Sequence Assembly and Alignment

5025/5024 50	050/5049	5075/5074		5100/5099	5125/5124
	***			********	***********
		Contraction of the			10024024010001000
and the first state of the state of the	and the second second	and the second second	1.000		Constant Section 1997
WAATTETTTTTTTTTTTTTTTTTTTTTTTTT	ATTRECOTOAOCTATTC	TAGTTATESTATESSO	CATTTAATTTT	TTTACACASAACTISSTASAACA	TETABOTTATATTOCCAC
AAATTETTTTTTTTTTTTTTTTTTTTTTTT	TECCETEAGCTATTC	TAGTTATEGRATTOOD	C TTTAATTTT	TTTACACAGAACTOSTAGAACA	TC GOTTATATIOCCAC
MAATTETTTTT GTATTACATTTTT	ATTECCETEASCTATTC	TA TATATTOOD	CATTIAATTIT	TTTACACAGAAC ATAGCA	TCTAGGTTATATIGCCAC
MAATTCTTTT	GTGAGCTATTC	TAGTTATTOTATTOOD	CATT	TTTACACAGAACTOGTAGAACA	TTAGGTTATA
WAGTIGITIT	GTGAGATATTC	TASTTATTOTATTOOS	TTTAN	CACAGAACTOSTAGAACA	TCTADOTTATATTOC
WWATTOTTTT	GAOCTATTC	TAGTTATTOTATT000	CATTTAA	AGAACTOCTACACCA	TCTAGGTTATATTGCCAC
MAATTOTTTTT	GAOCTATTO	TAGTTATTOTATTOOD	CATTTAT	AGAACTOGTAGAECA	TETAGGTTATATTGOGAG
MAATTOTTTTTTTTTTTTTTACAT	OCTATTO	TAGTTATTGTATTGGG	CATTTAATT	GAACTOGTAGAACA	TOTAGGTTATATTGOCAD
WAATTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATTEC DETTA	TAGTTATTGTATTGGG	CATTTAATTTT	GAACA	TCTAGGTTATATTGCCAC
WAATTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATTIC DOTTA	LASTTATTOTATTOON	CATTIAATTIT	GAACA	TETABETTATATTECCAD
TTTTTTTTTT		GTATTOOS	CATTTAATTTT	TTTACACAGAACT	GGTTATATTSCCAC
ANATTCTTTTTT1		GTATTOOS	CATTTAATTTT	TTTACACAGAACT	GTTATATISCCAC
AMATTCTTTTTT0		GTATTOOD	CATTTAATTTT	TTLACACAGAACT	GTTATATTICCAC
AAATTCTTTTTT		TATTION	CATTTAATTTT	TTLACACAGAACTO	GTTATATISCOM
MAATTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATTOC		CATTEMATTI	TTTACACAGAACTOGTAGAA	OTTATATTOCCAC
ANATTOTTTTTTTTTTTTTTTTTT	ATTOCC		CATTERATITE	TTTACACAGAACTOOTAGAAC	TTATATTOCCAC
AATTOTTTTTTTTTTTT	ATTOCCOT		CATTERATION	TTTACACADAACTOGTAGAAC	ATTROCAD
AATTOTTTTTTTTTTTTTTTTT	ATTROOMT		ATTTAATTT	TTACACACACACACACACACACA	T ATTROCAT
TOTTTTTTTTT	1100001			TTACACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	1 100000
	ATTROCATOR ATT		Main	The second second second	and a second
	ATTOCCUTGAGCTATT				

Jim Noonan Department of Genetics james.noonan@yale.edu www.yale.edu/noonanlab

The assembly problem

3 Gb

Outline

Basic concepts in genome sequencing and assembly

•Hierarchical vs. whole-genome shotgun methods

Sources of error in assemblies

RepeatsPolymorphismSequencing errors

Alignment and assembly of next-generation sequencing data

Tiling reads onto reference vs. *de novo* assemblies
some methods

Sequence assembly: the basic approach

Terminology and concepts

genomic clone: A vector containing an insert of genomic DNA

BAC: 150-200 kb Fosmid: 40 kb Plasmid: 3-5 kb

mate pair:

reads from two ends of a clone (plasmid, BAC or fosmid) containing an insert physically mapped to the genome; used to order and orient contigs and scaffolds

coverage:

average number of reads covering a particular position in the assembly

Hierarchical shotgun sequencing

Genomic DNA

Assembling the human genome

Whole genome shotgun sequencing

Combined hierarchical - whole genome shotgun

Assembly from individual reads

Identify pairs of reads sharing a common sequence (k-mer; k > 20)

Extend to full alignment - discard if alignment < 98% identical

Assembly from individual reads:

Repeats

issues

•a k-mer represented 1,000,000 times results in 1,000,000² comparisons

remove "overrepresented" k-mers

- •increase read length = increase k
- problematic for short read methods

Sequencing errors

increase coverage

Polymorphism

 produce consistent high-quality mismatches in one contig or multiple virtually identical contigs

increase coveragesequence multiple people

repeats can also cause this

Assembly quality

Human draft

Table 7 Sequence level contiguity of the draft genome sequence						
Chromosome	Initial sequ	Initial sequence contigs		ence contigs	Sequence-contig scaffolds	
	Number	N50 length (kb)	Number	N50 length (kb)	Number	N50 length (kb)
All	396,913	21.7	149,821	81.9	87,757	274.3

~7.5x coverage

Mouse draft

Table 2 Basic statistics of the MGSCv3 assembly					
Features	Number	N50 length (kb)*	Bases (Gb)	Bases plus gaps (Gb)	Percentage of genome
All anchored contigs+	176,471	25.9	2.372	2.372	94.9
All anchored supercontigs	377	18,600	2.372	2.477	99.1
All ultracontigs	88	50,600	2.372	2.493	99.7
Unanchored contigs:	48,242	2.3	0.106	0.106	-
Largest 200 supercontigs	200	18,700	2.352	2.455	98.2
Largest 100 supercontigs	100	22,900	1.955	2.039	81.6

~7.7x coverage

Assemblers

- Phrap
- Celera
- Arachne

designed for Sanger sequencing (read length, errors, quality scores)

N50 length:

contig length containing a typical nucleotide, i.e. the maximum length *L* such that 50% of all bases lie in contigs at least *L* bases long.

Alignment and assembly with short reads

Ref. AACAAATACTAATCTAATCTAATCAAAACCAAGAACCGAGAAGCTAAGCTATAATTCTTTATAAAAACGAAAAACGTTACCTTAGTAGTAAGCTTACGAGACCAAGAACCAAGACCAAGACCAAGAACAAGA

(Chr 5: 18988052 to 18988137)

Two tasks:

Map to reference genome •many tools

1 1

De novo assembly •much harder •reference-guided assembly (MOSAIK) •"true" *de novo* assembly (Velvet)

Analysis depends on application

Mapping to reference genome •useful for interrogating the "known" genome •RNA sequencing •ChIP sequencing •SNP detection (targeted and whole-genome) •methyl-seq •CNV detection (sometimes)

De novo assembly •no genome sequence

 unbiased ascertainment of variation in known genome by whole-genome reseq

Mapping short reads to a reference

Eland

aligner for Illumina data alignment policies: •allows up to 2 mismatches/alignment •non-unique alignments are discarded

Maq

 quality aware - takes seq quality into account

•allows non-unique alignments

Index methods

reference genome is loaded into active memory as *k*-mers
very fast alignments

•SOAP

Bowtie

SNP detection, paired-end mapping, RNA-seq, ChIP-seq, etc.

ATAGGTTATAGCACAGGgaaGaaGGcn AGGAGAAAAAAACAAAGTATCTACATAGAACTTTCAG GTAAAAAAATCCCAAAAAACCGGTTGACAATTGCca
ATAGGTTATAGCACAGGAAGAAGAAGAA GGAGAAAAAAAAAA
ATAGGTTATAGCACAGGAAGGAAGGAATAG AGAAAAAacAAAGTATCTACATAGAACTTTCAGTGT AAAAATCCCCAAAAAACCGGTTGACAATTGCCA
ATAGGTTATAGCACAGGAAGAAGAAGAATAGGAGA AAAACAAAGTATCTACATAGAACTTTCAGTGTAAAA A≿CCCAAAAAACCGGT⊑GACAATT≊⊂CA
AtAEGTTatAGCACAgGAagAaGgaATagGAcaa CAAAGTATCTACATAGAACTTTCAGTGTAAAAAATC CAAAAAACCGGTTGACAATTĞCCA
ATAGGTTATAGCACAĞGAAĞAAGĞaAtAĞGAGaaa aAAGTATCTACATAGA=CTTtCAGTGTAA=AAGTCC AAAaa=CCgGTTGACAATTGCCA
AtAGGTTATAGCACAGGAAGAAGAAGAAGAAAAAAAAAAA
AT GGTTATAGCACAGGAaGAAGGaATAGGaGaaaaaac AAGTATCTACATAGAACTTTCAGTGTAaAAAaTooo AAaACCGGTTGACaATTGCCA
AT tTATAGCACAGGAAGAAGAAGAATAGGAAAAAAAAAAAA gAgCTaCAtAGAGCTTTCAGTGTAAAAaATCoCAAA aacCggTTGACAATTGCCA
АТА ԵТАТАБСАСАББААБААБААБААБААААААААААА ТАЕСТАСАТАБААСТТТСАБТБТААААААТСССААА А⊗СС≊БТТБАСААТТБССА
ATAGG TATAGCACaGGAAGGAAGGAaTAGGagAAaAAAacaAc ATCTACATAGAACTTTCAGTGTAAAAAATCCCAaaA aCCGgtTGACAAttGCCA
ATAGG aATAGCACAGGAAGAAGAAGAATAGGAGAaaaAACAag TCTACATAGAACTTTCAGTGTAAAAAAATcCcAAaAa CCGGTTGACAaTTGCCa
ATAGGTT tAGCACAGGAAGAAGAAGAAGAAAAAAAAAAAAGT CTACATAGAACTTTCAGTGTAAAAAAATCCCAAAaaA CGGTTGAcAATTgCCa
ATAGGTTA A&CACAGGAAGAAGAAGAATAGGAAAAAAAAAAAAAAAA CtaCtAGAACTTTCAGTGTAAAAAAATCCCAAAAAA C&&TtGACAATTGCCA
ATAGGTTA ACAGGAAGAAGGAAGAAGAAAAAAAAAAAAGTATCT CATAGAACTTTCAGTGTAAAAAAATCCCA©aAAaCCG ttGACAATTGCCA
ATAGGTTA ACAGGAAGAAGAAGAATAGGAAGAAAAAAAAAA
ATAGG <mark>e</mark> Tat ACAGGAAGGAAGGAATAGGAGAAtAAACAAAGTATCT ATAGAACTTTCAGTGTAAAaAATCCCAAAAAAACCGg <mark>a</mark> GACAATTGCCA
ATaGGTTaTt AGGAAGAAGAAGAATAGGAAAAAAAAAAAAAAAGTATCTAc tAGAACTTTCAGTGTAAAAAAATCCCAAAAAAACCGGT ACAAtTGCCA
ATAGGTTATAG GGAAGaaGGAATAGGAgaAAaAAcAAaGtaTCTcac AGAaCTTTCAGTGTAAAAAAATCCCA <mark>c</mark> AaaACogGat goca
ATAG©TTATAGCACA GA@GAAGGAATAGGAGAAAAAAACAAAGTATCT@CAT GAACTTTCAGTGTAAAAAAATCCCAAAAAAACcGGtTG CCA
ATAGGTTATAGCACAG_AAGAAGGAATAGGAGAAAAAAAAAA
ATAGGTTATAGCACAGG AGAAGGAATAGGAGAAAAAAACAAAGTATCTACATAG ±TTCAGTGTAAAAAAAT©CCAAAAAAACCGgTTGA©A±CCA
ATAGGTTATAGCACAGGAGGAATAGGAGAAAAAAACAAAGTATcTacATAGaag TTCAGTGTAaAAaATCCCCAaAAAaCCGGtTGaCgaT
ATAGGTTATAGCACAGGAAAGgGAATAGGAGAAAAAAACAAAtTATetaeetagCAnn_TCAGTGTAAAAAAAtCCCAAAAAAACCGGTTGACAATT
ATAGGTTATAGCACAGG©AGA ATAGGAGAAAAAAACAAAGTATCTACATAGAACTTTC TGTAAAAAAATCCCAAAAAAACCGGTTGACAaTTG©ca

De novo assembly

Sequencing a new genome

Resequencing an existing genome

Accomodate repeats, polymorphism, sequence errors

"Reference guided" assembly

use pairwise alignments to reference genome to guide assembly
allows gapped alignments

"True" *de novo* assembly

•Velvet: graph-based analysis observed *k*-mers, rather than pairwise alignment of reads

Velvet assembly process

