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Introduction 

How to extract properties from the amino acid sequence of a protein 
for understanding its function is one of the most timely and competitive 
areas of the biological sciences. It is related to a fundamental aspect of 
biology. A linear and ordered sequence of amino acids, coded and conserved 
by a linear and ordered sequence of nucleotide bases, codes for all that is 
characteristic of living organisms: specific and organized interactions in 
space and time between proteins, lipids, nucleic acids, and the cell metabo- 
lites. These characteristics depend on how a protein can fold in a unique 
active three-dimensional structure. This process is spontaneous under given 
environmental conditions, even though the living cell can add efficiency 
and control by use of some protein complexes, called chaperones, to catalyze 
this process. 

Much effort has been devoted to the calculation of the spatial structure 
of a polypeptide chain from its amino acid sequence alone, with only limited 
but nevertheless encouraging s u c c e s s  I when a polypeptide is longer than 
10-20 amino acids. However, attempts to reduce the problem to simpler 
features of the protein fold such as a helix,/3 strands, and aperiodic or coil 
structure have yielded interesting results (see Refs. 2 and 3). These results 
have been an aid for designing new proteins, predicting the effect of point 
mutations, identifying the protein class, for instance, all-a or all-/3 proteins, 
predicting epitopes, etc. It is hoped that this information will be increasingly 
useful to molecular biologists and protein modelers. Usually the computing 
time is short, and many programs of secondary structure predictions are 
available on-line to the biologist. 

The GOR method is one of the most popular of the secondary structure 
prediction schemes. This method is theoretically well founded in a series 
of earlier papers, and it has been the real first prediction of secondary 
structure implemented as a computer program. The three letters stand for 

1 Protein Structure Prediction Issue. Proteins 23, 3 (1995). 
2 j. Garnier and J. M. Levin, CABIOS 7, 133 (1991). 
3 B. Rost and C. Sander, Trends Biochem. Sci. 18, 120 (1993). 
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the first let ter of  the names  of  the authors  of  the original publication.  4 This 
m e t h o d  remains  r emarkab ly  popular ,  5 but  users have ove r looked  the fact 
tha t  improved  versions of  the m e t h o d  have since been  published,  and a 
full descript ion of  them can be found  in the b o o k  edited by Fasman.  6 The  
addit ion of  homologous  sequence  informat ion  th rough  multiple al ignments 
has given a significant boost  to the accuracy of  secondary  s tructure predic- 
tions. 7-9 In  this chapter ,  after present ing the major  principles used by the 
G O R  method ,  we give some results ob ta ined  with an upda ted  version of  
this method .  

P r inc ip les  o f  M e t h o d  

In  a series of  articles, R o b s o n  et aL 10,11 used the formalism of  informat ion  
theory  and Baysian statistics to establish the code relating the amino acid 
sequence  and the secondary  structures of  a protein.  This led later to the 
deve lopmen t  of  the G O R  method .  4 

In fo rma t ion  theory  was deve loped  in the 1950-1960s x2,13 and the G O R  
me thod  made  use of  an informat ion  funct ion descr ibed by Fano,  TM I(S; R), 
which is defined as 

I(S; R) = Iog[P(S]R)/P(S)] (1) 

Originally this fo rmula t ion  was concerned  mainly with electronic transmis- 
sion of  information.  In  the present  application, S is one  of  the three confor-  
mations,  R is one  of  the 20 amino acid residues, P(S]R) is the condit ional  
probabi l i ty  for  observing a conformat ion  S when a residue R is present ,  
and P(S)  is the probabi l i ty  of  observing S. Accord ing  to the definition of  
condi t ional  probabili t ies,  P(SIR) = P(S, R ) /P(R)  where  P(S, R) is the joint 
probabi l i ty  of  observing the events S and R and P(R)  is the probabi l i ty  of  
observing a residue R. It  is easy to have an es t imat ion of  I(S; R) f rom 

4 j. Garnier, D. Osguthorpe, and B. Robson, .L Mol. Biol. 120, 97 (1978). 
5 L. B. M. Ellis and R. P. Milius, CABIOS 10, 341 (1994). 
6 j. Gamier and B. Robson, in "Prediction of Protein Structure and the Principles of Protein 

Conformation" (G. D. Fasman, ed.), Chap. 10, p. 417. Plenum Press, New York, 1989. 
7 j. M. Levin, S. Pascarella, P. Argos, and J. Garnier, Protein Eng. 6, 849 (1993). 
8 B. Rost and C. Sander, J. MoL Biol. 232, 584 (1993). 
9 V. di Francesco, P. J. Munson, and J. Garnier, 28th Annual Hawaii International Conference 

on System Sciences (L. Hunter, ed.), p. 285. IEEE Computer Society Press, Los Alamos, 1995. 
10 B. Robson and R. H. Pain, J. Mol. Biol. 58, 237 (1971). 
11 B. Robson, Biochem. J. 141, 853 (1974). 
12 C. E. Shannon and W. Weaver, "The Mathematical Theory of Communication." Univ. of 

Illinois Press, Urbana, Illinois, 1949. 
13 L. Brillouin, "Science and Information Theory." Academic Press, New York, 1956. 
14 R. Fano, "Transmission of Information." Wiley, New York, 1961. 
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a database of known sequences and corresponding observed secondary 
structures since P(S, R) = fs,R/N, P(R)  = fR/N and P(S)  = f s /N  with N 
being the total number of amino acids in the database, fS, R the number of 
residues R observed in the conformation S in the same database, fR the 
total number of residues R, and fs the total number of residues observed 
in the conformation S in the same database. Then 

I(S; R) = log[(fS,R/fR)/(fs/N)] (2) 

This quantity can be obtained easily from the database provided it is 
large enough. 

A more general treatment requires corrections for levels of data (see 
Robson aa and below). Robson ~1 introduced the information difference, 

I(AS; R) = I(S; R) - I(n-S; R) = Iog(fs,R/f,.S,R) + log(f,-s/fs) (3) 

where n-S stands for the conformations other than S (non-S); for instance, 
if S is ot helix (H), n-S will be /3 strand (E) and coil (C) for a three- 
state prediction. It gives the extra information for S on the two others. It 
represents a kind of normalization where the total number of amino acids, 
N, and residues, R, in the database have disappeared from the equation. 
In effect the positive hypothesis (S; R) and the complementary negative 
hypothesis (n-S; R) are treated in concert. This quantity also corresponds to 
one-residue information or single-residue information or self-information. 
Calculated for the three conformations, the highest value of Eq. (3) for 
one of the conformations S will be the predicted conformation and will be 
the propensity for that residue to be in that conformation, usually expressed 
in centinat units when natural logarithms are used. This underlines one 
of the differences with the Chou-Fasman propensities which correspond 
approximately to the mantissa of the log of Eq. (2). 

Equations (1) to (3) can be extended to a local sequence along the 
polypeptide chain of n consecutive residues R: 

I(AS]; R1 . . . .  , Rn) = log[P(Sj, R1, . . . ,  R,,)/P(n-S], R1 . . . .  , R,)] 
+ log[P(n-S)/P(S)] 

(4) 

where P(Sj, R 1 . . . .  , R,)  is the joint probability of the conformation S at 
position j in the sequence and the local sequence R1, . . . ,  R,. One may 
remark that 

P(Sj, R1 . . . . .  R.)  + P(n-Sj, R, . . . . .  R.) = 1 (5) 

and that 

P(Sj, R1 . . . . .  R,,)/P(n-Sj, R1 . . . . .  R,,) = P(S)/P(n-S)e'(As? gl ' 'g.)  (6) 
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In predicting a residue to be in one conformation, one can predict either 
the one having the highest value of the information with Eq. (4) or the 
highest probability value taken from Eqs. (5) and (6). Probability values 
have been used for the prediction of Ramachandran zones. 15 They are 
more precise than confidence scales developed for other methods 8,16 and 
underline the fact that the decision to predict the conformation of the 
highest probability leaves the possibility that the other conformations have 
a definite probability to occur which can be close to the highest, and thus 
should not necessarily be ruled out. 

One faces a fundamental problem when calculating information values. 
One needs to estimate terms such as P(Sj, R1 . . . . .  Rn) involving N residues. 
It is impossible to evaluate such terms directly from the database, so one 
must resort to various approximations. The different versions of the G O R  
method correspond to various types of approximations we have tried in an 
effort to improve the accuracy of the method. 

Approximat ions  Involved in GOR Method 

The first G O R  version, 4 named G O R  I, added to the single-residue 
information the so-called directional information of eight residues on each 
side of the residue to be predicted in the sequence. This limit of eight was 
not arbitrary but was based on studies of information content at increasing 
separations. To obtain the information measure, one starts by calculating 
from the database the frequency of each of the 20 amino acids residues at 
different positions, up to eight residues on the N-terminal and C-terminal 
side, when the central residue is observed in a given conformation but 
independently of the nature of that residue. In fact, in this approximation 
one assumes that there is no correlation between residues occurring at 
different positions in the window of 17 residues so defined. Then 

I(ASj; R, . . . . .  Rn) ~ I(ASj; Rj) + Xm.m~0 I(ASj; Rj+m) (7) 

where j stands for any position j in the amino acid sequence of which the 
conformation ought to be predicted and m is between - 8  (N-terminal side) 
and +8 (C-terminal side). The same version, G O R  II, was updated with a 
new database in 1989. 6 Both versions predicted four conformations, H, 
E, C, and T, with T for turns. Subsequent versions predicted only three 
conformations H, E, and C, although the method has no intrinsic limitation 
in the number  and nature of conformations. The different turn types and 
the relative difficulty of distinguishing between them using the DSSP pro- 
gram 17 led us to limit the prediction for the time being to three conforma- 

15 j. F. Gibrat, B. Robson, and J. Garnier, Biochemistry 30, 1578 (1991). 
16 V. Biou, J. F. Gibrat, J. M. Levin, B. Robson, and J. Garnier, Protein Eng. 2, 185 (1988). 
17 W. Kabsch and C. Sander, Biopolymers 22, 2577 (1983). 
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tions so that helices and strands represent the major architectural structures 
of the conserved core of homologous proteins• 

The next level of approximation, introduced in the G O R  III version, 18 
considered the correlation between the type of residues in the window and 
the type of the residue to be predicted• This version uses the so-called 
pair information: 

I(ASj; R1 . . . .  , Rn) ~ I(ASj; Rj) + ~-~m,rn#O I(ASj; nj+mlRj) (8) 

The second term on the fight-hand side of Eq. (8) is a conditional informa- 
tion. 15 It involves the calculation from the database of pair frequencies of 
residues R i and Rj+m with Rj having the observed conformations Sj and n-Sj 
at position j, with a frequency of fsj R +m R and fn-s R +m R, respectively, but 

• . . ' ] , ] . J '  J ' .1 . 

the conformation of residue Rj+,~ is not taken into consideration. We have 

I(ASj; Rj+mIRj) = Iog(fs,,g,+m,R,/f,.s,,R,+=,R ) + Iog(f,-sj,R/fS,,R) (9) 

When this approximation was used, the database (at that time containing 
roughly 12,000 residues) was barely large enough to allow an easy calcula- 
tion of terms for Eq. (9). Each of these terms involves two amino acids 
and a secondary structure conformation, so there are 1200 entries in the 
table. The average number  of observations per entry was therefore 10. 
However,  the amino acids are not all equiprobable; some like Trp or Met 
are rarer, and the number  of observations for entries involving such amino 
acids were less than 10. As a consequence, the probabilities estimated using 
the ratio of such sparse frequencies were unreliable and were responsible 
for a decrease of the prediction accuracy. To circumvent this problem, we 
introduced so-called dummy frequencies. Readers interested in the precise 
definition of these dummy frequencies are referred to Refs. 15 and 17. 

Dummy frequencies amount  to the following considerations. Let  us 
assume that we observe in the database two occurrences of a Met at position 
j - 1 when the residue a t j  is a Trp in helical conformation. We can calculate 
easily the expected number we would observe if the two events were 
uncorrelated, namely, this is the frequency of Met at position j - 1 
multiplied by the frequency of Trp at position j having a helical conforma- 
tion divided by the total number  of residues. This number  is relatively 
reliable since it is calculated using frequencies that involve only one residue 
(which thus are greater than frequencies for pairs by a factor of 20, on 
average). Now we can ask the question, How much do we trust the frequen- 
cies for pairs we observed in the database? If we trust them 100%, we just 
use these frequencies in the calculations of information values. If we mis- 
trust them 100%, we can always use the numbers calculated assuming that 

18 j. F. Gibrat, J. Garnier, and B. Robson, J. Mol. Biol. 198, 425 (1987). 
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the events are independent, but then we are back to the approximation of 
Eq. (7). In fact, empirically, to improve the accuracy prediction we need 
to consider an intermediary stage when we bias the observed frequencies 
toward the calculated (uncorrelated) ones by a given amount. 

The database available (see Table I) now contains about 63,000 residues, 
so the average number of observations for pairs per entry is 50. This is 
large enough for us to compute terms involving pairs of residues without 
the need for introducing dummy frequencies. Note, however, that this new 
database does not allow the calculation of terms involving triplets of amino 
acids. We thus decided to include more pairs in our description of the 
window of 17 residues. Instead of considering only the 16 pairs Rj+m, Rj, 
with m varying from - 8  to +8 and m # 0, that is, the pair formed by each 
residue in the window and the central one, we consider all the possible 
pairs in the window [there are (17 × 16)/2 such pairs]. We thus have 
used for the results presented below the following approximation (GOR 
IV version): 

P(Sj, LocSeq) 2 +8 P(Sj, Rj+m, Rj+~) 
log p - ~ ~ )  = ]-~ m~8, log P(n-Sj, Rj+m, Rj+.) 

(lO) 

15 ~-~ P(Sj, Rj+m) 
log 

17 m=_8 ~' P(n-Sj, Rj+m) 

where LocSeq stands for the local sequence R1 . . . . .  Rn of 17 residues 
around the residue to be predicted. The values of P(Sj, LocSeq) from Eq. 
(10) for the three conformations are then used directly for the predictions 
instead of using probabilities calculated from Eqs. (5) and (6) with the 
information value calculated from Eq. (9). 

Database and Results 

We used a database of 267 protein structures having a resolution better 
than 2.5 .A with an R factor less than 25% and whose length is greater than 
50 residues (see Table I). There is no pair of proteins with an identity 
above 30%. The prediction is carried out using a jackknife: the protein to 
be predicted is removed from the database, the parameters are estimated 
using the 266 remaining proteins, and the prediction is done using these 
parameters. As mentioned above, this database is large enough that we do 
not need to use dummy frequencies anymore. Moreover, we do not use 
decision constants to adjust the predicted number of secondary structures 
to the observed number in the database. In fact, there is no optimization 
of any sort; we just estimate the probabilities according to Eq. (10) from 
the frequencies observed in the database. 



TABLE I 
DATABASE PROTEINS a 

laaj.x laak.x laap.a laba.x labk.x labm.a ladd.x 
lads.x lalk.a laoz.a lapa.x lapm.e larb.x latr.x 
lavh.a layh.x lbab.a lbbh.a lbbp.a lbet.x lbge.a 
lbll.e lbmd.a lbov.a lbpb.x lbrs.d lbtc.x lc2r.a 
lcaj.x lcau.a lcau.b lcde.x lcdt.a lcew.i lcgt.x 
lchm.a lcmb.a lcob.a lcol.a lcpc.a lcpc.b lcpt.x 
lcrl.x lcse.i lctf.x lctm.x lcus.x lddt.x ldhr.x 
ldog.x ldsb.a leaf.x leco.x lede.x lend.x lepa.a 
lfba.a lfdd.x lfha.x lfia.a lfkb.x lfna.x lfnr.x 
lfxi.a lgal.x lgdl.o lgdh.a lgky.x lglt.x lgmf.a 
lgof.x lgox.x lgpl.a lgpb.x lgpr.x lgsr.a lhbq.x 
lhdx.a lhiv.a lhlb.x lhle.a lhmy.x lhoe.x lhpl.a 
lhrh.a lhsl.a lhuw.x lifc.x lipd.x lisu.a lith.a 
1129.x lle4.x llen.a llga.a llis.x llla.x limb.3 
llts.a llts.d lmdc.x lmgn.x lmin.a lmin.b lmjc.x 
lmpp.x lmup.x lnar.x lnba.a lndk.x lnoa.x lnsb.a 
lnxb.x lofv.x lolb.a lomf.x lomp.x lonc.x losa.x 
lpda.x lpfk.a lpgb.x lpgd.x lphh.x lphp.x lpii.x 
lplf.a lpoc.x lpoh.x lpox.a lppa.x lppf.e lppf.i 
lppn.x lprc.c lprc.h lprc.1 lprc.m lpts.a lpya.a 
lpya.b lpyd.a lrcb.x lrec.x lrib.a lrnd.x lrop.a 
lrve.a ls01.x lsac.a lsbp.x lses.a lsgt.x lsha.a 
lshf.a lsim.x lslt.b lsnc.x lspa.x lstf.i ltbe.a 
ltca.x ltie.x ltml.x ltnd.a ltpl.a ltrb.x ltrk.a 
ltro.a lttb.a lutg.x lvaa.a lvaa.b lvmo.a lwht.a 
lwht.b lwsy.a lwsy.b lyhb.x lzaa.c 256b.a 2aai.b 
2aza.a 2bop.a 2ccy.a 2cdv.x 2chs.a 2cmd.x 2cp4.x 
2cpl.x 2cro.x 2ctc.x 2cts.x 2cyp.x 2dnj.a 2er7.e 
2hbg.x 2hhm.a 2hip.a 2hpd.a 2ihl.x 21h2.x 21iv.x 
2mhr.x 2mnr.x 2msb.a 2mta.c 2mta.h 2rata.1 2pfl.x 
2pia.x 2pol.a 2por.x 2reb.x 2rn2.x 2rsl.a 2sar.a 
2sas.x 2scp.a 2sga.x 2sn3.x 2spc.a 2tgi.x 2tmd.a 
2tpr.a 2tsc.a 3aah.a 3aah.b 3adk.x 3b5c.x 3cd4.x 
3chy.x 3cla.x 3cox.x 3dfr.x 3eca.a 3gap.a 3gbp.x 
3ink.c 3rub.1 3rub.s 3sdh.a 3tgl.x 451c.x 4blm.a 
4enl.x 4fgf.x 4gcr.x 4tsl.a 4xis.x 5fbp.a 5p21.x 
5tim.a 6fab.h 6fab.1 6taa.x 8abp.x 8acn.x 8atc.a 
8atc.b 8cat.a 8ilb.x 8rxn.a 8tln.e 91dt.a 9rnt.x 
9wga.a 

a The database was prepared by J. M. Levin and checked for homologous sequences with 
the help of V. Di Francesco. This database has been modified to restore the total length 
of the sequences as defined in the SEQRES field of the Protein Data Bank (PDB) file 
(the DSSP program omits residues whose coordinates are missing in the PDB file, and 
thus if this occurs in the middle of the polypeptide chain it is split into two or more 
chains). Residues having no coordinates were assigned the conformation X and were 
not taken into account for the prediction accuracy although the prediction was done 
with the whole sequence length. The PDB code is followed by the chain name a, b, c, 
d, h (heavy), 1 (light), x (one chain only), e (enzyme), or i (inhibitor). 
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TABLE II 
GLOBAL RESULTS FOR DATABASE PREDICTION 

Observed 

H E C Total 

Predicted 
H 
E 
C 
Total 

Qprd a 
Gobs b 
Q3 c = 64.4% 

14,460 3094 4790 22,344 
1124 4965 2089 8178 
6002 5546 21,496 33,044 

21,586 13,605 28,375 63,566 
64.7 60.7 65.1 
67.0 36.5 75.8 

a Number of correctly predicted residues/number of predicted res- 
idues. 

b Number of correctly predicted residues/number of observed res- 
idues 

c Total number of correctly predicted residues/total number of res- 
idues. 

However,  this sometimes leads to predictions that are not physically 
meaningful, for example, helices having only two residues, or mixtures of 
strand (E) and helix (H) residues. Several attempts have been made to 
solve that problem (see Rost and Sander 8 and Zimmermann19). Here we 
added a simple filter after the prediction which requires helices to be at 
least four residues and strands to be at least two residues. For instance, let 
us assume that we predict two isolated H residues. We then look for all 
the possibilities of extension of the two H residues (in this case, there are 
three possibilities: adding two H's before, adding one H before and one H 
after, and adding two H's after the predicted H's). We then calculate the 
product of the probabilities of the different secondary structures for the 
three segments so defined. The segment that is the most probable is selected 
leading either to an extension of the helix to four residues or to the suppres- 
sion of the two isolated residues. Although this filter affects the prediction 
of particular proteins, on average for the whole database it has no effect 
on the prediction accuracy; it neither improves nor decreases the percentage 
of correctly predicted residues. 

The global results for the database are shown in Table II. The percentage 
Of correctly predicted residues is 64.4%, and an individual prediction output 
of the program is given in Table III with an extra column to compare with 

a9 K. Zimmermann, Protein Eng. 7, 1197 (1994). 
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TABLE Ill 
PREDICTION OF EGLIN a 

Seq Obs Prd pH pE pC 

T X C 0.00 0.00 1.00 
E X C 0.00 0.02 0.98 
F X C 0.00 0.08 0.92 
G X C 0.01 0.13 0.87 
S X C 0.02 0.14 0.84 
E X C 0.04 0.24 0.72 
L X C 0.09 0.33 0.59 
K C C 0.15 0.24 0.61 
S C C 0.19 0.16 0.65 
F C C 0.12 0.12 0.77 
P C C 0.29 0.12 0.59 
E C C 0.35 0.26 0.39 
V C C 0.37 0.30 0.34 
V C C 0.35 0.24 0.41 
G C C 0.25 0.20 0.55 
K C C 0.26 0.27 0.47 
T C C 0.24 0.34 0.42 
V H C 0.37 0.19 0.44 
D H H 0.54 0.08 0.38 
Q H H 0.58 0.11 0.30 
A H H 0.61 0.11 0.28 
R H H 0.56 0.19 0.25 
E H H 0.50 0.27 0.24 
Y H H 0.46 0.35 0.19 
F H H 0.34 0.44 0.22 
T H H 0.29 0.38 0.32 
L H C 0.20 0.35 0.44 
H H C 0.09 0.22 0.69 
Y C C 0.03 0.11 0.86 
P C C 0.05 0.06 0.89 
Q C C 0.09 0.15 0.76 
Y C C 0.08 0.29 0.63 
N E C 0.07 0.31 0.61 
V E E 0.06 0.65 0.30 
Y E E 0.04 0.75 0.21 
F E E 0.02 0.76 0.22 
L E C 0.01 0.30 0.69 
P E C 0.02 0.09 0.88 
E C C 0.02 0.03 0.95 
G C C 0.01 0.01 0.98 
S C C 0.01 0.02 0.97 
P C C 0.09 0.12 0.79 
V E C 0.18 0.33 0.49 
T E H 0.23 0.51 0.26 
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TABLE III (continued) 

Seq Obs Prd pH pE pC 

L C H 0.36 0.46 0.18 
D C H 0.38 0.33 0.29 
L C H 0.51 0.17 0.32 
R C C 0.39 0.16 0.46 
Y C C 0.33 0.22 0.46 
N C C 0.24 0.18 0.57 
R E C 0.20 0.31 0.49 
V E E 0.17 0.57 0.26 
R E E 0.12 0.71 0.17 
V E E 0.07 0.80 0.13 
F E E 0.05 0.71 0.25 
Y E E 0.03 0.49 0.48 
N E C 0.01 0.12 0.87 
P C C 0.01 0.03 0.96 
G C C 0.01 0.03 0.96 
T C C 0.02 0.10 0.88 
N C C 0.03 0.29 0.68 
V E E 0.04 0.54 0.41 
V E E 0.05 0.68 0.27 
N C E 0.02 0.71 0.27 
H C E 0.01 0.58 0.41 
V C C 0.01 0.22 0.78 
P C C 0.01 0.09 0.91 
H E C 0.00 0.02 0.98 
V E C 0.00 0.00 1.00 
G C C 0.00 0.00 1.00 

a Amino acid sequence (Seq) of eglin, a subtilisin inhibitor (lcse), with 
observed conformations (Obs), predicted conformations with filter (Prd), 
and the probability values pH, pE, and pC for the predicted ~ helix (H), 
/3 strands (E), and coil (C), respectively. The conformation X corresponds 
to residues for which the crystallographer gave no coordinates. For some 
residues, for instance, V-13, although the probability for H is higher, the 
filter assigned a coil (see text). The accuracy of prediction for the three 
conformations (Q3) is 73%. 

the observed conformations. The result when considering the prediction 
of individual proteins is 64.7% with a standard deviation of 9.3%. Figure 
la shows the number of proteins as a function of the percentage of correctly 
predicted residues. Figure lb is just a check that this distribution does not 
depart significantly from a Gaussian distribution. 

As suggested by Levin, 2° Fig. 2 shows a scatter plot of the percentage 
of correctly predicted residues as a function of the size of the protein 

20 j.  M. Levin, to be published. 
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[321 Tr~z GOR METHOD 551 

. { :  

o 
EL 

0 
0 
(30 

t o  

o 

° °  

• "... "if. .  
" I  , • ~ °  

~'• ~ I°•# oo" 
t l  • • #  l •  • .  

" ~  j I  * . • , ,  

o • j *  

• , . "  . - . . . • ,  
• . q ,  • • °  • ° . . . ' ~ . . ~ $ ,  

° "  * *  . d ' B  • . ~  • 

"," "• • s,',..,,. , t ,  
o • ° ° ~ w . .  • • 

• . • . . # •  • ° • 
• . ,  . * .  • ° 

40 50 60 70 80 90 

Percentage of correctly predicted residues 

FIG. 2. Distr ibution of the sequence length (number  of  amino acid) of the database proteins 
as a function of the number  of correctly predicted residues. 

(number of residues). There seems to be no apparent effect of the length 
of the protein on the accuracy of prediction, except that the longer the pro- 
tein, the closer the accuracy comes to the average value. For proteins of 
less than 200 residues the accuracy can lie anywhere between 40 and 90%. 
A consequence of this observation is that no protein is easier to predict 
than any other, but rather there are segments of the sequence easier to pre- 
dict; thus the shorter is the protein, the more likely its accuracy of prediction 
will be different from the mean, and inversely for the longest ones. 

Table IV shows results for the prediction of secondary structure seg- 
ments, namely, helices and strands. The percentage of correctly predicted 
segments is given according to the minimum percentage of overlap that is 
allowed between the predicted and observed segments. For instance, in 
Table IV, for the row 75% a segment is considered as being correctly 
predicted if the predicted segment overlaps with at least 75% of the observed 
segment (counted as the number of residues). 

Conclusion 

Through the successive incorporation of observed frequencies of single, 
then pairs of residues on a local sequence of 17 residues, the accuracy of 
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TABLE IV 
RESULTS FOR SEOMENTS: HELICES AND STRANDS 

Average 
Number of segments length 

H E Total H E 

Observed 1989 2587 4576 10.9 5.9 
Predicted 2148 2043 4191 10.6 4.1 

Overlap H segments E segments 

75% 51.1 23.7 
50% 70.0 42.0 
25% 75.7 50.2 

the G O R  method has been improved from about 55% (G O R I using a 
jackknife 21) up to 64.4%. The increase of the database size from 67 proteins 
to the present database of 267 proteins and the use of a more detailed 
description of the local sequence resulted in an improvement  of about 1% 
(GOR  III, Q3 = 63.3%; G O R  IV, Q3 = 64.4%; the corresponding standard 
deviations of Q3 are 0.8% and 0.6%, respectively). However,  the result of 
63.3% for G O R  III was reached using dummy frequencies and adding 
decision constants that we now believe resulted in a slight bias toward the 
database we were then using. This causes the overall accuracy of the method 
to be overestimated by a percent or so, as became apparent when parame- 
ters derived from the original database were used to predict new sets of pro- 
teins. This is the reason why, here, we avoided the use of decision constants 
(e.g., to adjust the number  of predicted secondary structures to what is ob- 
served in the database) in order  to obtain a more robust estimation of the 
accuracy of the method. This small increase in the prediction accuracy is 
consistent with a previous assumption we made. I5 We estimated that we 
were able to extract more or less all the information available in the local 
sequence. Other  published methods including neural net methods, using only 
the protein sequence, are of similar or lower accuracy (see Refs. 2 and 3). 

We attributed the limitation in the accuracy of the prediction 15 to the 
lack of long-distance effects. This appears to be confirmed here by the poor  
quality of the/3-strand prediction. Because/3 sheets require the pairing of 
residues that may be distant along the sequence, this secondary structure 
is presumably more dependent  on long-range interactions than are o~ helices 
or coils. Clearly the method does not fare well with the prediction of /3  
strands. Although Qprd for/3 strands is only slightly lower than Qpra for the 

21 W. Kabsch and C. Sander, FEBS Lett. 155, 179 (1983). 
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two other secondary structures, there is a chronic underprediction of this 
structure, Qobs for/3 strands is thus significantly lower compared to Qobs 
for helices and coils (even taking into account the overestimation of the 
corresponding Qobs values, which is a consequence of the overprediction 
of helices and coils). This is also noticeable in the fact that, whereas the 
average length of predicted and observed helices corresponds closely, the 
average length of predicted strands is shorter by about one-third compared 
to the average length of the observed ones. 

It is thus very important to consider the possibilities of including long- 
range interactions in our method (or other methods using only short-range 
information, that is, local sequence only, for that matter). One way to 
introduce long-distance effects is to use specific nonlocal pairs to improve 
/3-strand prediction. 22 In other words, the prediction of/3 strands could be 
done using the local window as usual to first select putative/3-strand seg- 
ments and then one could slide a window along the sequence to look 
whether complementary segments to these putative/3 strand segments can 
be found. Another possibility is to use multiple alignments. This is based 
on the assumption that corresponding residues in the alignment, provided 
the alignment is correct, will have the same secondary structure, being at 
the same location in the fold. The use of multiple alignments has recently 
been the source of an improvement of the accuracy ranging from 5, for 
the GOR 7 and the quadratic logistic 9 methods up to 10 percentage points 
for a neural network method. 8 

The GOR method has the advantage over neural network-based meth- 
ods or nearest-neighbor methods in that it clearly identifies what is taken 
into account for the prediction and what is neglected. Moreover, the method 
provides estimates of probabilities for the three secondary structures at 
each residue position, which can be useful for further application of the 
method. 15 It relies only on observed frequencies in the database; thus, the 
calculation of the parameters is straightforward and easy to update. 

Availability 

The corresponding program has been written in C language and cur- 
rently runs on a platform with a UNIX operating system (but it will run 
equally well on other operating systems). It can be obtained by anonymous 
ftp at NCBI (National Center for Biotechnology Information) using the 
following procedure: ftp ncbi.nlm.nih.gov, move to the directory gibrat/ 
GOR. It is also available at INRA-Jouy-en-Josas: ftp locus.jouy.inra.fr, 
move to directory/pub/protein/GOR. 

22 T. J. P. Hubbard, 27th Annual Hawaii International Conference on System Sciences, (L. 
Hunter, ed.) IEEE Computer Society Press, Los Alamos, 336 (1994). 


