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ABSTRACT We present an approach for assessing the
significance of sequence and structure comparisons by
using nearly identical statistical formalisms for both se-
quence and structure. Doing so involves an all-vs.-all com-
parison of protein domains [taken here from the Structural
Classification of Proteins (scop) database] and then fitting
a simple distribution function to the observed scores. By
using this distribution, we can attach a statistical signifi-
cance to each comparison score in the form of a P value, the
probability that a better score would occur by chance. As
expected, we find that the scores for sequence matching
follow an extreme-value distribution. The agreement, more-
over, between the P values that we derive from this distri-
bution and those reported by standard programs (e.g., BLAST
and FASTA validates our approach. Structure comparison
scores also follow an extreme-value distribution when the
statistics are expressed in terms of a structural alignment
score (essentially the sum of reciprocated distances between
aligned atoms minus gap penalties). We find that the
traditional metric of structural similarity, the rms deviation
in atom positions after fitting aligned atoms, follows a
different distribution of scores and does not perform as well
as the structural alignment score. Comparison of the se-
quence and structure statistics for pairs of proteins known
to be related distantly shows that structural comparison is
able to detect approximately twice as many distant rela-
tionships as sequence comparison at the same error rate.
The comparison also indicates that there are very few pairs
with significant similarity in terms of sequence but not
structure whereas many pairs have significant similarity in
terms of structure but not sequence.

Comparison is a most fundamental operation in biology.
Measuring the similarities between ‘‘things’’ enables us to
group them in families, cluster them in trees, and infer
common ancestors and an evolutionary progression. Biological
comparisons can take place at many levels, from that of whole
organisms to that of individual molecules. We are concerned
here with the comparison on the latter level, specifically, with
comparisons of individual protein sequences and structures.
(For an example of systematic comparison applied to whole
organisms, see refs. 1 and 2.)

Our overall aim is to describe these two types of comparisons
in a self-consistent, unified framework. For sequence or
structure comparison, each act of comparing one ‘‘entity’’ to
another (that is, either comparing two sequences or two
structures) involves two steps. First, the two objects are aligned

optimally through the introduction of gaps in such a way as to
maximize their residue-by-residue similarity. This operation
generates some form of total similarity score for the number
of residues matched—traditionally, a percent identity for
sequences or an rms for structures, although we will use other
measures. Second, one has to assess the significance of this
score in the context of what is known about the proteins
currently in the database.

In earlier papers, Gerstein and Levitt (3, 30) extended the
work of Subbiah et al. (4) and Laurents et al. (5) and described
an approach for structural alignment in an analogous fashion
to the traditional approach for sequence alignment (6–9). Like
sequence alignment, this method involves applying dynamic
programming to a matrix of similarities between individual
residues to optimize their overall correspondence through the
introduction of gaps.

In this paper, we tackle the second of the two steps in protein
comparison: assessing significance. We developed a simple
empirical approach for calculating the significance of an
alignment score based on doing an all-vs.-all comparison of the
database and then curve fitting to the distribution of scores of
true negatives. This allows us to express the significance of a
given alignment score in terms of a P value, which is the chance
that an alignment of two randomly selected proteins would
obtain this score. We applied our approach consistently to both
sequences and structures. For sequences, we could compare
our fit-based P values with the differently derived statistical
score from commonly used programs such as BLAST and FASTA
(10–13). The agreement we found validated our approach. For
structure alignment, we followed a parallel route to derive an
expression for the P value of a given alignment in terms of the
structural alignment score.

Our work followed on much that recently has been done
assessing the significance of sequence and structure com-
parison. One of the major developments in the past few years
has been the implementation of probabilistic scoring
schemes (13–16). These give the significance of a match in
terms of a P value rather than an absolute, ‘‘raw’’ score (such
as percent identity). This places scores from very different
programs in a common framework and provides an obvious
way to set a significance cutoff (that is, at P 5 , 0.0001 or
0.01%). P values were first used in the BLAST family of
programs, where they are derived from an analytic model for
the chance of an arbitrary ungapped alignment (10, 17). P
values subsequently have been implemented in other pro-
grams, such as FASTA and gapped BLAST by using a somewhat
different formalism (13, 18, 19).

© 1998 by The National Academy of Sciences 0027-8424y98y955913-8$2.00y0
PNAS is available online at http:yywww.pnas.org.

Abbreviation: scop, Structural Classification of Proteins.
†To whom reprint requests should be addressed. e-mail: michael.
levitt@stanford.edu.

5913



There are currently many methods for structural alignment
(20–31). Some of these are associated with probabilistic scor-
ing schemes. In particular, one method (VAST) computes a P
value for an alignment based on measuring how many second-
ary structure elements are aligned as compared with the
chance of aligning this many elements randomly (28). Another
method (27, 32) expresses the significance of an alignment in
terms of the number of standard deviations it scores above the
mean alignment score in an all-vs.-all comparison (i.e., a
Z-score).

Data Set Used for Testing. One of the most important
aspects of our analysis is that we carefully tested it against the
known structural relationships. This testing allowed us to
decide unambiguously whether a given comparison resulted in
a true or false-positive and to decide objectively between
different statistical schemes. In particular, structures were
taken from the Protein Data Bank (33–34) and definitions of
domains, structural classes, and structural similarities were
taken from the Structural Classification of Proteins (scop)
database (version 1.32; refs. 35–37). The creators of scop have
clustered the domains in the Protein Data Bank on the basis
of sequence identity (38, 39). At a sequence identity level of
40%, this clustering resulted in 941 unique sequences corre-
sponding to the known structural domains. These 941 se-

quences were what we used as test data for both the sequence
and structure comparisons. They contained 390 different
superfamilies and 281 different folds. Because they had a
considerably closer and more certain relationship than fold
pairs, we concentrated here on superfamily pairs. These 2,107
nontrivial, pairwise relationships between the domains formed
our set of true-positives.

Sequence Comparison Statistics. Sequence matching was
done with standard approaches: In particular, we used the
SSEARCH implementation of the Smith–Waterman algorithm
(7) [from the FASTA package, version 3, (12, 40); the URL is
ftp:yyftp.virginia.eduypubyfasta], with a gap-opening penalty
of 212, a gap-extension penalty of 22, and the BLOSUM50
substitution matrix [which has a maximal match score of 13 (for
C to C) and an average match score of 20.36].

A probability–density function for sequence–comparison
scores. Each pairwise sequence comparison was best quantified
by three numbers, Sseq, n, and m, where Sseq is the raw sequence
alignment score and n and m are the lengths of the two
sequences compared. Comparing all possible pairs of se-
quences allowed us to calculate an observed probability den-
sity, ro

seq, for the chance of finding a pair of sequences with
particular values for Sseq and ln(nm). Fig. 1A shows the density
for pairs between all sequences. This includes the scores for

FIG. 1. A probability–density distribution for sequence comparison scores, rseq
o , contoured against Sseq, the sequence alignment score (along

the horizontal axis) and ln(nm), where n and m are the lengths of the pair sequences (along the vertical axis). This density is related closely to the
raw data (via normalization) obtained by counting the number of pairs with particular S and ln(nm) values. Because of the wide range of density
values, contours of log(rseq

o ) are drawn with an interval of 1 (a full order of magnitude). When contouring the logarithm of a density function, special
attention must be paid to the zero values. Here, a zero value is set to 0.001, which effectively lifts the entire surface by 3 log units. The data then
are smoothed by averaging with a Gaussian function [exp(2sy(DSseqy3)2)] over a window 14 units wide along the Sseq axis. This smoothing together
with the treatment of zeros serves to emphasize the smallest observed counts (values of 1) by surrounding them with three contour levels. (A) Data
from all 884,540 pairs between any one of the 941 sequences and any other sequence (pairs A–B and B–A are both included). The significant
sequence matches are seen as the isolated spots at high values of the score Sseq. (B) Data from 352,168 pairs, including only those pairs of sequences
in different scop classes. We also exclude pairs between an all-a or all-b domain and an a1b domain, as well as sequences that are not in one of
the five main scop classes: a, b, ayb, a1b, and a1b (multidomain). This exclusion is done to ensure that no significant matches will be found,
which indeed is seen in the figure by the absence of any outlying spots at high score values. Thus, the density in B is free of any significant matches
and shows the underlying density distribution expected for comparison of unrelated sequences.
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'300 sequence pairs that are related closely, which clearly
show up as ‘‘spots’’ on the right side of the plot. These
high-scoring ‘‘true-positives’’ are removed in Fig. 1B, which
shows the density for just the pairs in different structural
classes (42), i.e., the pairs that definitely are unrelated. This is
the density distribution that we aim to fit.

Fig. 2A shows the density distribution as a function of Sseq
for sections at constant ln(nm). The clear linear relationship
between log(rseq

o ) and Sseq at high values of Sseq is indicative of
an extreme-value distribution

rseq
c (Z) 5 exp(2Z 2 exp(2Z)).

The variable ‘‘Z’’ was defined in terms of Sseq and ln(nm) by
using the ‘‘Z-score-like’’ expression Z 5 (Sseq 2 mseq)ysseq,
where mseq 5 a ln(nm) 1 b and sseq5 a are the most likely
sequence score and width parameter for the distribution. The
two adjustable parameters a and b were obtained by fitting the
calculated density rseq

c (Z) to the observed density rseq
o (Z) for

all values of Sseq and ln(nm). Substituting for mseq and sseq for
Z above gave Z 5 (Sseq 2 a ln(nm) 2 b)ya 5 Sseqya 2 ln(nm)
2 bya.

To derive specific values for the a and b parameters, we fit
the above formulas to the observed density distribution ob-
tained by comparing pairs in different scop classes, getting a 5
5.84 and b 5 226.3. The fit was done by least-squares
optimization by using the simplex minimizer in MATLAB (Math

Works, Natick, MA). It has a residual of 0.084, which was
calculated by using the standard relation r 5 S wi(Oi 2 Ci)2yS
wi(Oi)2, where i indexes ‘‘bins’’ with particular Sseq and ln(nm)
values, Oi 5 log (rseq

o (Zi)) is the observed density in a bin, Ci5
log (rseq

c (Zi)) is the calculated density in a bin, wi 5 1yNi is a
weighting factor, Ni is the number of sequence pairs in a bin,
and the summation is over all bins, I, with ln(nm) between 5.9
and 13.5.

A cumulative sequence distribution function, giving the P value.
To estimate the statistical significance of a particular compar-
ison in terms of particular Sseq, n, and m values, we needed the
cumulative distribution function Pseq(z . Z), which is defined
as the probability that matching any two random sequences will
give a z value greater than or equal to Z. This is just the integral
of rseq

c (z) 5 exp(2z 2 exp(2z)) 5 exp(2z) exp(2exp(2z)),
from z 5 Z to z 5 `, so that Pseq(z . Z) 5 1 2 exp(2exp(2Z)).
Writing Z in terms of Sseq, n, and m gives

Pseq(s . Sseq) 5 1 2exp(2exp(2Sseqya 1 ln(nm) 1 bya)),

where the parameters a and b are given above.
Relation to BLAST P value. For sequence comparison without

gaps, Karlin and Altschul (10, 11) derived the following
cumulative distribution function: PK&A(s . Sseq) 5 1 2
exp(2exp(2l(Sseq 2 ln(Kmn)yl)))5 1 2 exp(2exp(2l(Sseq
1 ln(Kmn)yl))), where l and K are calculated analytically
based on the sequence composition and amino acid scoring

FIG. 2. Cross-sections of the sequence and structure density distribution show they are both extreme-value distributions and that the calculated
distribution fits the observed distribution well. (A) Plots of the logarithm of the observed, log(rseq

o ), and calculated, log(rseq
c ), sequence pair densities

against the sequence match score Sseq; log(rseq
o ) is taken from the data for pairs in different classes (Fig. 1B). Each panel shows the variation of

the density with Sseq for a particular value of ln(nm), the product of the lengths of the sequences compared; this value is indicated by assuming
n 5 m and showing the value of n. The observed density is clearly an extreme-value distribution with a linear fall-off of log(rseq

o ) with Sseq. The
calculated distribution obtained with a two-parameter fit (dashed line, see text) is a good fit for all values of n [or ln(nm)]. (B) Plots of the logarithm
of the observed, log(rstr

o ), and calculated, log(rstr
c ), structure pair densities against the structure match score Sstr

o ; log(rstr
o ) taken from the data for

pairs in different classes (Fig. 4B). Each panel shows the variation of the density with Sstr for a particular value of the number of aligned residues,
N. The calculated distribution obtained with a five-parameter fit (dashed line, see text) is a good fit for all values of N.
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matrix. Comparison of their analytical form with our P value
expression shows that l 5 1ya and K 5 exp(bya). Substituting
the specific values for a and b that we calculated from the fit,
we found that l 5 0.171 and K 5 0.011. For the particular
database sequences and amino acid scoring matrix used here,
the values for l calculated by Karlin and Altschul’s formula
ranged from 0.217 to 0.259, all somewhat larger than our value
for l.

Relation to FASTA E value. In the FASTA sequence comparison
programs (12, 13, 18), the significance of a given alignment
score Sfa is estimated by fitting an extreme-value distribution
to scores resulting from comparison of a given query sequence
to each sequence in the database. The distribution is recom-
puted for each new query so that, unlike our approach, each
query sequence is associated with a different distribution
function. This type of association has the advantage of allowing
for any peculiarities of the query sequence (e.g., composition
bias), but it also means that one cannot estimate the signifi-
cance of a single pairwise comparison of two sequences.

The value used by FASTA in judging the significance of a
sequence similarity is known as the expectation value or E
value (here Efa). The P value, defined above, gives the statis-
tical significance of a single comparison whereas the E value
is an estimate of the expected number of false-positives
(dissimilar matches with a significant score) for a search of the
entire database. With Ndb entries in the database, the E value
Eseq is calculated from our Pseq(s . Sseq) as Eseq 5 Ndb Pseq. The
E values we obtained were very similar to those found by FASTA
over a very wide range of values (Fig. 3). When one considers
that our closed-form Eseq depends on only two parameters for
all pairs whereas Efa is optimized separately for each query
sequence (941 3 2 5 1,882 parameters in all), this agreement
is astonishing.

Measuring coverage vs. error rate to compare different formal-
isms for significance-statistics. We have presented two forms of
E value statistics for sequence comparison: our method, Eseq,
which is based on fitting a two-parameter model to the
observed distribution of alignment scores; and the FASTA
method Efa, which is based on fitting different distributions for
each query. Now we naturally are led to ask whether there is
an objective way to decide which formalism performs the best
on some representative test data.

The seminal work of Brenner et al. (39) and Brenner (43)
provides a framework for such an assessment by using the
known true-positives in the scop database and a coverage-vs.-
error plot. To compare any two significance-statistics formal-
isms, we proceeded as follows for each:

(i) For each of the pairs in the all-vs.-all comparison (941 3
940 pairs), we determined an E value and noted whether the
pair was a true-positive or true-negative (for true-positives,
both sequences must belong to protein domains with the same
fold in the scop classification). (ii) We sorted the pairs by
increasing E value. (iii) We counted down the list from best to
worst until the number of false-positives was 1% of the total
number of database entries (here, this was 9 false-positives,
which is '1% of 941). (iv) We got the threshold E value at this
point, which ideally should be close to 0.01, so as to correspond
to the 1% error rate per query. (5) Finally, we got the number
of entries that were more significant than the threshold E
value; this number defined the coverage, which should be as
large as possible.

Here, we compared the coverage and error rate of our
sequence score statistics with those of FASTA (Eseq vs. Efa). At
the threshold E value, our sequence statistics had log Eseq 5
21.98 and a coverage of 328, and the FASTA statistics had a log
Efa of 21.68 and a coverage of 379. The FASTA statistics had
better coverage, but our statistics had an almost perfect
threshold value, which should be 22 for 1% error rate.

Structure Comparison Statistics. The procedure we used
for pairwise structural alignment is described in detail in
Gerstein and Levitt (3, 30) and is summarized only briefly
here. Our core method was based on iterative application of
dynamic programming. As such, it was a simple application of
the Needleman–Wunsch sequence alignment (6). It originally
was derived from the ALIGN program of Cohen (21, 31), with
many subsequent refinements. One starts with two structures
in an arbitrary orientation. Then one computes all pairwise
distances between every atom in the first structure and every
atom in the second, which results in an interprotein distance
matrix in which each entry, dij, corresponds to the distance
between residue i in the first structure and residue j in the
second (interresidue distances usually are expressed between
a-carbons). This distance matrix, dij, can be converted into a
similarity matrix, Sij, through the relationship Sij 5 My(1 1
(dijydo)2), where M 5 20 and do 5 5 Å.

One applies dynamic programming to the similarity matrix
to get equivalences (using a gap opening penalty of My2 5 10
and no gap extension penalty) and uses them to least-squares
fit the first structure onto the second one (44). Then one
repeats the procedure, finding all pairwise distances and doing
dynamic programming to get new equivalences, until the
process converges. After an alignment is determined, it can be
‘‘refined’’ by eliminating the worst-fitting pairs of aligned
residues and then refitting to get a new rms in a similar fashion
to the core-finding procedure in Gerstein and Altman (45, 46).
This refinement is necessary because the dynamic program-
ming used tries to match as many residues as possible. (It is a
global, as opposed to local, method.)

The structural comparison score and the rms. At the end of the
procedure, we were left with a number of scores characterizing
our final alignment. The score optimized by dynamic program-

FIG. 3. The statistical significance derived here is shown to be
similar to that derived in a completely different way by the sequence
comparison program SSEARCH from the FASTA package (13). We
plotted the expected number of errors per search of the database
obtained by Pearson’s method, log(Efa), against the same value
calculated here, log(Eseq) (which is a function of the sequence match
score Sseq and the length of the two sequences). To be more specific,
Efa is the E value output by the FASTA–SSEARCH program whereas Eseq
is calculated as 940Pseq(s . Sseq) for score Sseq. The accuracy of our
simple two-parameter fit is confirmed by the fact that most pairs of
log(Efa) and log(Eseq) values are perfectly correlated, lying along the
line log(Efa) 5 log(Eseq) over the entire range.
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ming was the sum of the similarity matrix scores Sij minus the
total penalty for opening gaps. We refer to this as ‘‘Sstr.’’ To be
more explicit, it was computed from the following formula:

Sstr 5 M(( 1y(1 1 (dijyd0)2) 2 Ngapy2),

where Ngap is the total number of gaps (not including gaps at
the end of a chain) and the summation is carried out over all
pairs, ij, of equivalenced residues. The more traditional score
is the rms deviation in a-carbon position after doing a least-
squares fit on the aligned atoms (the ‘‘rms’’). rms-based
statistics were used in our earlier work (for example, refs. 3–5)
and have been used in almost all other work in structural
alignment.

A probability–density function for structural alignment scores.
To derive significance-statistics for the structural alignment
score Sstr, we proceeded exactly as we did for sequence
comparison. Structural alignment of all pairs in the database
gave us an observed probability distribution for comparison
scores rstr

c , which was a function of the number of residues
matched N and the comparison score Sstr (Fig. 4A. This
distribution contained the many pairs of structures that were
similar, and these pairs stood out with high Sstr scores. Fig. 4B
shows data for pairs that were in different scop structural
classes and, therefore, should not have had any structural
similarity. Fig. 4B is much ‘‘cleaner’’ than Fig. 4A and shows the
underlying distribution expected for the comparison of struc-
tures that are not similar.

Fig. 2B shows the density distribution as a function of Sstr for
sections at constant N. There is a close parallel between the
structural alignment score Sstr and the sequence alignment
score, Sseq, in Fig. 2A, and both can be modeled by an
extreme-value distribution. Thus, we fit the calculated struc-
ture density by rstr

c (Z) 5 exp(2Z 2 exp (2Z)), where the
variable Z is defined in terms of Sstr and N by using Z 5 (Sstr
2 mstr)ysstr. The most likely structure score mstr and the width
parameter sstr have a more complicated dependence on se-
quence length N than was the case for sequences with mstr(N)
5 c ln(N)2 1 d ln(N) 1 e (if N , 120), mstr(N) 5 a ln(N) 1
b (if N $ 120) and sstr(N) 5 f ln(N) 1 g (if N , 120) and
sstr(N) 5 f ln(120) 1 g (if N $ 120).

Continuity of function values and slopes allows a and b to be
written in terms of c, d, and e. To be more specific, at N 5 120,
a ln(N) 1 b 5 c ln(N)2 1 d ln(N) 1 e and a 5 2c ln(N) 1 d.
Thus, the expressions for mstr(N) and sstr(N) involve five
independent parameters: c, d, e, f, and g. We determined these
five parameters via least-squares optimization by using the
SIMPLEX minimizer in MATLAB, which yielded c 5 18.4, d 5
24.50, e 5 2.64, f 5 21.4, and g 5 237.5 (a 5 419.3 and b 5
171.8 were derived as described above). The residual was 0.288.
It was given by the same formula as was used for the residual
in the sequence statistics fit with Oi 5 rstr

o (Zi), Ci 5 rstr
c (Zi) and

wi 5 1, and the summation was over bins with any value of Sstr
and N between 30 and 170 residues. The resulting fit of the
observed and calculated distribution (Fig. 2B) was good for all
values of N and Sstr.

FIG. 4. The logarithm of the density distribution for structure comparison scores, rste
o , is contoured against Sstr, the structural alignment score

(along the horizontal axis), and N, the number of aligned residues (along the vertical axis). By following the protocol used for Fig. 1, the raw data
obtained by counting the number of pairs with the particular Sstr and N values are ‘‘lifted’’ and smoothed over a window 90 units wide along the
Sstr axis, and the log value is contoured in intervals of 1 log unit. Given the different scales used for Sseq and Sstr, the extent of smoothing is very
similar for both. (A) Data from all 884,540 pairs between any one of the 941 sequences and any other sequence. (B) Data from 352,168 pairs,
including only those pairs of sequences in different scop classes (described in Fig. 1). Comparison of A and B shows that the true-positive structural
matches are seen in the contours at the higher values of the alignment score Sstr, and also at higher values of the number of matches N. The density
in B is free of these significant matches and shows the underlying density distribution expected for comparison of unrelated structures.

Colloquium Paper: Levitt and Gerstein Proc. Natl. Acad. Sci. USA 95 (1998) 5917



A cumulative structure distribution function, giving the P value.
To estimate the statistical significance of a particular structure
comparison in terms of its Sstr and N values, we proceeded as
we did for sequence comparison. We integrated the score
distribution to determine a cumulative distribution function
Pstr, defined as the probability that matching two random
structures will give a z value greater than or equal to Z. The
structure score distribution has the same extreme-value form
as the sequence score distribution, so the derivation of Pstr
follows that of Pseq, with Pstr(z . Z) 5 1 2 exp[2exp(2Z)],
where Z is expressed in terms of Sstr and N by using

Z 5 (Sstr 2 (c ln(N)2 1 d ln(N) 1 e))y(f ln(N) 1 g), N , 120

Z 5 (Sstr 2 (a ln(N) 1 b))y(f ln(120) 1 g), N $ 120

and the seven parameters a, b, c, d, e, f, and g are given above.
Structural comparison statistics based on rms. The traditional

characterization of a structural alignment is in terms of the
number of residues matched, N, and the rms deviation from
fitting these matched residues, R. It is convenient to focus on
ln(R), which ensures that there is good separation of values for
small R, where the significant pairs occur. We calculated a
probability distribution rrms

o [ln(R),N] for the observed rms
values of true-negative pairs in the same fashion as we did
earlier for the observed distribution of structural alignment
scores rstr

o (Sstr,N).
The fact that log (rrms

o ) varies very slowly with ln(R) near the
maximum (Fig. 5) led us to fit the calculated density by using
rrms

c (Z) 5 exp(2Z4), where Z is defined in terms of ln(R) and
N as Z 5 (ln(R) 2 mrms(N))ysrms(N), with mrms(N) 5 c ln(N)2

1 d ln(N) 1 e (if N , 60), mrms(N) 5 a ln(N) 1 b (if N $ 60)

and srms(N) 5 f ln(N) 1 g (if N , 60), srms(N) 5 f ln(60) 1
g (if N $ 60). The values of the five independent parameters
c, d, e, f, and g were determined by least-squares optimization
by using the SIMPLEX minimizer in MATLAB, which yielded c 5
0.155, d 5 20.619, e 5 1.73, f 5 0.0922, and g 5 0.212. (a 5
0.872 and b 5 0.650 were determined as before to ensure
continuity.)

To estimate the statistical significance of a particular com-
parison in terms of its R and N values, we derived a cumulative
distribution function Prms(z . Z), defined as the probability
that any z will be less than or equal to a given Z. This was just
the integral of rc

rms(z) from z 5 2` to z 5 Z. Because the
function exp(2z4) cannot be integrated analytically, we inte-
grated it numerically for z from 25 to Z and tabulated its value
for 10,000 different Z values from 25 to 5.

Comparing structure comparison statistics: Alignment score
Sstr vs. rms. Once we had derived structure comparison statis-
tics based on structural alignment score Sstr and rms, we could
compare them. The same coverage-vs.-error scheme used
above to compare the two formulae for sequence alignment
significance could be used again here. When assessed in terms
of coverage (number of true-positives found) at a given error
rate on our test data, the E value statistics based on Sstr gave
a much better performance (i.e., had a larger coverage) than
those based on rms. To be more specific, we compared the two
approaches (Estr vs. Erms) in exactly the same way that we
previously had compared our sequence E value to that pro-
duced by FASTA (Eseq vs. Efa). We found that, at the 1% error
threshold, the rms-based statistics have log(Erms) 5 232.8 and
a coverage of 202 whereas the structural-alignment score
statistics have log(Estr) 5 21.58 and a coverage of 627. Clearly,
the statistics based on Sstr perform much better because the
threshold is much more reliable (i.e., closer to the value of 22
for an error rate of 1%) and the true-positive coverage is
.3-fold higher. The difference between Estr and Erms is
striking and confirms that the structure score is much better
than the rms score.

There are other reasons why the structural alignment score
Sstr is a more reliable indicator than rms: (i) Sstr depends most
strongly on the best-fitting atoms whereas rms depends most
on the worst-fitting atoms; (ii) Sstr penalizes gaps, whereas rms
does not; and (iii) Sstr is formally analogous to the score one
gets from a standard sequence comparison, Sseq, because both
quantities are derived from a ‘‘dynamic-programming’’ simi-
larity matrix. As dynamic programming finds a maximum score
over many possible alignments, it is reasonable that both Sstr
and Sseq should follow an extreme value distribution. However,
this is not a trivial result, as the scores are not independent,
random variables whose maximum must follow such a distri-
bution.

Relationship Between Sequence Comparison and Structure
Comparison. Having derived sequence and structure signifi-
cance scores by using all-vs.-all comparisons on the same
database of 941 sequences and structures, we were in a position
to compare directly structure and sequence significance scores.
Fig. 6 shows such a comparison for the 2,107 pairs of proteins
in our data set that are considered to be related evolutionarily
according to scop (i.e., they are the true-positives in the same
superfamily). The lines at log(Eseq) 5 22 and at log(Estr) 5 22
divide the 2,107 true-positive pairs among four quadrants,
depending on whether their sequence or structure matches are
significant, as follows:

Top right (1,204 pairs; nonsignificant sequence match, non-
significant structure match). Over half (1,204 of 2,107) of the
pairs of domains thought to be evolutionarily related by scop
fall into this category of having no significant match, indicating
that the combination of manual measures used in scop is more
sensitive than either automatic sequence or structure compar-
ison.

FIG. 5. The fit to the structure pair density by using the rms score.
The observed, log(rstr

o ), and calculated, log(rstr
c ), structure pair density

distributions are plotted against the rms score ln(R) for different
numbers of aligned residues, N. The observed structure pair density,
which is derived from pairs in different classes, is clearly not an
extreme-value distribution because it is symmetrical about the maxi-
mum value and falls off faster than a linear function with increasing
Z. In fact, it is best fit by exp(2Z4). The calculated distribution
obtained with a five-parameter fit (dashed line) is a good fit when the
number of aligned residues exceeds 50.
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Lower left (244 pairs; significant sequence match, significant
structure match). These pairs are evenly distributed in the
lower left quadrant, indicating that the sequence and structure
significance scores are on the same scale.

Lower right (576 pairs; nonsignificant sequence match, sig-
nificant structure match). There are many more pairs with
good structure matches but without sequence matches than the
converse (sequence match but no structure match). This fact
objectively shows how structure is conserved more than se-
quence in evolution. These 576 pairs are very good test cases
for threading algorithms that match a sequence to a structure,
and we currently are testing them in this way.

Top left (83 pairs; significant sequence match, nonsignificant
structure match). Almost all of the pairs (70 of 83) in this
category involve matches with a small number of residues (N ,
70). For such short matches, the structures may be deformed
and may not match well. There are seven labeled pairs that are
exceptions because the match is extensive (N . 70), but the
pairs structurally are less similar than would be expected from
the strong sequence match. These seven exceptions involve 11
coordinate sets. Three of these sets were solved by x-ray
crystallography to only medium resolution (.2.9 Å, 1mys,
1scm, and 1tlk), five were solved by NMR (1prr, 1ntr, 2pld,
2pna, and 1tnm), and three are high resolution x-ray structures
(better than 1.7 Å for 1osa, 3chy, and 1sha). None of the seven
exceptional pairs involved two high resolution structures, and
it seems likely that some of the seven exceptions would have
had a more significant structural match if both structures in the
pair were determined to a high resolution. Furthermore, as
determined from consultation of a Database of Macromolec-
ular Movements (ref. 47; see database at http:yybioinfo.mb-
b.yale.eduyMolMovDB), some of the seven exceptions in-
volved proteins that had been solved in different conforma-
tional states. In particular, 1osa, 1mys, and 1scm involved

proteins with the highly flexible calmodulin fold. These are
clearly examples for which one would expect sequence simi-
larity but structural differences.

DISCUSSION AND CONCLUSION

Summary. We have presented an approach for assessing in
a unified statistical framework the significance of a given
comparison of proteins, whether involving sequences or struc-
tures. For either sequence or structure we fit an extreme-value
distribution to the observed distribution obtained from the
all-vs.-all comparison of the database (i.e., between pairs of
scop domains in different structural classes). For sequence
comparison, this extreme-value distribution is as expected: We
empirically observed for gapped alignments what Karlin and
Altschul (11) derived for ungapped ones. We also gave a simple
formula for the E value that is likely to be useful for pairwise
comparisons without involving searches of the entire database.

For structure comparison, we found that the score distri-
bution follows an extreme-value distribution when expressed in
terms of the structural alignment score Sstr. By using this
measure, expressions for statistical significance can be formu-
lated in an almost identical way for structure as they are for
sequence. It is important to realize that, although the Sstr is
produced naturally by our specific alignment method, it can be
calculated from any arbitrary structural alignment. Thus, by
using our formulas, a significance can be computed from the
results of any structural alignment program. Using the more
traditional rms deviation as a score does not lead to as reliable
a measure of structural significance.

In connection with this, it is interesting that recent work (39,
43) indicates that the significance statistics based on optimized
‘‘sum’’ scores from dynamic programming (i.e., Smith–
Waterman scores, which are essentially sums of BLOSUM matrix

FIG. 6. Comparison of structure significance with sequence significance. Plots of the structure significance, log(Estr), against the sequence
significance, log(Eseq), for the 2,107 pairs of proteins judged to be homologous in the scop database (in the same superfamily). Pairs are distinguished
by the extent of their structural match, with solid squares used for pairs with N $ 70 and unfilled diamonds used for N , 70. The horizontal and
vertical dashed lines, which divide the figure into four quadrants, are at log(Estr) 5 22 and at log(Eseq) 5 22, respectively. Both of these thresholds
correspond to an E value of 1022 and P value of 1022y941 5 1025 so that we judge matches with lower values to be significant at the 1% level.
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values minus gap penalties) perform much better than those
based on the traditional measure of sequence similarity,
percentage identity, which parallels the poor performance of
our structural alignment statistics based on the traditional rms.
It is disconcerting that such well established and intuitive
measures such as percentage identity or rms perform so much
worse than the statistical measures based on the sequence or
structure alignment scores.

Furthermore, it is surprising that over half of the relation-
ships between distant homologues in scop were not statistically
significant (at a rate of 1% error per query) using either pure
sequence comparison or pure structure comparison. Almost
all of the pairs found by sequence comparison were found by
structure comparison, but there were many pairs found by
structure comparison that were not found by sequence com-
parison. Overall, structural comparison was able to detect
about twice as many of the scop distant homology superfamily
pairs as sequence comparison (at the same rate of error).

Future Directions. The approach we have used to derive
statistical significance easily could be generalized to other
contexts. In particular, it can be adapted to provide signifi-
cance statistics for threading. We have not presented a detailed
examination of the significance values for specific pairs of
sequences or structures. Such an examination could prove to
be a useful endeavor in the future, particularly if it focused on
pairs of proteins with the same fold but insignificant E values
and those with different folds but significant E values. These
two classes of pairs characterize the twilight zone for structure,
which has yet to be described fully.
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