Gene Inactivation

Michael Snyder

April 1, 2009

Advantage

Arguably the best way to learn about gene function

Problems

- No phenotype
- Effects might be indirect

Three General Methods

- 1) Insertional Mutagenesis
 - Transposon Strategies
 - Insertional Mutations
- 2) Systematic Knockouts
 - Selectable Marker Replacement
- 3) RNAi

Transposon Knockouts

Tn Mutagenesis of Mycoplasma Genitalium

ů.

(480 Genes)

Method: Mutagenize Genome With Library of **Mutations**

See What Genes **Obtain Mutations**

Deduce the Rest (265-350) Are Esssential for Viability

 \blacktriangle = Insertion Allele

卢々 <u>≓</u>t **5** 60 -<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u>90</u></u></u> -🚊 120 ⊇ 150 180 õ¢. 210 ÷₩ 240 -270 in € 300 THE P 26 330 2 360 2 390 ð 420 WATE DEALY T T OF 450 <u></u> 480 2 510 540 570 600 630 ₿ 660 **690 4 1** 150 780 - 810 kb Energy metabolism Regulatory functions 673 4 Cell envelope 11 kb -Fatty acid/Phospholipid metabolism Transport/binding proteins Cellular processes Transposon Insertions Purines, pyrimidines, nucleosides and nucleotide Transcription Central intermediary metabolism Mycoplasma pneumoniae Protein fate Unknown function Cofactors, prosthetic groups, carriers A Mycoolasma genitalium Protein synthesi **DNA metabolism**

Hutchison et al., Science 286, 2089 (1999)

Gene Traps: Gene Fusion

Gene Fusions

A Multipurpose Transposon

Screening Approach

Screening Summary

- 25,440 Vegetatively Expressed Fusions
- 277 Sporulation Induced
- ~ 4,000 Genes Tagged

Genes Tagged

A Novel ORF Antisense to 25S rDNA

Gene Discovery

157 Additional Highly Expressed ORFs by Transposon Tagging

Phenotype Macroarrays

Screening the Collection

Benomyl Sensitivity (2208 insertions)

- Microtubule: TUB3 PAC2 DIS3 CIK1 MYO3 CIN1
- Nuclear: HTZ1 STH1 SMC3 SAE2
- Known: PAN3 ALD3 SGV1 SIT4 PFK2 CDC2 RAP1 NUP116 UME6 RTS1 YPT2 BEE1 KGD2 SSH1 TFP1 FAS1 SUN1 NUP170
- YCL060C YJL029C YKL059C YPL020Novel:YGR068C YHR196W YGR013WYLR162W YJR053W YBL051C

Mice

- Transposon (PiggyBac)
- Retrovirus
 - Efficient Transfer
- Gene Trapping

Lexicon Gene Trapping

SA = Splicing acceptor

Lexicon Features

- 270,000 lines affecting >20,000 transcribed regions (50% of total genes?)
- Mutagenesis is carried out in ES cellsthus can generate mutant mice

Transposon/Insertional Mutagenesis Approach

Advantages

- Simple-can generate large numbers of insertions
- Relatively inexpensive
- Can be used to find genes
- Get many alleles
- Can follow expression and tag proteins

Disadvantages

- Biased-Hard to hit all Genes
- May not generate null alleles

Bar Code PCR Disruptions

Yeast Strains With Tagged Knockouts

Functional Analysis of Knockout Strains

Microarray Results

Systematic Deletions

>95 % of Yeast Genes Disrupted ~1000 Essential Genes ~5,000 Nonessential Genes

Systematic Knockouts

Advantages

- Gives null phenotype
- Comprehensive
- Bar Coding

Disadvantages

- Expensive
- Limited alleles (No reporter constructs)
- Relies on Annotated Sequence

Using Deletions to Profile Drug Sensitivity

Giaever et al. Nature Genetics 1999 vol 21, 278-283

Using Deletions to Profile Drug Sensitivity

Giaever et al. Nature Genetics 1999 vol 21, 278-283

Calcineurin Signalling Pathway

Drug Gives Similar Expression Profile to K/O: FK506 Calcineurin

wt -/+ 1 µg/ml FK506

wt vs. calcinerurin mutant

Identification of the Dyclonine Target

-Dyclonine: active ingredients of Sucrets -Give a profile like Ergosterol mutant Phenotype similar to Erg2 (sterol isomerase)

-Human Sigma receptor is closest to Erg2 -Sigma receptor regulate K+ conductance

Model: Dyclonine reduce K+ current & inhibits nerve conductance

Clustering Genes

The Same Intermediate Accumulates in Dyclonine and Erg2 Mutant Cells

Mouse Knockouts

Find Germline Knockout

A Mutation in a Gene Affecting Obseity

Targeted Knockout Using Zinc Finger Technology

Zn Finger Domain: Binds 6 bp sequence

Combine Multiple Domains 2 Zn Finger Domain: Binds 12 bp sequence

Images from Sigma Procedure based on Urnov et al., (2005) Nature 435: 646

Targeted Knockout Using Zinc Finger Technology

FOK Cleaves DNA as a Dimer

Gene Knockout/Insertion Using Zn Finger Technology

Very Efficient: 1-20% Insertions without selection 7% of knockouts target both alleles

RNAi = RNA interference

siRNA inhibits gene expression by degrading its complementary mRNA

Genome Wide Approach

Clone genes into E. coli Expression vector that makes dsRNA

Feed Worm E. coli; Score phenotype

RNAi

16,757 (86%) C. elegans Genes RNAied; 1,722 Mutant phenotypes Ahringer et al., Kohara et al.

Can be used for many organisms Drosophila, Mammalian Cells

RNAi Two approaches

- siRNA = Transfect 21 bp RNA complementary to mRNA
 (Screened for cellular genes required for HIV infection; involved 21,121 siRNAs)
- 2) shRNA = short hairpin RNAs Expressed from retroviruses

Mammalian RNAi Retrovirus Vector

Identification of Tumor Suppressors Using RNAi Klofcshoten et al. (2005) Cell 121, 849-858

1° Fibroblasts from humans die

Tr(-onc) Engineered Fibroblasts (hTERT, small t Antigen, p53-, p16-) "almost transformed"

Tr(-onc) Engineered Fibroblasts + RAS^{V12} Transformed and form colonies

Identification of Tumor Suppressors Using RNAi

New Tumor Suppressor: PITX1

Klofschoten et al. (2005) Cell 121, 849-858

RNAi

<u>Advantages</u>

- Simple and Inexpensive
- Systematic method--Comprehensive
- Knockout expression of gene families

Disadvantages

- Some Genes Not Affected
- Limited alleles
- Off target effects

Uses of Knockouts: Summary

- Score phenotype to understand gene function
- Group different genes together based on phenotype
- Find new interesting genes
- Drug discovery

Screening Approach

Confirming a Drug Target

Chromosome IX

Targeted Gene Knockouts

Immunofluorescence Patterns

Nuclear	395
Nucleolar	54
Nuclear rim / ER	93
Mitochondrial	166
Spindle pole body /MTs	6
Cell periphery	46
Cytoplasmic patches / dots	386
Cell neck	10
General cytoplasmic	1,247
TOTAL Strains Screened	6,750

Drug Gives Similar Expression Profile to K/O: HIS3 vs AT

Marton et al. *Nature Med.* Vol 4, 1293-1301.

May or may not affect Gene Expression

Drosophila melanogaster 13,000 Genes

3900 Starting P element lines

2695 Lines with Single Insertions

1045 Lines in Different Essential Genes

25% of Dm Essential Genes Affected

As of 1999 Rubin Spradling et al.