
Education

Machine Learning and Its Applications
to Biology
Adi L. Tarca, Vincent J. Carey, Xue-wen Chen, Roberto Romero, Sorin Drăghici*

Introduction

The term machine learning refers to a set of topics
dealing with the creation and evaluation of
algorithms that facilitate pattern recognition,

classification, and prediction, based on models derived from
existing data. Two facets of mechanization should be
acknowledged when considering machine learning in broad
terms. Firstly, it is intended that the classification and
prediction tasks can be accomplished by a suitably
programmed computing machine. That is, the product of
machine learning is a classifier that can be feasibly used on
available hardware. Secondly, it is intended that the creation
of the classifier should itself be highly mechanized, and
should not involve too much human input. This second facet
is inevitably vague, but the basic objective is that the use of
automatic algorithm construction methods can minimize the
possibility that human biases could affect the selection and
performance of the algorithm. Both the creation of the
algorithm and its operation to classify objects or predict
events are to be based on concrete, observable data.

The history of relations between biology and the field of
machine learning is long and complex. An early technique [1]
for machine learning called the perceptron constituted an
attempt to model actual neuronal behavior, and the field of
artificial neural network (ANN) design emerged from this
attempt. Early work on the analysis of translation initiation
sequences [2] employed the perceptron to define criteria for
start sites in Escherichia coli. Further artificial neural network
architectures such as the adaptive resonance theory (ART) [3]
and neocognitron [4] were inspired from the organization of
the visual nervous system. In the intervening years, the
flexibility of machine learning techniques has grown along
with mathematical frameworks for measuring their reliability,
and it is natural to hope that machine learning methods will
improve the efficiency of discovery and understanding in the
mounting volume and complexity of biological data.

This tutorial is structured in four main components.
Firstly, a brief section reviews definitions and mathematical
prerequisites. Secondly, the field of supervised learning is
described. Thirdly, methods of unsupervised learning are
reviewed. Finally, a section reviews methods and examples as

implemented in the open source data analysis and
visualization language R (http://www.r-project.org).

Main Concepts and Definitions

Two main paradigms exist in the field of machine learning:
supervised and unsupervised learning. Both have potential
applications in biology.
In supervised learning, objects in a given collection are

classified using a set of attributes, or features. The result of
the classification process is a set of rules that prescribe
assignments of objects to classes based solely on values of
features. In a biological context, examples of object-to-class
mappings are tissue gene expression profiles to disease group,
and protein sequences to their secondary structures. The
features in these examples are the expression levels of
individual genes measured in the tissue samples and the
presence/absence of a given amino acid symbol at a given
position in the protein sequence, respectively. The goal in
supervised learning is to design a system able to accurately
predict the class membership of new objects based on the
available features. Besides predicting a categorical
characteristic such as class label, (similar to classical
discriminant analysis), supervised techniques can be applied as
well to predict a continuous characteristic of the objects
(similar to regression analysis). In any application of supervised
learning, it would be useful for the classification algorithm to
return a value of ‘‘doubt’’ (indicating that it is not clear which
one of several possible classes the object should be assigned
to) or ‘‘outlier’’ (indicating that the object is so unlike any
previously observed object that the suitability of any decision
on class membership is questionable).
In contrast to the supervised framework, in unsupervised

Editor: Fran Lewitter, Whitehead Institute, United States of America

Citation: Tarca AL, Carey VJ, Chen XW, Romero R, Drăghici S (2007) Machine
learning and its applications to biology. PLoS Comput Biol 3(6): e116. doi:10.1371/
journal.pcbi.0030116

This is an open-access article distributed under the terms of the Creative Commons
Public Domain declaration which stipulates that, once placed in the public domain,
this work may be freely reproduced, distributed, transmitted, modified, built upon,
or otherwise used by anyone for any lawful purpose.

Abbreviations: k-NN, k-nearest neighbor; PAM, partitioning around medoids; PC,
principal component; PCA, principal component analysis; SV, support vector; SVM,
support vector machine; x, vector; x, scalar; X, matrix; X, feature space.

Adi L. Tarca and Roberto Romero are with the Perinatology Research Branch,
NICHD/NIH/DHHS, Detroit, Michigan, United States of America. Adi L. Tarca and
Sorin Drăghici are with the Department of Computer Science, Wayne State
University, Detroit, Michigan, United States of America. Vincent J. Carey is with the
Harvard Medical School, Channing Laboratory, Boston, Massachusetts, United
States of America. Xue-wen Chen is with the Bioinformatics and Computational Life
Sciences Laboratory, Department of Electrical Engineering and Computer Science,
University of Kansas, Lawrence, Kansas, United States of America.

* To whom correspondence should be addressed. E-mail: sorin@wayne.edu

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160953

learning, no predefined class labels are available for the
objects under study. In this case, the goal is to explore the
data and discover similarities between objects. Similarities
are used to define groups of objects, referred to as clusters. In
other words, unsupervised learning is intended to unveil
natural groupings in the data. Thus, the two paradigms may
informally be contrasted as follows: in supervised learning,
the data come with class labels, and we learn how to associate
labeled data with classes; in unsupervised learning, all the
data are unlabeled, and the learning procedure consists of
both defining the labels and associating objects with them.

In some applications, such as protein structure
classification, only a few labeled samples (protein sequences
with known structure class) are available, while many other
samples (sequences) with unknown class are available as well.
In such cases, semi-supervised techniques can be applied to
obtain a better classifier than could be obtained if only the
labeled samples were used [5]. This is possible, for instance, by
making the ‘‘cluster assumption,’’ i.e., that class labels can be
reliably transferred from labeled to unlabeled objects that are
‘‘nearby’’ in feature space.

Life science applications of unsupervised and/or supervised
machine learning techniques abound in the literature. For
instance, gene expression data was successfully used to classify
patients in different clinical groups and to identify new
disease groups [6–9], while genetic code allowed prediction of
the protein secondary structure [10]. Continuous variable
prediction with machine learning algorithms was used to
estimate bias in cDNA microarray data [11].

To support precise characterization of both supervised and
unsupervised machine learning methods, we have adopted
certain mathematical notations and concepts. In the next
sections, we employ vector notation (x denotes an ordered p-
tuple of numbers for some integer p), matrix notation (X
denotes a rectangular array of numbers, where xij will denote
the number in the ith row and jth column of X), conditional
probability densities, and sufficient matrix algebra to define
the multivariate normal density. Necessary formal
background in algebra and probability can be found
elsewhere [12].

Supervised Learning
General concepts. Let us consider the general case in which

we want to classify a collection of objects i ¼ 1, . . ., n into K
predefined classes. For instance, if one wants to distinguish
between different types of tumors based on gene expression
values, then K would represent the number of known existing
tumor types. Without loss of generality, data on features can
be organized in an n 3 p matrix X¼ (xij), where xij represents
the measured value of the variable (feature) j in the object
(sample) i. Every row of the matrix X is therefore a vector xi
with p features to which a class label yi is associated, y¼ 1,2,. .
.,c,. . .,K. In such multiclass classification problems, a classifier
C(x) may be viewed as a collection of K discriminant functions
gc(x) such that the object with feature vector x will be assigned
to the class c for which gc(x) is maximized over the class labels
c 2 f1,. . .,Kg. The feature space X is thus partitioned by the
classifier C(x) into K disjoint subsets.

There are two main approaches to the identification of the
discriminant functions gc(x) [13]. The first assumes knowledge
of the underlying class-conditional probability density

functions (the probability density function of x for a given
class) and assigns gc(x)¼ f(p(x j y¼ c)), where f is a monotonic
increasing function, for example the logarithmic function.
Intuitively, the resulting classifier will classify an object x in
the class in which it has the highest membership probability.
In practice, p(x j y¼ c) is unknown, and therefore needs to be
estimated from a set of correctly classified samples named
training or design set. Parametric and nonparametric methods
for density estimation can be used for this end. From the
parametric category, we will discuss linear and quadratic
discriminants, while from the nonparametric one, we will
describe the k-nearest neighbor (k-NN) decision rule. The
second approach is to use data to estimate the class
boundaries directly, without explicit calculation of the
probability density functions. Examples of algorithms in this
category include decision trees, neural networks, and support
vector machines (SVM).
Error estimation. Suppose the classifier C(x) was trained to

classify input vectors x into two distinct classes, 1 and 2. The
classification result on a collection of input objects xi, i¼ 1,. .
.,n can be summarized in a confusion matrix. The confusion
matrix contrasts the predicted class labels of the objects ŷi
with the true (given) class labels yi. An example confusion
matrix computed for 100 objects is:

predicted
true 1 2
1 30 10
2 20 40

The error rate (Err) of the classifier is defined as the average
number of misclassified samples, i.e., the sum of off-diagonal
elements of the confusion matrix, divided by the total
number of objects. In the example above, Err¼ (10þ 20) / 100
¼30%. Conversely, the accuracy of the classifier can be defined
as Acc¼ 1� Err¼ 70% and represents the fraction of samples
successfully classified.
The goal behind developing classification models is to use

them to predict the class membership of new samples. If the
data used to build the classifier is also used to compute the
error rate, then the resulting error estimate, called the
resubstitution estimate, will be optimistically biased [14]. A
better way to assess the error is the hold-out procedure in
which one splits the data into two equal parts. The first half is
used to train the classifier (the training set), while the
remaining half is used to assess the error (the test set). With
biological data, this approach is rarely feasible due to the
paucity of the data. A more appropriate alternative is the
leave-one-out cross-validation method (LOO) which trains the
classifier n times on (n � 1) samples, omitting each
observation in turn for testing the classifier. The n test results
obtained in this way can be arranged into a confusion matrix,
and Err estimated by the proportion of off-diagonal elements.
Although the estimate of the error obtained with the leave-
one-out procedure gives low bias, it may show high variance
[15]. A good tradeoff between bias and variance may be
obtained by using N-fold cross-validation in which the dataset is
split into (n � m) training points and m test points (N¼ n/m).
Using multiple resampling, one can obtain a mean, as well as
a standard deviation, for the classifier error.
Types of classifiers. Quadratic and linear discriminants. A

standard classification approach, applicable when the
features are continuous variables (e.g., gene expression data),

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160954

assumes that for each class c, x follows a multivariate normal
distribution N(mc,Rc) having the mean mc and covariance
matrix Rc. The covariance matrix R is square with dimension
p3 p. The element i,j of this matrix is the covariance between
the variables i and j.

Using the multivariate-normal probability density function
and replacing the true class means and covariance matrices
with sample-derived estimates (mc and R̂c, respectively), the
discriminant function for each class can be computed as:

gcðxÞ ¼ �ðx�mcÞR̂
�1
c ðx�mcÞT � logðjR̂cjÞ ð1Þ

where

mc ¼
1
nc

Rnc
i¼1xi ð2Þ

and

R̂c ¼
1
nc

Rnc
i¼1ðxi �mcÞTðxi �mcÞ ð3Þ

The discriminant functions are monotonically related to
the densities p(x j y ¼ c), yielding higher values for larger
densities. The values of the discriminant functions will differ
from one class to another only on the basis of the estimates of
the class mean and covariance matrix. A new object z will be
classified in the class for which the discriminant is the largest.
This classification approach produces nonlinear (quadratic)
class boundaries, giving the name of the classifier as quadratic
discriminant rule or Gaussian classifier.

An alternative to this quadratic classifier is to assume that
the class covariance matrices Rc, c¼1,. . .,K are all the same. In
this case, instead of using a different covariance matrix
estimate for each class, a single pooled covariance matrix is
used. This can be especially useful when the number of
samples per class is low. In this case, calculating a covariance
matrix from only a few samples may produce very unreliable
estimates. Better results may be obtained by assuming a
common variance and using all samples to estimate a single
covariance matrix. The resulting classifier uses hyperplanes as
class boundaries, hence the name normal-based linear
discriminant.

To cope with situations when the number of features is
comparable with the number of samples, a further
simplification can be made to the normal-based linear
discriminant, by setting all off-diagonal elements in the
covariance matrix to zero. This implies that between-features
covariation is disregarded. Such a diagonal linear discriminant
was found to outperform other types of classifiers on a variety
of microarray analyses [16].

The above-presented classifiers work optimally when their
underlying assumptions are met, such as the normality
assumption. In many cases, some of the assumptions may not
be met. However, (as pointed out by one of the anonymous
reviewers) what matters in the end for a practical application
is how close the estimated class boundaries are to the true
class boundaries. This can be assessed through a cross-
validation process.

In very recent work, Guo and colleagues [17] have
presented a regularized linear discriminant analysis
procedure useful when the number of features far exceeds
the number of samples.

k-Nearest neighbor classifier. The k-NN classifier can be seen as
a nonparametric method of density estimation [13] and uses
no assumption on the data distribution, except for the
continuity of the feature variables. The k-NN classifier does
not require model fitting but simply stores the training
dataset with all available vector prototypes of each class.
When a new object z needs to be classified, the first step in the
algorithm is to compute the distance between z and all the
available objects in the training set, xi, i ¼ 1,. . .,n. A popular
choice of distance metric is the Euclidean distance:
deucðx; zÞ ¼

ffiPp
j¼1 ðxj � zjÞ

q
. A thorough discussion of distance

functions with application to microarray analysis is given by
Gentleman et al. [18].
The distances are ordered and the top k training samples

(closest to the new object to be predicted) are retained. Let us
denote with nc the number of objects in the training dataset
among the k ones which belong to the class c. The k-NN
classification rule classifies the new object z in the class that
maximizes nc, i.e., the class that is most common among the
closest k neighbors. The k-NN discriminant functions can be
written as gc(x) ¼ nc. When two or more classes are equally
represented in the vicinity of the point z, the class whose
prototypes have the smallest average distance to z may be
chosen.
Decision trees. A special type of classifier is the decision tree

[19], which is trained by an iterative selection of individual
features that are the most salient at each node in the tree. The
input space X is repeatedly split into descendant subsets,
starting with X itself. There are several heuristic methods for
constructing decision-tree classifiers. They are usually
constructed top-down, beginning at the root node and
successively partitioning the feature space. The construction
involves three main steps. 1) Selecting a splitting rule for each
internal node, i.e., determining the feature together with a
threshold that will be used to partition the dataset at each
node. 2) Determining which nodes are terminal nodes. This
means that for each node we must decide whether to
continue splitting or to make the node terminal and assign to
it a class label. 3) Assigning class labels to terminal nodes by
minimizing the estimated error rate.
The most commonly used decision tree classifiers are

binary. They use a single feature at each node, resulting in
decision boundaries that are parallel to the feature axes (see
Figure 1). Although they are intrinsically suboptimal, the
resulting classifier is easy to interpret.
Neural networks. The most common neural network

architecture used in classification problems is a fully
connected, three-layered structure of nodes in which the
signals are propagated from the input to the output layer via
the hidden layer (see Figure 2). The input layer only feeds the
values of the feature vector x to the hidden layer. Each hidden
unit weights differently all outputs of the input layer, adds a
bias term, and transforms the result using a nonlinear
function, usually the logistic sigmoid:

rðzÞ ¼ 1
1þ expðzÞ ð4Þ

Similarly to the hidden layer, the output layer processes the
output of the hidden layer. Usually there is one output unit
for each class. The discriminant function implemented by the
kth output unit of such a neural network can be written as:

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160955

gkðxÞ ¼ r½
XJ

j¼1
aj;krð

Xp

i¼1
xiwi;j þ bhj Þ þ bok� ð5Þ

In this equation, wi,j is the weight from the ith input unit to
the jth hidden node, aj,k is the weight from the jth hidden unit
to the kth output node, bhj is the bias term of the jth hidden
unit, bok is the bias term of the kth output unit. They all
represent adjustable parameters and are estimated (learned)
during the training process that minimizes a loss function. A
commonly used loss function is the sum of squared errors
between the predicted and expected signal at the output
nodes, given a training dataset.

Consider that NT training samples are available to train a
neural network with K output units. The error of the neural
network on the training set can be computed as:

EðxÞ ¼
XNT

s¼1
esðxÞ ð6Þ

where x represents all the adjustable parameters of the
neural network (weights and biases) which are initialized with
small random values, and es is the error obtained when the sth
training sample is used as input into the network. The error es
is defined as proportional to the sum of squared differences
between the expected outputs of the network and the actual
outputs, given the current values of the weights, i.e.,

es ¼
1
2

XK
k¼1
ðds;k � gs;kÞ2 ð7Þ

Here, gs,k represents the actual output of the unit k for the
sample s, while gs,k is the desired (target) output value for the
same sample. When a sample belongs to the class k, it is
desired that the output unit k fires a value of 1, while all the
other output units fire 0. The learning process is done by
updating the parameters x such that global error decreases in
an iterative process. A popular update rule is the back-
propagation rule [20], in which the adjustable parameters x
are changed (increased or decreased) toward the direction in
which the training error E(x) decreases the most.
Equation 6 above can be modified in a way that the training

process not only minimizes the sum of squared errors on the
training set, but also the sum of squared weights of the
network. This weights regularization enhances the
generalization capability of the model by preventing small
variations in the inputs to have excessive impact on the
output. The underlying assumption of the weights
regularization is that the boundaries between the classes are
not sharp.
For more details on theory and practical use of neural

networks, please see Duda et al. [12], Ripley [21], Venables and
Ripley [22], and references therein.
Support vector machines. Consider a two-class, linearly

separable classification problem, as shown in Figure 3, left
panel. While many decision boundaries exist that are capable
of separating all the training samples into two classes
correctly, a natural question to ask is: are all the decision
boundaries equally good? Here the goodness of decision

doi:10.1371/journal.pcbi.0030116.g002

Figure 2. A Schematic Representation of a Feed-Forward Three-Layered

Neural Network

Two-dimensional data points (p¼ 2) are classified into K ¼ 2 known
classes. The sigmoid hidden and output units are shown as white circles
containing an S-like red curve.

doi:10.1371/journal.pcbi.0030116.g001

Figure 1. Binary Decision Tree

The left panel shows the data for a two-class decision problem, with dimensionality p¼ 2. The points known to belong to classes 1 and 2 are displayed
with filled circles and squares, respectively. The decision boundary is shown as the blue thick line in the left panel. The triangle designates a new point,
z, to be classified. The right panel shows the decision tree derived for this dataset whereas the new point z is classified in class 2 (squares). The regions
in the input space covered by nodes I and IV in the tree are represented by the dashed areas at the top and bottom of the left panel, respectively.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160956

boundaries is to be evaluated as described previously by
cross-validation. Among these decision boundaries, SVMs
find the one that achieves maximum margin between the two
classes. From statistical learning theory, the decision
functions derived by maximizing the margin minimize the
theoretical upper bound on the expected risk and are thus
expected to generalize well [23]. The margin is defined as the
distance between a planar decision surface that separates two
classes and the closest training samples to the decision
surface (see Figure 3, right panel). Let us denote with
ðx1; y1Þ; :::; ðxNT ; yNT Þ the labeled training dataset where xi 2
<p, yi 2 f�1,þ1g. SVMs find an optimal hyperplane wxTþ b¼0,
where w is the p-dimensional vector perpendicular to the
hyperplane and b is the bias. The objective of training SVMs is
to find w and b such that the hyperplane separates the data
and maximizes the margin 1 / jj w jj2 (Figure 3, right panel). By
introducing non-negative slack variables ni and a penalty
function measuring classification errors, the linear SVM
problem is formulated as follows:

min
w
ð1
2
jjwjj2 þ C

XNT

i¼1
niÞ ð8Þ

subject to constraints:

yiðwxTi þ bÞ � 1þ ni � 0; 8i ð9Þ

where C is a parameter to be set by the user, which controls
the penalty to errors. The optimization problem can be
reduced to a dual problem with solutions given by solving a
quadratic programming problem [23]. The decision function
is simply

f ðxÞ ¼ signðwxT þ bÞ ¼ signð
X
i

aiyiðxi xTÞ þ bÞ ð10Þ

where ai are coefficients that can be solved through the dual
problem. Data points with nonzero ai are called support
vectors (SVs) (e.g., Figure 3, right panel). In SVMs, only SVs
contribute to the construction of the decision boundaries.

The linear SVMs can be readily extended to nonlinear
SVMs where more sophisticated decision boundaries are
needed. This is done by applying a kernel transformation, i.e.,
simply replacing every matrix product (xix

T) in linear SVMs
with a nonlinear kernel function evaluation K(xix). This is
equivalent to transforming the original input space X
nonlinearly into a high-dimensional feature space. The

training data that are not linearly separable in the original
feature space can be linearly separated in the transformed
feature space. Consequently, the decision boundaries are
linear in the projected high-dimensional feature space and
nonlinear in the original input space. Two commonly used
kernels include polynomial

Kðx; zÞ ¼ ðx zT þ 1Þd ð11Þ

and radial basis function (RBF)

Kðx; zÞ ¼ expð�cjjx� zjj2Þ: ð12Þ

The kernel functions return larger values for arguments
that are closer together in feature space.
In constructing linear SVMs for classification, the only

parameter to be selected is the penalty parameter C. C
controls the tradeoff between errors of SVMs on training
data and the margin. For nonlinear SVMs, the learning
parameters include C and parameters associated with the
kernels used, e.g., c, in radial basis function (RBF) kernels. In
practice, learning parameters are selected through cross-
validation methods.
To conclude, the key points with the SVMs are: a) one

believes there is a representation of features in which classes
can be discriminated by a single hyperplane (perhaps with
only a few errors); b) one chooses the hyperplane that lies at
the largest distance between sentinel cases near the class
boundary (large margin); and c) one can use kernel
transformations when data is not linearly separable in the
original feature space, but it may be so in the transformed
space.
Dimensionality reduction. An important aspect of the

classifier design is that in some applications, the
dimensionality p of the input space is too high to allow a
reliable estimation of the classifier’s internal parameters with
a limited number of samples (p � n). In such situations,
dimensionality reduction may be useful. There are two main
categories of approaches to dimensionality reduction. The
first one is to obtain a reduced number of new features by
combining the existing ones, e.g., by computing a linear
combination. Principal component analysis (PCA) is one
particular method in this branch, in which new variables
(principal directions) are identified and may be used instead
of the original features. The second type of dimensionality
reduction involves feature selection that seeks subsets of the
original variables that are adequately predictive.
A serious difficulty arises when p � n is overfitting. Most of

the procedures examined in this tutorial include a set of
tunable parameters. The size of this set increases with p.
When more tunable parameters are present, very complex
relationships present in the sample can often be fit very well,
particularly if n is small. Generalization error rates in such
settings typically far exceed training set error rates.
Reduction of the dimensionality of the feature space can help
to reduce risks of overfitting. However, automated methods
of dimension reduction must be employed with caution. The
utility of a feature in a prediction problem may depend upon
its relationships with several other features, and simple
reduction methods that consider features in isolation may
lead to loss of important information.
The statistical pattern recognition literature classifies the

approaches to feature selection into filter methods and wrapper
methods. In the former category, a statistical measure (e.g., a t-

doi:10.1371/journal.pcbi.0030116.g003

Figure 3. Support Vector Machines Class Boundaries

Two-dimensional data points belonging to two different classes (circles
and squares) are shown in the left panel. The right panel shows the
maximum-margin decision boundary implemented by the SVMs.
Samples along the dashed lines are called SVs.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160957

test) of the marginal relevance of the features is used to filter
out the features that appear irrelevant using an arbitrary
threshold. For instance, marker genes for cancer prediction
were chosen based on their correlation with the class
distinction and then used as inputs in a classifier [24].

Although fast and easy to implement, such filter methods
cannot take into account the joint contribution of the
features. Wrapper methods use the accuracy of the resulting
classifier to evaluate either each feature independently or
multiple features at the same time. For instance, the accuracy
of a k-NN classifier has been used to guide a genetic algorithm
that searched an optimal subset of genes in a high
combinatorial space [25]. The main disadvantage of such
methods trying to find optimal subsets of features is that they
may be computationally demanding. Main advantages of
wrapper methods include the ability to: a) identify the most
suited features for the classifier that will be used in the end to
make the decision, and b) detect eventual synergistic feature
effects (joint relevance). More details on feature selection
methods and classification can be found in the literature
[16,26,27].

Unsupervised Learning / Cluster Analysis

Clustering is a popular exploratory technique, especially
with high dimensionality data such as microarray gene
expression [28,29]. This section will introduce the main
clustering approaches used with biological data.

Overview of clustering algorithms. Clustering aims at
dividing objects into groups (clusters) using measures of
similarity, such as one minus correlation or Euclidean
distance. For instance, in a microarray experiment the
objects can be different tissue samples that can be clustered

based on p-tuples of gene expression values. Some of the most
frequently used clustering techniques include hierarchical
clustering and k-means clustering. Hierarchical clustering
creates a hierarchical, tree-like structure of the data. A
hierarchical clustering can be constructed using either a
bottom-up or a top-down approach. In a bottom-up
approach, each data point is initially considered a cluster per
se. Subsequently, the clusters are iteratively grouped based on
their similarity. In contrast, the top-down approach starts
with a unique cluster containing all data points. This initial
cluster is iteratively divided into smaller clusters until each
cluster contains a single data point. The k-means clustering
algorithm starts with a predefined number of cluster centers
(k) specified by the user. Data points are assigned to these
centers based on their distance from (similarity to) each
center. Subsequently, an iterative process involves
recalculating the position of the cluster centers based on the
current membership of each cluster and reassigning the
points to the k clusters. The algorithm continues until the
clusters are stable, i.e., until there is no further change in the
assignment of the data points.
Another approach to clustering is called partitioning around

medoids (PAM) [30]. Similarly to k-means and hierarchical
clustering, PAM starts with computing a dissimilarity matrix
(n 3 n) from the original data structure (the n 3 p matrix of
measurements).
Any distance measure can be therefore used in conjunction

with PAM. The algorithm maps the resulting distance matrix
into a specified number of clusters. The medoids are
representations of the cluster centers that are robust with
respect to outliers. The robustness is particularly important
in the common situation in which many elements do not have
a clearcut membership to any specific cluster [31]. A measure
of cluster distinctness is the silhouette computed for each
observation in a dataset, relative to a given partition of the
dataset into clusters. The silhouette measure contrasts the
average proximity of an observation to other observations in
the partition to which it is assigned with the average
proximity to observations in the nearest partition to which it
is not assigned. This quantity tends to one for a ‘‘well-
clustered’’ observation and can be negative if an observation
seems to have been assigned to the wrong cluster.
In many biological applications, it is desired to cluster both

the features and the samples, i.e., both rows and columns of
the data matrix X. For instance, with gene expression data
one may be interested to cluster both the tissues samples and
the genes at the same time. While k-means and hierarchical
clustering methods can be used, for instance, to group genes
that are co-expressed under all measured conditions, they fail
to discover local expression patterns, i.e., genes co-expressed
across a subset of conditions and independent under other
conditions. Biclustering methods, on the other hand, allow
simultaneous clustering of genes and experimental
conditions and uncover local patterns in the data. Given an n
3 p matrix, a biclustering algorithm identifies biclusters—a
subset of rows that show similar activity patterns across a
subset of columns, or vice versa (see Figure 4).
Self-organizing feature maps (SOFM) [32,33] are produced by

another popular algorithm used in unsupervised
applications. Unlike the methods described above, this
unsupervised neural network not only finds clusters in the
data, but also allows visualization (projection) of the p-

doi:10.1371/journal.pcbi.0030116.g004

Figure 4. Heat Map of the ALL Data after Filtering

Class membership is indicated by a magenta (NEG) or blue (BCR/ABL)
stripe at the top of the plot region. Rows correspond to data features
(genes), while columns correspond to data points (samples). Hierarchical
clustering is applied simultaneously to both rows (genes) and columns
(samples) of the expression matrix to organize the display.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160958

dimensional data points onto a layer of neurons (usually
planar). The neurons are arranged in a rectangular or
hexagonal grid and they learn to become prototypes for the
training data points. Similar objects will be mapped on the
same (or neighboring) neurons, while dissimilar ones will be
mapped apart. Thus, the self-organizing feature maps
(SOFMs) preserve the intrinsic relationship among the
different clusters.

Tuning parameters in clustering. In addition to the type of
clustering (e.g., hierarchical, k-means, etc.), investigators need
to make other choices when employing this technique,
including: 1) distance metric; and 2) the type of linkage (if
appropriate). The distance used by the clustering defines the
desired notion of similarity between two data points.
Distance metrics, i.e., measure of dissimilarity, that are often
used, in addition to the Euclidean distance (defined in Section
2), are one minus correlation distance:

dcorðx; zÞ ¼ 1� rðx; zÞ ¼ 1�

Xp

j¼1
ðxj � �xÞðzj � �zÞ

ffi
Xp

j¼1
ðxj � �xÞ2

Xp

j¼1
ðzj � �zÞ2

vuut
ð13Þ

and Mahalanobis distance:

dmahðx; zÞ ¼ ðx� zÞR�1ðx� zÞT : ð14Þ

In Equation 14 the covariance matrix R can be replaced
with the sample estimated covariance matrix defined in
Equation 3. Unlike the Euclidian and correlation distances,
the Mahalanobis distance allows for situations in which the
data may vary more in some directions than in others, and
has a mechanism to scale the data so that each feature has the
same weight in the distance calculation.

The linkage defines the desired notion of similarity
between two groups of measurements. For instance, the
average linkage uses the mean of the distances between all
possible pairs of measurements between the two groups. An
extensive discussion of these issues, including the properties
of each distance/linkage/clustering algorithm, common
pitfalls, and recommendations can be found in Drăghici’s
monograph [34] and references therein.

Practicalities Using R
The R language and environment for statistical computing

(http://www.r-project.org) is a free open source system with
which one can explore a variety of approaches to machine
learning. For a comprehensive list of machine learning
methods implemented in R, the reader is referred to the
CRAN Task View on machine learning (http://cran.r-project.
org/src/contrib/Views/MachineLearning.html). In the
following description, the bold fixed-width font designates a
code segment that can be pasted directly into an R session,
while nonbold fixed-width font designates names of packages,
or R objects.

The Bioconductor project (http://www.bioconductor.org)
includes a software package called MLInterfaces, which aims
to simplify the application of machine learning methods to
high-throughput biological data such as gene expression
microarrays. In this section, we will review some examples
that can be carried out by the reader who has an installation
of R 2.4.0 or later. First, the CRAN package ctv is installed

and loaded. A rich collection of machine learning tools is
obtained by executing:

install.views("MachineLearning")

The biocLite function is then made available through:
source("http://www.bioconductor.org/biocLite.R")

followed by
biocLite("MLInterfaces")

which installs a brokering interface to a substantial collection
of machine learning functions, tailored to analysis of
expression microarray datasets.
A leukemia dataset. After obtaining the biocLite function

as described above, the command:
biocLite("ALL")

installs a data structure representing samples on 128
individuals with acute lymphocytic leukemia [35]. The
following dialogue with R will generate a subset that can be
analyzed to understand the transcriptional distinction
between B cell ALL cases in which the BCR and ABL genes
have fused, and B cell ALL cases in which no such fusion is
present:

library(ALL)

data(ALL)

restrict to BCR/ABL or NEG

bio¼ which(ALL$mol.biol %in% c("BCR/ABL", ‘‘NEG"))

restrict to B-cell

isb¼ grep("̂B", as.character(ALL$BT))

bfus¼ ALL[, intersect(bio,isb)]

bfus

There are 79 samples present, 37 of which present BCR/
ABL fusion.
Unsupervised methods. To illustrate simple approaches to

unsupervised learning, we will filter the data severely, by
focusing on the 50 genes that have the largest variability over
all samples as measured by the median absolute deviation.
The threshold 1.43 in the next command was determined by
checking the data. We then invoke the R heatmap command,
with variations on the color scheme, and sample coloring at
the top, with magenta bars denoting negative samples (NEG)
and blue bars denoting fusion samples (BCR/ABL):

bfust ¼ bfus[apply(exprs(bfus),1,mad) . 1.43,]

#get rid of unused levels

bfust$mol.biol¼ factor(bfust$mol.biol)

mycols¼ifelse(bfust$mol.biol¼¼ "NEG",

"magenta", "blue")

heatmap(exprs(bfust),

ColSideColors¼mycols,

col¼cm.colors(256), margins¼c(9,9), cexRow¼1.3)

The PAM algorithm can be applied to bfust of class
ExpressionSet using the brokering code in the MLInterfaces:

library(MLInterfaces)

dopam ¼ pamB(bfust, k¼6)

The graphical output shown in Figure 5 is obtained using
the R command:

plot(RObject(dopam))

On the left panel of Figure 5, the smallest cluster-specific
ellipsoids containing all the data in each cluster are displayed
in a two-dimensional principal components (PCs) projection;
on the right, the silhouette display (see Unsupervised Learning/
Cluster Analysis) is presented. High silhouette values indicate
‘‘well-clustered’’ observations, while negative values indicate
that an observation might have been assigned to the wrong
cluster.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160959

A useful data visualization method, not necessarily related
to machine learning, is to project the multidimensional data
points onto two or three PCs which are the directions in the
feature space showing the largest variability. The R packages
pcurve and lattice are used here to compute the PCs and
produce a plot of the 79 samples in bfust data (see Figure 6).

library(lattice);

library(pcurve)

pc ¼ pca(t(exprs(bfust)))

cloud(pc$pcs[,3];

pc$pcs[,1]þpc$pcs[,2],col¼mycols,pch¼19,xlab¼"PC1",

ylab¼"PC2", zlab¼"PC3")

Supervised methods. Supervised methods of learning such
as trees, neural networks, and SVMs will be illustrated in this
section.
The following example uses 50 random samples from bfust

data to train a neural network model which is used to predict
the class for the remaining 29 samples from bfust. The
confusion matrix is computed to assess the classification
accuracy. Indices of the training sample are supplied to the
trainInd parameter of the nnetB interface of the
MLInterfaces package.

set.seed(1234) # repeatable random sample/nnet initialization

smp¼ sample(1:79, size¼ 50)

nn1¼ nnetB(bfust, ‘‘mol.biol", trainInd¼smp, size¼ 5, maxit ¼ 1000,

decay ¼ 0.01)

confuMat(nn1)

The last line in the code segment above displays the
confusion matrix achieved by the neural network classifier on
the test samples:

predicted
given BCR=ABL NEG

BCR=ABL 4 7
NEG 2 16

The size parameter in the function nnetB above specifies
the number of units in the hidden layer of the neural
network, and larger values of the decay parameter impose

doi:10.1371/journal.pcbi.0030116.g005

Figure 5. Two Views of the Partition Obtained by PAM

Left, PC display; right, silhouette display. The ellipses plotted on the left are cluster-specific minimum volume ellipsoids for the data projected into the
PCs plane. These should be regarded as two-dimensional representations of the robust approximate variance–covariance matrix for the projected
clusters. The silhouette display comprises a single horizontal segment for each observation, ordered by clusters and by object-specific silhouette value
within a cluster. Large average silhouette values for a cluster indicate good separation of most cluster members from members of other clusters;
negative silhouette values for objects indicate instances of indecisiveness or error of the given partition.

doi:10.1371/journal.pcbi.0030116.g006

Figure 6. A PCA Plot

The 79 samples of the ALL dataset are projected on the first three PCs
derived from the 50 original features. The blue and magenta colors are
used to denote the known membership of the samples in the two
classes, NEG and BCR/ABL, respectively. Note that PCA is an unsupervised
data projection method, since the class membership is not required to
compute the PCs.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160960

stronger regularization of the weights. The maxit parameter
should be set to a relatively high number to increase the
chance that the optimization algorithm converges to a
solution. The confusion matrix is computed using the
confuMat method on the 29 samples forming the complement
of the training set specified by smp. This shows a
misclassification rate of 31% ¼ 9/29.

A tree-structured classifier derived from the 50-gene
extract from the ALL data is shown in Figure 7. The
procedure defines a single split on a single gene (Kruppel-like
factor 9), which does a reasonable job of separating the fusion
cases—the estimated misclassification rate seems to be about
30%.

Figure 8 depicts the decision regions after learning was
carried out with training sets based on two randomly selected
genes from ALL data. Qualitative aspects of the decision
regions are clear: the tree-structured classifier delivers
rectangular decision regions; the neural network fit leads to a
smooth, curved decision boundary; the 3-NN fit is very jagged;
and the SVM fit is similar to but more compact than the
neural net. Of note: considerable interpolation and
extrapolation is performed to generate the full decision
region representation, and decisions are rendered for feature
values for which data are very sparse. Boundaries are sharp,
and there is no provision for declaring doubt (although one
could be introduced with modest programming for those
procedures that do return information on posterior
probabilities of class membership.) Last, the fine structure of
the regions provided by CART and 3-NN are probably
artifacts of overfitting, as opposed to substantively interesting
indications of gene interaction.

Variable importance displays. Several machine learning
procedures include facilities for measuring relative
contribution of features in successful classification events.

The random forest [36] and boosting [37] methods involve
iteration through random samples of variables and cases, and
if accuracy degrades when a certain variable is excluded at
random from classifier construction, the variable’s
importance measure is incremented. Code illustrating an
application follows, and Figure 9 shows the resulting
importance measures.

ggg ¼ gbmB(bfust, "mol.biol", 1:50)

library(hgu95av2)

par(las¼2, mar¼c(6,9,5,5))

plot(getVarImp(ggg), resolveenv¼hgu95av2SYMBOL)

Summary. The R system includes a large number of
machine learning methods in easily installed and well-
documented packages; the Bioconductor MLInterfaces

brokering package simplifies application of these methods to
microarray datasets. We have illustrated a number of
methods with a demonstration dataset that was obtained by
selecting a reduced number of features out of a few tens of
thousands that are available in the ALL dataset. The features
selected were those varying the most among the samples,
regardless of their class membership. While convenient for
the purpose of producing Figure 4, the filtering is not
theoretically required by any of the unsupervised methods.
However, for practical reasons, such as computer memory
shortage, most of the implementations of the unsupervised
techniques may not work with tens of thousands of features.
For the purpose of developing supervised classification
models, in addition to these practical limitations, there may
not be enough degrees of freedom to estimate the parameters

doi:10.1371/journal.pcbi.0030116.g007

Figure 7. Rendering of a Conditional Tree

The figure is obtained with the Ctree function of the party package.

doi:10.1371/journal.pcbi.0030116.g008

Figure 8. Display of Four Two-Gene Classifiers

Top left: CART with minsplit tuning parameter set to 4; top right: a
single-layer feed-forward neural network with eight units; bottom left, k
¼ 3 nearest neighbors; bottom right, the default SVM from the e1071
package. The planarPlot function of the MLInterfaces package can
be used to construct such displays. If the expression level of a given
sample falls into the magenta-colored area, then the sample is predicted
to have status NEG; if it falls into the blue-colored area, then the sample
is predicted to have BCR/ABL status.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160961

of the models. In such supervised applications, filtering
should be used as described in the section Supervised
Learning: Dimensionality Reduction. More details on
machine learning applications with R can be found in the
literature [38].

Conclusion

Modern biology can benefit from the advancements made
in the area of machine learning. Caution should be taken
when judging the superiority of some machine learning
approaches over other categories of methods. It is argued [39]
that the success or failure of machine learning approaches on
a given problem is sometimes a matter of the quality indices
used to evaluate the results, and these may vary strongly with
the expertise of the user. Of special concern with supervised
applications is that all steps involved in the classifier design
(selection of input variables, model training, etc.) should be
cross-validated to obtain an unbiased estimate for classifier
accuracy. For instance, selecting the features using all
available data and subsequently cross-validating the classifier
training will produce an optimistically biased error estimate.
Because of inadequate validation schemes, many studies
published in the literature as successful have been shown to
be overoptimistic [40]. It should be clear from the narrative
examples used in this tutorial that choice, tuning, and
diagnosis of machine learning applications are far from
mechanical. &

Acknowledgments

We express our gratitude to the two anonymous reviewers whose
specific comments were very useful in improving this manuscript.
ALT and RR were supported in part by the Division of Intramural
Research of the National Institute of Child Health and Human
Development. VJC was supported in part by National Institutes of
Health (NIH) grant 1 P41 HG004059. XwC was supported in part by
National Science Foundation (NSF) award IIS-0644366 and by NIH
Grant P20 RR17708 from the IDeA Program of the National Center
for Research Resources. SD is partially supported by the following
grants: NSF DBI-0234806, CCF-0438970, 1R01HG003491-01A1,

1U01CA117478–01, 1R21CA100740–01, 1R01NS045207–01,
5R21EB000990–03, and 2P30 CA022453–24. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
NSF, the NIH, or any other funding agency.

Author contributions. ALT, VJC, XwC, RR, and SD wrote various
sections of the paper. VJC and ALT wrote the sample R code.

Funding. The authors received no specific funding for this article.
Competing interests. The authors have declared that no competing

interests exist.

References

1. Rosenblatt F (1958) The perceptron: A probabilistic model for information
storage and organization in the brain. Psychol Rev 65: 386–408.

2. Stormo GD, Schneider TD, Gold L, Ehrenfeuch A (1982) Use of the
perceptron algorithm to distinguish translation initiation sites in E. coli.
Nucleic Acids Res 10: 2997–3011.

3. Carpenter GA, Grossberg S (1988) The art of adaptive pattern recognition
by a self-organizing neural network. Computer 21: 77–88.

4. Fukushima K (1980) Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biol
Cybern 36: 193–202.

5. Weston J, Leslie C, Ie E, Zhou D, Elisseeff A, et al. (2005) Semi-supervised
protein classification using cluster kernels. Bioinformatics 21: 3241–3247.

6. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, et al. (2000) Distinct type
of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature 403: 503–510.

7. Perou CM, Jeffrey SS, van der Rijn M, Rees CA, Eisen MB, et al. (1999)
Distinctive gene expression patterns in human mammary epithelial cells
and breast cancers. Proc Natl Acad Sci U S A 96: 9212–9217.

8. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, et al. (1999) Broad
patterns of gene expression revealed by clustering of tumor and normal
colon tissues probed by nucleotide arrays. Proc Natl Acad Sci U S A 96:
6745–6750.

9. Ross DT, Scherf U, Eisen MB, Perou CM, Rees G, et al. (2000) Systematic
variation in gene expression patterns in human cancer cell lines. Nat Genet
24: 227–235.

10. Rost B, Sander C (1994) Combining evolutionary information and neural
networks to predict protein secondary structure. Proteins 19: 55–72.

11. Tarca AL, Cooke JE, Mackay J (2005) A robust neural networks approach
for spatial and intensity-dependent normalization of cDNA microarray
data. Bioinformatics 21: 2674–2683.

12. Duda RO, Hart PE, Stork DG (2001) Pattern classification. 2nd edition. New
York: John Wiley and Sons. 654 p.

13. Webb AR (2002) Statistical pattern recognition. 2nd edition. West Sussex
(United Kingdom): John Wiley and Sons. 496 p.

14. Efron B (1983) Estimating the error rate of a prediction rule: Improvement
on cross-validation. J Am Stat Assoc 78: 316–331.

15. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical
learning: Datamining, inference, and prediction. New York: Springer. 533 p.

16. Dudoit S, Fridlyand J, Speed T (2002) Comparison of discrimination
methods for the classification of tumors using gene expression data. J Am
Stat Assoc 97: 77–87.

17. Guo Y, Hastie T, Tibshirani R (2001) Regularized linear discriminant
analysis and its application in microarrays. Biostatistics 8: 9–31.

18. Gentleman R, Ding B, Dudoit S, Ibrahim J (2005) Distance measures in DNA
microarray data analysis. In: Gentlemen R, Carey VJ, Huber W, Irizarry RA,
Dudoit S, editors. Bioinformatics and computational biology solutions
using R and Bioconductor. New York: Springer. pp. 189–208.

19. Breiman L, Friedman JH, Olsen RA, Stone CJ (1984) Classification and
regression trees. New York: Wadsworth and Brooks. 368 pp.

20. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal
representations by error backpropagation. In: Rumelhart DE, MeClelland
JLthe PDP Research Group,, editors. Parallel distributed processing:
Explorations in the microstructures of cognition. Boston: MIT Press/
Bradford Books. 576 pp

21. Ripley B (1996) Pattern recognition and neural networks. Cambridge
(United Kingdom): Cambridge University Press. 403 p.

22. Venables B, Ripley B (2002) Modern applied statistics with S. 4th edition.
New York: Springer. 495 p.

23. Vapnik VN (1998) Statistical learning theory. New York: Wiley. 736 p.
24. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: Class discovery and class predication by
gene expression monitoring. Science 286: 531–537.

25. Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for
microarray data analysis: Evolutionary methods for identifying predictive
genes. BMC Bioinformatics 6: 148.

26. Rogers S, Williams R, Campbell C (2005) Class prediction with microarray
datasets. In: Seiffert U, Jain LC, Schweizer P, editors. Bioinformatics using
computational intelligence paradigms. Berlin: Springer. pp. 119–141.

27. Tarca AL, Grandjean BPA, Larachi F (2005) Feature selection methods for
multiphase reactors data classification. Ind Eng Chem Res 44: 1073–1084.

doi:10.1371/journal.pcbi.0030116.g009

Figure 9. Display of Relative Variable Importance as Computed in a

Gradient Boosting Machine Run

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160962

28. Aach J, Rindone W, Church GM (2000) Systematic management and
analysis of yeast gene expression data. Genome Res 10: 431–445.

29. Zhu J, Zhang MQ (2000) Cluster, function and promoter: Analysis of yeast
expression array. Pacific Symp Biocomput 5: 476–487.

30. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: An introduction
to cluster analysis. New York: John Wiley and Sons. 342 p.

31. van der Laan MJ, Pollard KS, Bryan J (2003) A new partitioning around
medoids algorithm. UC Berkeley Division of Biostatistics Working Paper
Series. Available: http://www.bepress.com/cgi/viewcontent.
cgi?article¼1003&context¼ucbbiostat. Accessed 25 May 2007.

32. Kohonen T (1988) Learning vector quantization. Neural Netw 1: 303–320.
33. Kohonen T (1995) Self-organizing maps. Berlin: Springer. 362 p.
34. Drăghici S (2003) Data analysis tools for DNA microarrays. London:

Chapman and Hall/CRC Press. 512 p.
35. Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, et al. (2004) Gene

expression profile of adult T-cell acute lymphocytic leukemia identifies
distinct subsets of patients with different response to therapy and survival.
Blood 103: 2771–2778.

36. Breiman L (2001) Random forests. Mach Learn 45: 5–32.
37. Freung Y (1997) A decision-theoretic generalization of on-line learning and

an application to boosting. J Comput Syst Sci 55: 119–139.
38. Carey VJ (2005) Machine learning concepts and tools for statistical

genomics. In: Gentlemen R, Carey VJ, Huber W, Irizarry RA, Dudoit S,
editors. Bioinformatics and computational biology solutions using R and
Bioconductor. New York: Springer. pp. 273–292.

39. Hand DJ (2006) Classifier technology and the illusion of progress. Stat Sci
21: 1–14.

40. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with
microarrays: A multiple random validation strategy. Lancet 365: 488–492.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1160963

