Fast Approximate Matching

Yong Kong
Keck Bioinformatics Resource
Yale University

Outline

- Introduction
- Distance functions
- Probability of an approximate match: an open problem
- Bit-vector algorithm
- Filter algorithms

Taxonomy

- Online search
 - Based on DP matrix
 - Worst case
 - Average case
 - Automaton
 - Filters
 - For moderate pattern
 - For very long pattern
 - Bit-vector
 - Based on automata
 - Based on DP matrix
- Indexed search
- Heuristic

Applications

- Computational biology: many applications (you cannot find many "exact" things in biology, so "approximate" is the rule), such as
 - Adaptor/vector trimming
 - Primer designs
 - siRNA design/microRNA finding
 - Mapping
 - Basic operations for other applications, such as sequence assembly, motif finding, etc.
- Other fields (signal processing, text retrieval, etc.)

Distance functions

- Given two sequence, how similar (or dissimilar) they are? What is the distance between them?
- Hamming distance (only substitutions are allowed)
- Edit distance (substitutions, insertions, deletions)
- Substitution matrix

Hamming distance

Hamming distance: number of different positions

ATTGTC ACTCTC x x

- Applies to ungapped alignments of two sequences with equal length
- The smaller the distance, the closer the sequences: we want minimize the distance

Edit distance (Levenshtein distance)

- Minimal number of editing operations to transform one sequence to another
- Editing operations are insertion, deletion, and substitution
- If all the operations cost 1: simple edit distance
- If different operations have different costs or the costs depend on the characters involved: general edit distance

Edit distance

```
-TGC-ATAT
ATCCGAT--
Edit distance = 1 insertion (A)
+ 1 substitution (G->C)
+ 1 insertion (G)
+ 2 deletions (AT)
= 5
```

We can use 5 operations to change "TGCATAT" into "ATCCGAT", so the edit distance is at most
 5.

Edit distance

```
-TGCATAT
ATCC-GAT
```

```
Edit distance = 1 insertion (A)
+ 1 substitution (G->C)
+ 1 deletion (A)
+ 1 substitution (T->G)
= 4
```

Edit distance

 Actually, This is another "optimal" alignment with edit distance as 4:

> TGCATAT ATCCGAT

Edit distance = 4 substitutions (T->A, G->T, A->C, T->G) = 4

- Any other alignments with edit distance as 4?
- How can we find out?

How many alignment are there?

 For two sequences of lengths m and n, the number of all possible alignments is

$$B = \begin{pmatrix} m+n \\ m \end{pmatrix}$$

• If m = n, then

$$B \sim 2^{2n}/(\pi n)^{1/2}$$

B grows exponentially.

Many, many alignments

- Suppose m=1000, n=1000, we have
- B = $2^{2000}/(1000\pi)^{1/2} \sim 10^{600}$

- Not feasible to exam all of them by using naïve enumeration
- The classical method: dynamic programming

Dynamic programming

- C(i, j) = min{
 C(i-1, j-1) +

 (pi == tj ? 0 : 1),

 C(i-1, j) + 1,

 C(i, j-1) + 1
 }
- The three neighboring cells in the up-left directions are used to update C(i,j)

Initial conditions

		Т	G	С	Α	Τ	Α	Т
	0	~	2	3	4	5	6	7
Α	1							
Т	2							
С	3							
С	4							
G	5							
Α	6							
Т	7							

First step...

		Т	G	С	Α	Т	Α	Т
	0	1-	2	3	4	5	6	7
Α	-	1						
Т	2							
С	3							
С	4							
G	5							
Α	6							
Т	7							

Next...

		H	G	С	Α	Т	Α	Т
	0	1	2	3	4	5	6	7
Α	1	\	2					
Τ	2-							
С	3							
С	4							
G	5							
Α	6							
Т	7							

The final matrix

		Τ	G	С	Α	T	Α	Т
	0	1	2	3	4	5	6	7
Α	~	1	2	3	3	4	5	6
T	2	1	2	3	4	3	4	5
С	3	2	2	2	3	4	4	5
C	4	3	3	2	3	4	5	5
G	5	4	3	3	3	4	5	6
Α	6	5	4	4	3	4	4	5
T	7	6	5	5	4	3	4	4

Approximate occurrences

- This is another important variant of global alignment
- Suppose we have a short pattern P, and a long sequence T
- Given a parameter t, a substring T' of T is said to be an approximate occurrence of P if and only if the optimal alignment of P to T' has value at most t – (for edit distance, etc.)

Approximate occurrences

 Suppose x is the long target sequence, y is the short pattern. The only change for the algorithm is the initial condition:

$$C(0, j) = 0$$

 There is an approximate occurrence ending at position j if and only if

 The substring is at [k..j], where k is determined by a path of traceback from [n,j] to [0,k].

Approximate occurrences

A toy example: t = 1 (edit distance)

		O	Т	O	С	A	Т	G	Τ	A	С	O	7	Α	Α
	0	Q	0	0	0	0	0	0	O	0	0	0	0	0	0
Α	1	1	1	1	1	0	1	1	1	0	1	1	1	0	0
Т	2	2	1	2	2	1	P	1	1	1	1	2	1	1	1
G	3	3	2	1	2	2	1	0	1	2	2	1	2	2	2

Time complexity

- From the algorithm, we see that we have (n+1) x (m+1) numbers in the matrix, m+n+1 of which are initial conditions, and the rest n x m can be calculated in constant time (three sums and a max/min), so the time complexity is O(mn).
- Compared with exponential number of alignments, this is a significant improvement!
- But this can be proved to O(n)!

Matching probability

- What is the probability of a match with <= k errors?
- It is still an open problem. Only rough simulation results for equal letter probability.
- The probability has a "phase-transition" like behavior: when error level α =k/m is below α *, there are few matches; when α > α *, there are a lot of matches
- Simulation results: $\alpha^* = 1 1.09 / \sqrt{\sigma}$

Matching probability

Simulation results using equal letter probability, n=10MB with $\sigma=32$.

Matching probability

Some (computer) terminology

- Bit, byte, word
 - A bit is a binary digit, taking a value of either 0 or1.
 - A byte is usually 8 bits (a unit of memory addressing)
 - A machine word is usually 4 bytes (32-bit machine), or 8 bytes (64-bit machine)
 - A machine word is "the natural unit of data" for numerical calculations

Word sizes

• On a typical 32-bit machine:

short	int	long	long long
2	4	4	8

• On a typical 64-bit machine:

short	int	long	long long
2	4	8	8

Bitwise operators

- Bitwise NOT (\sim) \sim (01001001) = 10110110
- Bitwise AND (&)

```
01001001 &
10111010 =
-----
00001000
```

• Bitwise OR (|)

```
01001001 |
10111000 =
-----
11111001
```

Bitwise operators

Bitwise Exclusive-Or (XOR) (^)

```
01110011 ^
10101010
-----
11011001
```

Bitwise shift (<< and >>)

```
11011001 << 2 = 01100100
11011001 >> 2 = 00110110
```

Bit-vector algorithms

- Bit-vector algorithms take advantage of the parallelism of bitwise operators
- For one operation (such as AND), 32 or 64 bit are changed simultaneously
- These algorithms are also called bit-parallelism algorithms
 - Wu and Manber (1992), Baeza-Yates and Gonnet (1992): automata
 - Myers (1999): dp matrix

Highlights of Myers algorithm

- Basic algorithm: O(n [m/w])
 - Independent of k, the error threshold
 - When w < m, O(n)
- Extended algorithm: O(kn/w)
 - Use basic algorithm as a subroutine to calculate w rows in dp matrix at a time
- Easy to extend to search set of letters, wild cards, etc., which are commonly encounter in Bioinformatics, at no additional cost
- Elegant and code is short

Bit-vector algorithms

 One of the key insights is that for edit distance, the dp matrix has the following property:

The difference between adjacent cells in any row or column is either 1, 0, or -1.

Relocatable dp matrix

 So what the algorithm calculates is the difference of the dp matrix (relocatable dp matrix):

$$\Delta h(i,j) = C(i, j) - C(i, j-1)$$

$$\Delta v(i,j) = C(i, j) - C(i-1, j)$$

• Since each $\Delta h(i,j)$ and $\Delta v(i,j)$ can take 3 values, 2 bit-vectors are needed:

$$Pv_j(i) \equiv (\Delta v[i, j] = +1)$$

 $Mv_j(i) \equiv (\Delta v[i, j] = -1)$

Difference between adjacent cells

Fig. 1. Dynamic programming (d.p.) matrices for P = match and T = remachine.

DP expressed as deltas

$$\Delta v[i, j] = \min\{-Eq[i, j], \Delta v[i, j - 1], \Delta h[i - 1, j]\} + (1 - \Delta h[i - 1, j])$$

$$\Delta h[i,j] = \min\{-Eq[i,j], \ \Delta v[i,j-1], \ \Delta h[i-1,j]\} + (1-\Delta v[i,j-1])$$

$$Eq_j(i) \equiv (p_i = t_j).$$

Fig. 2. D.P. cell structure and input/output function.

DP expressed as deltas

 There are 2x3x3=18 possible inputs for each equation; by a brute force enumeration, the following can be obtained:

$$Xv = Eq \ or \ Mv_{in}$$

$$Pv_{out} = Mh_{in} \ or \ not \ (Xv \ or \ Ph_{in})$$

$$Mv_{out} = Ph_{in} \ and \ Xv$$

$$In$$

$$Yv$$

$$Xv$$

$$M \quad P \quad P$$

$$V \quad D \quad D \quad D$$

$$V \quad Pv_{out} \quad Pv_{o$$

Text preprocessing

 We need pre-process the text to get an integer Eqj for each text position j in O(1) time. To do this, build a table of vectors for all possible text characters based on the pattern m.

For example, for pattern TGCATAT, the table

would be

וטכ		Т	A	Т	A	С	G	Т
σ	Α		1		1			
	С					1		
	G						1	
	Т	1						1
					r	n		

Scanning step

- Goal: given the vertical delta on the left, the scan text one letter a time, to obtain the vertical delta on the right
- Formulas we have now are mix of horizontal and vertical deltas.
- Two-stage scan has to be used:
 - Vertical left → horizontal bottom
 - Horizontal top → vertical right

Scanning step

Fig. 3. The two stages of a scanning step.

The X-factors

The two X-factors are:

```
Xv_j(i) = Peq[t_j](i) \text{ or } Mv_{j-1}(i)

Xh_j(i) = Peq[t_j](i) \text{ or } Mh_j(i-1)
```

- There is no problem for Xv_j : since Mv_{j-1} is the input.
- For Xh_j, however, is difficult: we need Mh_j to calculate Xh_j, but to calculate Mh_j we need Xh_j. To unwind the loop is the most difficulty part of the algorithm.

Put together

The result is

$$Xh_j = (((Peq[t_j]\&Pv_{j-1}) + Pv_{j-1})^Pv_{j-1})|Peq[t_j]$$

The score is calculated as

$$Score_j = Score_{j-1} + (1 \text{ if } Ph_j(m)) - (1 \text{ if } Mh_j(m))$$

• The initial conditions:

$$Pv_0(i) = 1$$

$$Mv_0(i) = 0$$

$$Score_0 = m$$

The code

```
Pre-processing
1. Precompute Peq[\sigma]
    Pv = 1^m
                                      Initial conditions
3. Mv = 0
    Score = m
    for j = 1, 2, \ldots n do
                                        Main loop
     { Eq = Peq[t_i]
6.
                                                     X-factors
7.
       Xv = Eq \mid M
        Xh = (((Eq \& Pv) + Pv) ^ Pv) | Eq
        Ph = Mv \mid ~(Xh \mid Pv)
9.
                                                     Stage 1
10.
        Mh = Pv & Xh
        if Ph & 10^{m-1} then
11.
                                                     Score
12.
           Score += 1
        else if Mh & 10^{m-1} then
13.
14.
           Score -= 1
15.
       Ph <<= 1
16.
       Mh <<= 1
                                                     Stage 2
       Pv = Mh \mid ^{\sim} (Xv \mid Ph)
17.
18.
        Mv = Ph & Xv
19.
        if Score \leq k then
           print "Match at " · j
20.
```

Extension

- Due to the structure of the algorithms, some extensions are easy, some are not.
- It is easy to search a set of letters. The only change is in the pre-processing step.
- For example, if the pattern is T [AG] CATAT (either A or G in the second position):

	Т	A	Т	A	С	G	Т
Α		1		1		1	
С					1		
G						1	
Т	1						1

Filtering algorithms

- Key idea: it is easier to tell that a text position does not match than to tell that it matches
- Filtering: to discard areas of the text that cannot contain a match
- The filtering algorithms themselves cannot discover the matches; a non-filtering method is needed to verify the potential positions
- Sensitive to error level: α =k/m, work better at lower α

Filtering algorithms

- Algorithm 1: if a pattern is cut in k + 1 pieces, then at least one of the pieces must appear unchanged in an approximate match with <= k errors: k errors cannot change k+1 pieces
- Example: if neither "fil" nor "ter" appear in the text, then "filter" cannot occur with <=1 error
- Cut the pattern into k+1 pieces, search the pieces exactly, then verify in the neighbors of the matches

Filtering algorithms

- Algorithms 2: in a sliding window along the text, count the number of letters that belong to the pattern
- For any matches with <= k errors, at least m-k
 letters belong to the pattern