Fast Approximate Matching

Outline

ntroduction
Distance functions

Probability of an approximate match: an open
oroblem

Bit-vector algorithm
Filter algorithms

Taxonomy

Online search

— Based on DP matrix
* Worst case
* Average case

— Automaton

— Filters

* For moderate pattern
* For very long pattern

— Bit-vector

e Based on automata
e Based on DP matrix

Indexed search
Heuristic

Applications

 Computational biology: many applications
(you cannot find many “exact” things in
biology, so “approximate” is the rule), such as
— Adaptor/vector trimming
— Primer designs
— siRNA design/microRNA finding
— Mapping

— Basic operations for other applications, such as sequence
assembly, motif finding, etc.

e Other fields (signal processing, text retrieval,
etc.)

Distance functions

Given two sequence, how similar (or
dissimilar) they are? What is the distance
between them?

Hamming distance (only substitutions are
allowed)

Edit distance (substitutions, insertions,
deletions)

Substitution matrix

Hamming distance

e Hamming distance: number of different
positions
ATTGTC
ACTCTC
X X

e Applies to ungapped alignments of two
sequences with equal length

e The smaller the distance, the closer the
sequences: we want minimize the distance

Edit distance (Levenshtein distance)

Minimal number of editing operations to
transform one sequence to another

Editing operations are insertion, deletion, and
substitution

If all the operations cost 1: simple edit
distance

If different operations have different costs or
the costs depend on the characters involved:
general edit distance

Edit distance

-TGC-ATAT
ATCCGAT--
Edit distance = 1 insertion (A)
+ 1 substitution (G->C)
+ 1 insertion (G)
+ 2 deletions (AT)
=5
 We can use 5 operations to change “TGCATAT”

into “ATCCGAT”, so the edit distance is at most
5.

Edit distance

—-TGCATAT
ATCC-GAT

Edit distance = 1 insertion (A)
+ 1 substitution (G->C)
+ 1 deletion (A)
+ 1 substitution (T->G)
=4

Edit distance

e Actually, This is another “optimal” alignment with
edit distance as 4:

TGCATAT
ATCCGAT
Edit distance = 4 substitutions
(T->A, G->T, A->C, T->G)
=4

* Any other alignments with edit distance as 4?
* How can we find out?

How many alignment are there?

* For two sequences of lengths m and n, the
number of all possible alignments is

m+n
e -["
m
 If m=n, then

B ~ 227/(;tn)/2
* B grows exponentially.

Many, many alighments

Suppose m=1000, n=1000, we have
B = 22000/(10005t)Y/2 ~ 10600

Not feasible to exam all of them by using naive
enumeration

The classical method: dynamic programming

Dynamic programming

* C(i, j) = min{

C(i-1, j-1) +
(pi==tj?0:1),

C(i-1,j) +1,

C(i, j-1) +1

}

* The three neighboring
cells in the up-left
directions are used to
update C(i,j)

J

—

C(-1,J-1)| C(i-1,))

C(i, J-1) = C(i,))

Initial conditions

213|456 |7

TIGICIA|T|A|T

1

0

3
4

5
6
/

First step...

TIGICIA|T|A|T

Xl234567
1

0

1

3
4

5
6
/

A

Next...

314 15|67

TIGICIA|T A|T

1

ﬁ 2

0

6
.

A
T2
C
C

A

The final matrix

I NOWOLWLIWL|O|W| <
| OO T F|O|WO| |
Ot O || F|F|®
LT/ DT OO O]
OO N|N|O| < | W
O NN NN OO | W0
- ANl T WO ©
O|lv~| N T | O|©|~
< OOO| |+

Approximate occurrences

* This is another important variant of global
alignment

* Suppose we have a short pattern P, and a long
sequence T

* Given a parameter t, a substring T" of T is said
to be an approximate occurrence of P if and
only if the optimal alignment of P to T' has
value at most t — (for edit distance, etc.)

Approximate occurrences

e Suppose x is the long target sequence, vy is the short
pattern. The only change for the algorithm is the

initial condition:
C(0,j) =0
 There is an approximate occurrence ending at
position j if and only if

C(n, j) <=t (for edit distance)

 The substring is at [k..j], where k is determined by a
path of traceback from [n,j] to [O,k].

Approximate occurrences

* Atoy example: t =1 (edit distance)

CITIGICIA|T|IGIT|IAIC|G|T

Time complexity

* From the algorithm, we see that we have (n
+1) X (m+1) numbers in the matrix, m+n+1 of
which are initial conditions, and the rest n x m
can be calculated in constant time (three sums
and a max/min), so the time complexity is
O(mn).

 Compared with exponential number of
alignments, this is a significant improvement!

e But this can be proved to O(n)!

Matching probability

What is the probability of a match with <=k
errors?

It is still an open problem. Only rough
simulation results for equal letter probability.

The probability has a “phase-transition” like
behavior: when error level a=k/m is below o*,
there are few matches; when o > a*, there
are a lot of matches

Simulation results: o*= 1-1.09//c

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Matching probability

0.9

0.8
f(m,am) a* //\/JW—\/V\/’_\M
0.7

0.6 —
0.5
0.4
0.3
0.2

0.0

0.2

T T f | 0.0 T T | | |
0.4 0.6 0.8 1.0 200 400 600 800 1000

Simulation results using equal letter probability, n=10MB

with ¢ = 32

1.0

0.8 1

0.6 1

0.4 1

0.2 ;

Matching probability

————— o 1-1.09//o

Upper bound 1 — 1/¢

--- The curve 1 — 1/+/c

—— Experimental data

—+— Exact lower bound with v = 1, Eq. (1)
—o— Conservative lower bound, Eq. (2)

- - - - o
10 20 30 40 50 60

Some (computer) terminology

* Bit, byte, word
— A bit is a binary digit, taking a value of either 0 or
1.

— A byte is usually 8 bits (a unit of memory
addressing)

— A machine word is usually 4 bytes (32-bit
machine), or 8 bytes (64-bit machine)

— A machine word is “the natural unit of data” for
numerical calculations

Word sizes

* On atypical 32-bit machine:

short it ______llong____llonglong
2 4 4 8

* On atypical 64-bit machine:
short Jint _ llong ___|longlong
2 4 8 8

Bitwise operators

e Bitwise NOT (~) ~(01001001) = 10110110
* Bitwise AND (&)

01001001 &
10111010 =

00001000

- Bitwise OR (|)

01001001 |
10111000 =

11111001

Bitwise operators

* Bitwise Exclusive-Or (XOR) (")

01110011 ~
10101010
11011001
* Bitwise shift (<< and >>)
11 <K 2 =

01 >> 2 = 00

00

Bit-vector algorithms

* Bit-vector algorithms take advantage of the
parallelism of bitwise operators

* For one operation (such as AND), 32 or 64 bit
are changed simultaneously

* These algorithms are also called bit-parallelism
algorithms

— Wu and Manber (1992), Baeza-Yates and Gonnet
(1992): automata

— Myers (1999): dp matrix

Highlights of Myers algorithm

Basic algorithm: O(n [m/w])

— Independent of k, the error threshold
— When w <m, O(n)

Extended algorithm: O(kn/w)

— Use basic algorithm as a subroutine to calculate w
rows in dp matrix at a time

Easy to extend to search set of letters, wild cards,

etc., which are commonly encounter in
Bioinformatics, at no additional cost

Elegant and code is short

Bit-vector algorithms

* One of the key insights is that for edit
distance, the dp matrix has the following
property:

The difference between adjacent cells in any row
or column is either 1, O, or -1.

Relocatable dp matrix

* So what the algorithm calculates is the
difference of the dp matrix (relocatable dp
matrix):

Ah(i,3j) = C(i, J) - C(i, 3j-1)
Av(i,j) = C(i, J) — C(i-1, 3J)

* Sinceeach Ah (i, j)and Av (i, j) can take

3 values, 2 bit-vectors are needed:

Pv(i) = (Av[i, j] = +1)
Mv(i) = (Av[i, j] = —1)

Difference between adjacent cells

D.P. Matrix Relocatable D.P. Matrix
[0] [0] [o] o] [o] [e] o] [6] [o]

®

ROSECRIOROREOR
SO RCERCR SOR O
< <BE B
RCRECOSROSIO8
<> BB B>
<> (BB ®

Bl KOS EOR SR O SO%
<& < BE<B]
RSOSSN IO
<SR B>

{o] To] M] M| [M] (] [P] [P]

(Legend:] T

=<P,P,0,0,M>
[] Ah-value P =+1

=<0,12,2,2,1> Avg=<+1,+1,0,0,-1>
O C-value Ce=<0.1 K-
<> Av-value M=-1

Fi1G. 1. Dynamic programming (d.p.) matrices for P = match and T = remachine.

DP expressed as deltas
AV[i, j]= min{—Eq[i,j], Av[i,j — 1], Ah[i — 1,]} + (1 — Ahfi — 1,5])
Ah[i, j]1 = min{—Eq[i,j1, Av[i,j — 11, Ak[i = 1, jT} + (1 = Av[i,j — 1])

E‘]j(i) = (Pi- = ’;)

. Ah. . Xv
-1,5-1 n -1
(-1,)-1) (-1) oul o :
M P P
Av; E Av, = Qut
in q out ml o P 0
(ig-D (1)) ' Plo M
1,)-
Ahou(
(a) (b) (c)

FiG. 2. D.P. cell structure and mput/output function.

DP expressed as deltas

 There are 2x3x3=18 possible inputs for each
equation; by a brute force enumeration, the
following can be obtained:

Xv = FEq or Mv,,

Xy
Pv,., = Mh,, ornot (Xv or Ph;) (4a) o 0 |
Mv,,, = Ph,, and Xv ut
P P
In| O P 0
Xh = Eq or Mh,, . 0 M
Ph,, = My, ornot (Xh or Pv,,) (4b)

Mh,,, = Pv,, and Xh

Text preprocessing

 We need pre-process the text to get an integer
Eqj for each text position jin O(1) time. To do
this, build a table of vectors for all possible
text characters based on the pattern m.

 For example, for pattern TGCATAT, the table
would be
B+~ T A Jc e T
1

1

= o O X
=

Scanning step

* Goal: given the vertical delta on the left, the
scan text one letter a time, to obtain the

vertical delta on the right

e Formulas we have now are mix of horizontal
and vertical deltas.

* Two-stage scan has to be used:
— Vertical left = horizontal bottom
— Horizontal top = vertical right

Scanning step

Scan tj:
i e

F1G. 3. The two stages of a scanning step.

The X-factors

e The two X-factors are:

Xvi(i)
Xh;(i)

Peq[t;](i) or Mv;_,(i)
Peql[t;](i) or Mh(i — 1)

* There is no problem for Xv;: since Mv, , is the
Input.

 For th, however, is difficult: we need I\/Ihj to
calculate th, but to calculate th we need th.

To unwind the loop is the most difficulty part
of the algorithm.

Put together

* The resultis
Xhl == (((P(.’v(.][f_,‘](gip"j_l) -+ P‘”'j—l) AP"’."_I)lp(.’([[[j]

e The score is calculated as
Score; = Score;_y + (1 if Phj(m)) — (1 it Mh;(m))

e The initial conditions:

Pvy(i) = 1
x"\/[""u(i) — O

Score, = m

The code

Precompute Peq{o] Pre-processing
Pv = 1™ e e
My = 0 Initial conditions
Score =m
forj =1, 2, ...n do Maln |Oop
{ Eq = Peqlt;]
Xv =Eq | M X-factors
Xh = (((Eq & Pv) + Pv) ~ Pv) | Eq
Ph =Mv | © (Xh | Pv) Stage1
Mh = Pv & Xh
if Ph & 10™~! then
Score += 1 Score
else if Mh & 10™~! then
Score ~-= 1
Ph <<=
ML SRs Stage 2
Pv =Mh | ~ (Xv | Ph) 9
Mv = Ph & Xv

if Score < k then
print "Match at " - j

Extension

* Due to the structure of the algorithms, some
extensions are easy, some are not.

* |tis easy to search a set of letters. The only
change is in the pre-processing step.

 For example, if the patternis T [AG] CATAT
(either A or G in the second position):

T AT A
1

1

1
1

1
1 1

- O O X

Filtering algorithms

Key idea: it is easier to tell that a text position
does not match than to tell that it matches

Filtering: to discard areas of the text that
cannot contain a match

The filtering algorithms themselves cannot
discover the matches; a non-filtering method
is needed to verify the potential positions

Sensitive to error level: a=k/m, work better at
lower o

Filtering algorithms

e Algorithm 1: if a patternis cutin k + 1 pieces,
then at least one of the pieces must appear
unchanged in an approximate match with <=k
errors: k errors cannot change k+1 pieces

 Example: if neither “fil” nor “ter” appear in

the text, then “filter” cannot occur with <=1
error

* Cut the pattern into k+1 pieces, search the

pieces exactly, then verify in the neighbors of
the matches

Filtering algorithms

* Algorithms 2: in a sliding window along the
text, count the number of letters that belong
to the pattern

* For any matches with <=k errors, at least m-k
letters belong to the pattern

