrm{R}=\operatorname{sqrt}\left[<\mathrm{a}(\mathrm{t})^{2}-2 \mathrm{a}(\mathrm{t})<\mathrm{a}(\mathrm{t})>+<\mathrm{a}(\mathrm{t})>^{2}>\right.$] $R=\operatorname{sqrt}\left[\left\langle a(t)^{2}\right\rangle-<a(t)\right\rangle^{2}$
- similar to SD
- fluctuation
- Relevant variables include bond length, solvent molecule position, H-bond angle, torsion angle

Illustration from M Levitt, Stanford University

Measurement of Dynamic Quantities II

- The time-course of a relevant variable is characterized by
(2) Rate or time-constant
\checkmark Time Correlation function
$\diamond \mathrm{C}_{\mathrm{A}}(\mathrm{t})=<\mathrm{A}(\mathrm{s}) \mathrm{A}(\mathrm{t}+\mathrm{s})>=<\mathrm{A}(0) \mathrm{A}(\mathrm{t})>\quad$ [averaging over all s]
\diamond Correlation usually exponentially decays with time t
\diamond decay constant is given by the integral of $\mathrm{C}(\mathrm{t})$ from $\mathrm{t}=0$ to $\mathrm{t}=$ infinity
- Relevant variables include bond length, solvent molecule position, H -bond angle, torsion angle

Illustration from M Levitt, Stanford University

D \& RMS

- Diffusion constant
\diamond Measures average rate of increase in variance of position of the particles
\diamond Suitable for liquids, not really for proteins
- RMS more suitable to proteins
\diamond di $=$ Difference in position of protein atom at t from the initial position, after structures have been optimally rotated translated to minimize RMS(t)
\diamond Solution of optimal rotation has been solved a number of ways (Kabsch, SVD)

Other Things

 to Calculate- Fraction of Native Contacts
- Percent Helix
- Radius of Gyration

Illustration and Caption from Duan \& Kollman (1998)

Caption: Time evolution of (A) fractional native helical content, (B) fractional native contacts, (C) R and the main chain rmsd from the native structure, and (D) SFE of the protein. The helical content and the native contacts are plotted on a logarithmic time scale. The helical content was measured by the main chain - angle
$\left(60^{\circ} \pm 30^{\circ}, 40^{\circ} \pm 30^{\circ}\right.$). The native contacts were measured as the number of neighboring residues present in 80% of the last 50 ns of the native simulation. Residues are taken to be in contact if any of the atom pairs are closer than $2.8 \AA$, excluding residues i and $i+1$, which always have the contacts through main chain atoms. The SFE was calculated as described by Eisenberg and McLachlan (31) using their parameters (0.0163, 0.00637, $0.02114,0.02376$, and 0.05041 , in kcal mol $\AA 2$, for the surface areas of nonpolar, polar, sulfur, charged oxygen, and charged nitrogen, respectively). The straight line represents the SFE of the native structure.

Simplified Simulation

BASIS OF SIMPLIFICATION

Simplification

Computational

- Fewer degrees of freedom. Smaller space to search
- Energy surface has less features.

- Time-average forces.

Mean field.

Simplified Protein:

 Lattice Models- Cubic

Lattice

- Tetrahedral
Lattice

VERY SIMPLE LATTICE MODEL

* Hinds \& Levitt
J. Mol. Biol. $25,20(96)$ DAVE HINDS Get fold
 - Boundo
- Connet adjacent vertica of a 50 vertex volume of a tetrahedral latlice. This gives:

A bounded, relatively compact self-avoiding
chain in 3-dimensione.

Illustration from
Dill et al. (1990)

How Well Do Lattice Structures Match Real Protein Structure?

Simplified Solvent

- Smit et al. (1990) Surfactant simulation
- Three types of particles, o, w and s

$\diamond s$ consists of
w-w-o-o-o-o
\diamond s has additional springs
- all particles interact through L-J potential
\diamond o-w interaction truncated so purely repulsive
- Above sufficient to give rise to the formation of micelles, membranes, \&c

Figures from Smit et al. (1990)

End of class M9 [2006,11.29] Start of class M11 [2006,12.06]

Electrostatics Revisited: the Poisson-Boltzmann Equation

Poisson-Boltzmann equation

- The model
- Macroscopic dielectric
\diamond As opposed to microscopic one as for realistic waters
- Linearized: $\sinh \phi=\phi$
\diamond counter-ion condense

\checkmark Protein is point charges embedded in a low dielectric.
\diamond Boundary at accessible surface
\diamond Discontinuous change to a new dielectric
(no dipoles, no smoothly varying dielectric)

Simplifications of the PoissonBoltzmann equation

- Laplace eq.
\diamond div grad $V=\rho$
grad $V=E$ field
\checkmark Only have divergence when have charge source
- $\vec{\nabla} \cdot[\varepsilon(\vec{r}) \vec{\nabla} \varphi(\vec{r})]-\varepsilon(\vec{r})$
- Finite Difference Solon. to PDE
(PDE has deriv. Wet to 2 var.
ODE ODE like Newton's eg. has deriv. WRT to 1 var.)

$$
\cdot \frac{V_{j+1, l}+V_{j-1, l}+V_{j, l+1}+V_{j, l-1}-4 V_{j, l}}{4 \times 9=8!}
$$

Protein on a Grid

For intuition ONLY -- Don't need to know in detail!!

j

$$
\begin{aligned}
& \text { - } \vec{\nabla}^{2} \varphi(\vec{r})=\frac{4 \pi}{\pi \pi \varepsilon} \rho(\vec{r})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
-\frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\partial_{x}\left(\partial \partial^{\prime}\right)}{=}=\frac{\partial}{\partial x}\left(v_{j+1}-v_{j}\right) & =\left(V_{j+1}-v_{j}\right)-\left(v_{j}-v_{j-1}\right) \\
(\partial x=\Delta, \partial \varphi & \left.=v_{j+1}-v_{j}\right)
\end{aligned}
\end{aligned}
$$

Demand Consistency on the Grid

$$
\cdot V_{j+1, l}+V_{j-1, l}+V_{j, l+1}+V_{j, l-1}-4 V_{j, l}=\Delta^{2} C Q_{j, l}
$$

- System of Equations \rightarrow solve for unknown $V_{\text {il }}$
- Matrix Inversion in Finite Diff. method

Relaxation: Deviation from consistency should vanish at $t \rightarrow \infty$ $\nabla^{2} V-4 \pi \rho=\left(\frac{\partial V}{\partial t} \longrightarrow 0\right.$ at $t=\infty$ know in detail!!

at center (s) is
avg. value at 4 outside nodes (\oplus) plus charge at center

Adding a Dielectric Boundary into the Model

$$
\begin{aligned}
& \nabla \cdot(\epsilon(\sigma) \nabla \phi) \Rightarrow \\
& \frac{1}{1^{2}}\left(\in \left(j \rightarrow j_{j+1}+\left(V_{j+1}-V_{j}\right)-\right.\right. \\
& \left.\in\left(j_{-1} \rightarrow j\right)\left(V_{j}-V_{j-1}\right)\right)
\end{aligned}
$$

Electrostatic Potential of Thrombin

The proteolytic enzyme Thrombin (dark backbone worm) complexed with an inhibitor, hirudin (light backbone worm). The negatively charged (Light gray) and positively charged (dark gray) sidechains of thrombin are shown in bond representation.

Graphical analysis of electrostatic potential distributions often reveals features about the structure that complement analysis of the atomic coordinates. For example, LEFT shows the distribution of charged residues in the binding site of the proteolytic enzyme thrombin. RIGHT shows the resulting electrostatic potential distribution on the protein surface. The basic (positive) region in the fibrinogen binding, while it could be inferred from close inspection of the distribution of charged residues in TOP, is more apparent in the potential distribution.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Illustration Credit: Sharp (1999)
Text captions also from Sharp (1999)

Increasing lonic Strength

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at physiological ionic strength (0.145M)

TOP shows the effect of increasing ionic strength on the potential distribution, shrinking the regions of strong potential in comparison to BOTTOM.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Increasing Dielectric

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated using the same polarizability for protein and solvent.

TOP is calculated assuming the same dielectric for the solvent and protein. The more uniform potential distribution compared to BOTTOM shows the focusing effect that the low dielectric interior has on the field emanating from charges in active sites and other cleft regions.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Normal Modes

NMA formalism and implementation:

$$
\begin{gathered}
U\left(\mathbf{R}_{1} \ldots \mathbf{R}_{N}\right)=\sum_{i<j}^{N} U_{i j}\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right) \\
U_{i j}(r)=k\left(\mathbf{R}_{i j}^{(0)}\right)\left[r-\left|\mathbf{R}_{i j}^{(0)}\right|\right]^{2}
\end{gathered}
$$

Hinsen (1998):

$$
k(r)=c \cdot \exp \left(-\frac{|r|^{2}}{r_{o}^{2}}\right)
$$

Solve: $\mathbf{Q A Q}=0$
Minimize pot. energy
Then diagonalize the 2 nd derivative of the potential energy
Simplified potential

Normal Mode Analysis

- Examine vibrational motions
\diamond For a system of N particles:
- Total number of displacement $=3 \mathrm{~N}$
- Total number of vibrational modes $=3 \mathrm{~N}-6$
- Mode frequency indicates the type of motion:
\diamond Low frequency: Collective motion
\diamond High frequency: Localized motion

What is "NMA"?

ミ"(m) ${ }^{\mathrm{k}}$

$$
v=A \sin \left(\sqrt{\frac{k}{m}} t\right)
$$

N(my) - (comer

N(M97) \square (mm)

Normal (Natural) Modes for MOLA

