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Abstract
One of the most complex and computationally intensive tasks of genome sequence analysis is

genome assembly. Even today, few centres have the resources, in both software and hardware,

to assemble a genome from the thousands or millions of individual sequences generated in a

whole-genome shotgun sequencing project. With the rapid growth in the number of

sequenced genomes has come an increase in the number of organisms for which two or more

closely related species have been sequenced. This has created the possibility of building a

comparative genome assembly algorithm, which can assemble a newly sequenced genome by

mapping it onto a reference genome. We describe here a novel algorithm for comparative

genome assembly that can accurately assemble a typical bacterial genome in less than four

minutes on a standard desktop computer. The software is available as part of the open-source

AMOS project.

INTRODUCTION
Most large-scale genome sequencing

projects today employ the whole-genome

shotgun (WGS) sequencing strategy, in

which a genome is shattered into

numerous small fragments, and the

fragments are then sequenced from both

ends. The resulting sequences, ranging

from 650 to 850 base pairs (bp) in length

using the latest sequencing technology,

must then be assembled to reconstruct the

chromosomes of the target organism. As

genome sequencing has become more

efficient, the number of organisms

sequenced by this strategy has rapidly

increased. In many cases, little is known

about a genome prior to sequencing;

sometimes even the genome size is only a

rough estimate. Genome assemblers have

been relied on not only to reconstruct the

genome, but also to help answer such

basic questions as how many

chromosomes an organism has.

In addition to sequencing new and

completely unknown species, the

scientific community has recognised in

recent years the value of sequencing two

or more very similar species (or strains)

from the same genus. Perhaps the most

prominent example of this is in

biodefence, where multiple strains of

Bacillus anthracis are currently being

sequenced in order to create precise

genotyping information that can be used

for forensic purposes.1 Sequencing

projects for several major human

pathogens, including Mycobacterium

tuberculosis, Streptococcus pneumoniae and

Staphylococcus aureus (to name but a few)

are targeting multiple strains of these

bacteria in order to understand virulence,

drug resistance and other phenotypic

differences between strains. On a larger

scale, the mouse, rat and chimpanzee

genomes are all being sequenced and

mapped to the human genome to better

understand human biology, and multiple

Drosophila species are being sequenced

and mapped onto one another.

DNA sequence assembly algorithms

have generally followed an algorithmic

strategy known as overlap-layout-consensus.2

Although many distinct systems have

been developed – among them the

popular program phrap3 – all begin by

comparing all the shotgun sequences

(‘reads’) to one another and computing

which ones overlap each other (the overlap

step). To avoid the quadratic time

requirement of a brute-force approach,
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most assemblers use some form of a

hashing strategy (or similar indexing

technique) based on short oligomers in

order to identify those reads that are likely

to overlap, and then run a more costly

alignment algorithm on any pairs of reads

that have a significant intersection in the

hash table. Following the overlap step, the

layout step positions the reads precisely

with respect to one another, producing a

multiple alignment of all reads. This

multi-alignment is then used to produce

the consensus, ie the final DNA sequence.

Some algorithms4–6 also include an

additional step in which contigs are joined

together using the linking information

from the paired-end reads, creating larger

structures known as scaffolds. This

scaffolding step can also be run as a

separate program after the initial

assembly.7

In the AMOS Comparative Assembler

(AMOS-Cmp), we take a fundamentally

different approach: the overlap step is

skipped entirely. Instead, reads are aligned

to the reference genome using a modified

version of the MUMmer algorithm.8 This

strategy can be called alignment-layout-

consensus, because it produces a layout

directly from the alignment. In fact,

AMOS goes a step beyond many

conventional assembly algorithms,

because information is used from the

paired-end reads in the alignment step. As

described below, this helps in

disambiguating the placement of reads

that have matches to more than one place

in the reference genome.

METHODS
All assembly algorithms attempt to

recover the information lost through the

WGS shearing process; in particular, they

try to identify the original placement of

the shotgun sequence fragments along the

genome. This problem encompasses most

of the complexity of shotgun sequence

assembly, while the remaining tasks, such

as computing the precise multiple

alignment of the reads or identifying

polymorphisms, are somewhat easier. Our

comparative assembler uses the complete

sequence of a closely related organism to

determine the relative placement of the

reads. Thus the overlap and layout stages

of a typical assembler are replaced with a

module performing the alignment to a

reference genome. The remaining assembly

stages – consensus generation and

scaffolding – remain the same as for an

overlap-layout-consensus algorithm.

Throughout the remainder of this paper,

the genome being sequenced is referred to

as the target genome, the goal being to

obtain an assembly of this genome using a

reference genome as a template.

The differences between the target

genome and the reference genome,

coupled with the presence of repeats in

the data, create the biggest challenges for

a comparative assembler. Even when the

two genomes belong to the same species,

the differences between them can be

significant. For example, Figure 1 shows

the alignment between two strains of

Streptococcus agalactiae.9,10 It is immediately

clear that the strains differ by multiple

insertions and deletions (indels, identified

by breaks in the diagonal), furthermore a

cluster of repeats can be seen in the first

500 kilobases (Kbp) of the two genomes.

The algorithm employed by AMOS-

Cmp to overcome these challenges has

five major steps.

• Read alignment. Each shotgun read

is aligned to the reference genome

using MUMmer.8,11,12 Repetitive

sequences and polymorphisms

between the target and the reference

cause some reads to align in a non-

contiguous fashion. A modified

version of the Longest Increasing

Subsequence (LIS) algorithm13 is used

in order to generate chains of mutually

consistent matches between each read

and the reference. In addition to the

longest consistent chain, a set of near-

optimal chains is also computed in

order to identify reads anchored in

repeats. Those reads that are

ambiguously placed in the genome

(one or more chains are within 2 per

cent identity from the best placement)

Reference and target
genomes

AMOS Comparative
Assembler

Alignment-layout-
consensus

Read placement with
MUMmer
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are classified as repetitive and resolved

later (in some cases) by using mate-

pair information.

• Repeat resolution. For each read

that cannot be unambiguously placed

along the reference genome, a three-

stage process is employed to

disambiguate its placement. First, it is

checked to see if the paired-end

sequence (the ‘mate’) is uniquely

anchored in the genome. If it is, the

read is placed in the location that

satisfies the constraints imposed by the

mate-pair information. Second, if a

read and its mate are both

ambiguously placed, an attempt is

made to find whether the mate-pair

information allows us to place them

both in the assembly. In some cases,

there exists only one placement of

both a read and its mate that satisfies

the mate-pair constraints on distance

and orientation. Third, when the first

two steps leave us with more than one

placement for a pair of reads, one of

the possible placements that satisfy the

mate-pair constraints is chosen at

random. To illustrate how well these

steps work, the original shotgun reads

from the S. agalactiae 26039 WGS

project were aligned to the final,

finished chromosome. Out of a total

of 26,099 reads, 25,310 were uniquely

anchored, 314 were placed with the

help of a uniquely anchored mate, 22

were placed by mate-pair constraints,

and the remaining 442 had to be

placed in a randomly chosen copy of a

repeat.

• Layout refinement. Indels and

rearrangements between the target and

the reference genomes complicate the

mapping of the reads to the reference.

As a result, reads from the target

genome may only partially match the

reference, or adjacent sections of the

reads may match non-adjacent

portions of the reference. Because of

these issues, layout refinement is one

of the most complex parts of AMOS-

Cmp. The algorithm is described in

detail below.

• Consensus generation. For each

Repeat solution

Layout refinement

The use of mate-pairs

2,000,000
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Figure 1: Alignment
between two strains of
Streptococcus agalactiae.
The lines represent
near-exact matches. The
positions of the matches
on the two genomes are
shown along the axes
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group of overlapping reads in the

refined layout, a multi-alignment is

computed to generate a consensus

sequence for the genomic region

covered by those reads. The multi-

alignment is computed in a series of

rounds. In each round, a pairwise

alignment of each read to the current

consensus sequence is computed and

the resulting multi-alignment is used

to generate a new consensus sequence.

The process terminates when the new

consensus sequence is the same as the

one in the previous round. This is

essentially the same algorithm

described in Anson and Myers.14

• Scaffolding. The placement of the

reads along the reference genome

implicitly defines a set of contigs –

contiguous regions of the assembly –

as well as the relative order and

orientation of these contigs — a

structure commonly known as a

scaffold. The Bambus package15 is used

to determine the order and orientation

of the contigs as determined by the

mate-pair information, and to build

scaffolds based on this information.

Discrepancies between the two orders

highlight rearrangements between the

target and the reference genomes.

Read alignment and scaffolding are

accomplished by existing programs

(MUMmer and BAMBUS respectively)

that have been described in detail

elsewhere; our discussion is therefore

confined to the complications in the

layout refinement algorithm that result

from polymorphisms between the target

and the reference genomes. These can be

divided into four different classes:

• insertions in the target: segments of

DNA present in the target genome

that do not have a counterpart in the

reference genome;

• deletions from the target: segments

of DNA present only in the reference;

• rearrangements: segments of DNA

that appear in a different order/

orientation in the reference and the

target; and

• divergent DNA: low-similarity

regions, where the target and the

reference genomes have diverged

significantly from each other during

evolution.

In regions where the target and

reference genomes are similar, the

alignment of the reads to the reference

genome is sufficient to infer the layout of

the reads along the target genome. Any

small differences in the relative placement

of the reads are easily corrected when

computing their precise multiple

alignment during the consensus

generation stage. A simplistic comparative

assembler could, therefore, accept the

layout of the reads along the reference

genome as an approximation of the layout

of the reads along the target genome. In

the case of two similar genomes, the only

breaks in the resulting assembly would

occur in areas of the target genome not

contained in any read. The comparative

assembly problem is most interesting,

however, when differences exist between

the target and reference genomes. In the

following paragraphs, the major types of

polymorphisms that AMOS-Cmp can

handle are discussed.

Insertions in the target
In the case of an insertion in the target,

the portions of the reads contained in the

insertion will not match the reference

genome, leading to the situation shown in

Figure 2. The alignment to the reference

does not provide any information about

the relationship between reads A, B and

C. This information could be

reconstructed by separately assembling

these reads with a traditional assembly

algorithm. AMOS-Cmp will break the

assembly at this point, creating two

separate contigs – one that ends at read A,

and second one that starts with read C –

leaving reads such as B (which is entirely

Consensus generation

Scaffolding

Handling
polymorphisms

24 0 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 3. 237–248. SEPTEMBER 2004

Pop et al.



contained in the insertion) as unassembled

individual reads, or singletons. Mate

information used during the scaffolding

stage should allow us to detect the

presence of this insertion and properly

order and orient the contigs with respect

to each other.

A special case occurs when the

insertion is smaller than the length of a

read (Figure 3). In this case, the middle of

some reads will not match the reference

but both ends will. An alignment that

breaks and continues at the same position

in the reference, but at distant points in

the read, is evidence of this type of

insertion. AMOS-Cmp can resolve this

situation and produce a single contig

correctly containing the inserted

sequence.

Insertions in the reference
The case of an insertion in the reference

(or deletion from the target genome) is

easily identified from the characteristic

alignment of the reads to this reference

genome. The reads that span the insertion

point match two disjoint regions of the

reference – the areas adjacent to the

insertion (see Figure 4). The relative

placement of the reads in the target

genome is easily determined from the

alignments to the reference; therefore all

the reads spanning the insertion point, as

well as those in the surrounding areas, can

be placed into the same contig.

Rearrangement
Rearrangements between the two

genomes pose the most difficult challenge

to comparative assembly. Our program

must cope with the many possible

combinations of rearrangements and

inversions (a special case of

rearrangement) while avoiding mis-

assemblies. A conservative approach was

chosen by restricting ourselves to

resolving areas that have the signature of

an insertion in the reference — a situation

easily resolved as shown in the previous

section. The example shown in Figure 5

identifies a simple rearrangement where

sections II and III in the target appear in a

different order in the reference. AMOS-

Cmp detects this type of rearrangement

using the alignment of the reads spanning

the boundaries between sections of the

target genome. The signature of read A

identifies section III as an insertion in the

reference between sections I and II;

Insertions in the target

Insertions in the
reference

Rearrangements

Reference

Target Insertion

A B C

A

B

C

Figure 2: Mapping reads to the reference
genome when the target genome contains an
insertion. The bottom indicates the true
layout of the reads (A, B, C) along the target.
The top indicates the alignment of the reads
to the reference. Slanted lines depict
portions of the read that do not match; in
the case of read B, the entire read does not
align to the reference

Reference

Target Insertion

A
B

A

B

Figure 3: The insertion in the target
genome is shorter than a single read. The
‘bubbles’ identify the portions of the two
reads that do not align to the reference

Reference

Target A
B

A
B

Figure 4: Insertion into the reference. The
alignment of reads to the reference (top)
indicates the presence of the insertion.
Dashed lines indicate the ‘stretch’ of the
reads needed to align to the reference
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therefore AMOS-Cmp creates a single

contig spanning these two regions.

Similarly, read C identifies section II as an

insertion between sections III and IV,

allowing our assembler to correctly

assemble them. Read B’s alignment does

not fall into the ‘insertion into the

reference’ category, therefore we break

the contigs when reaching it. The target

genome will thus be reconstructed in two

pieces: I+II and III+IV. The scaffolding

stage will later join the two pieces

together using mate-pair information.

Divergent DNA
Regions of divergent DNA occur when

one or both genomes have mutated

sufficiently that the sequences can no

longer be aligned. When the difference

between corresponding sections of the

reference and target genomes is greater

than the alignment threshold, we are

faced with the situation depicted in Figure

6. The alignment signature of the reads is

identical to that caused by an insertion in

the target (Figure 2), causing the

comparative assembler to break the region

into two contigs (one ending at read A,

and the other starting with read C) and to

leave out the reads contained in the

divergent region as singletons.

Distinguishing between
sequencing errors and true
polymorphisms
Errors occur at a low but non-zero rate in

all shotgun sequencing projects. Some of

the most common examples of errors are

(1) chimeric reads, introduced during the

cloning process; (2) sequencing errors,

caused by the sequencing or base-calling

processes; and (3) clipping errors,

introduced during the post-processing of

the sequence data. The alignment

signatures of reads containing such errors

are, unfortunately, similar to those caused

by true polymorphisms between the

target and reference genomes. Chimeric

reads look like rearrangements, while

sequencing and clipping errors have the

same signature as insertions into the target

genome. In order to limit the effects of

clipping errors, all the reads were trimmed

using the lucy package,16 eliminating both

the vector sequence, and the regions with

error rates higher than two errors in each

50 base-pair window.

A breakpoint is defined as the situation

when the best alignment of a read to the

reference (as identified by the LIS

algorithm) consists of more than one

contiguous segment, or a single segment

that does not extend to the end of the

read. A majority rule is used to identify

the reads containing errors. For all the

reads whose alignment to the reference

contains breakpoints, other reads are

identified that contain the same

breakpoints, as well as reads whose

alignment spans the breakpoint. The

hypothesis that has the most support is

then chosen. An example is shown in

Figure 7. Read A probably contains an

error because the alignments of both reads

B and C disagree with it. Reads D and E,

Divergent DNA

Breakpoints in
alignments

Sequencing errors v.
polymorphisms

Reference

Target

III

IIIII

II IV

IV

A B  C

A
B

C

I

I

Figure 5: Signature of a genome rearrangement between the target and
the reference. Regions II and III from the target appear in a different
order in the reference. Reads A, B and C match the reference in disjoint
locations – the dashed lines connect sections of a read that are adjacent
in the target genome

Reference

Target

A
B

C

A
B

C

Figure 6: Signature of a region that has
diverged significantly between the reference
and the target genomes (the grey areas).
Portions of the reads not matching the
reference are shown at an angle
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however, probably indicate a true

polymorphism because both their

alignments agree.

Another challenge is caused by short

repeats that often flank polymorphisms

(see, for example, Wu et al.17). Figure 8

shows the case of an insertion in the

reference that is accompanied by the

presence of a small repeat flanking the

insertion. In order to correctly handle this

situation, the LIS algorithm was modified

to allow an overlap between adjacent

alignments to the reference. When such

an overlap is present in the alignment of a

read to the reference, the positions of the

reads following the insertion are adjusted

to allow for the presence of the short

repeat.

Implementation details
AMOS-Cmp is implemented as a pipeline

executed by the runAmos program – a

generic pipeline executor provided by the

AMOS package (software available at the

website18). This pipeline combines an

invocation of the MUMmer alignment

package with subsequent processing

modules written in C++ and Perl. The

code was only tested under RedHat

Linux on an Intel-based workstation, and

under OSF 5.1 on an Alpha server;

however, it should be portable to most

other UNIX variants with minimal

changes.

RESULTS AND DISCUSSION
AMOS-Cmp was tested on several

genome assembly problems, using the

bacterium Streptococcus agalactiae, for which

more than two distinct strains have been

completely sequenced, as a model.

Streptococcus agalactiae NEM316,10 a strain

sequenced at the Pasteur Institute whose

complete sequence is available in

GenBank, was used as a reference

genome. Streptococcus agalactiae 2603

V/R,9 a strain completed at TIGR for

which all the shotgun sequence reads

were available (also deposited in the

NCBI Trace Archive, accessions

199934405 through 199969788) was

assembled as a target. These two strains

were chosen because they are very similar

at the nucleotide level, yet contain

numerous indels and repeats that may

confuse a comparative assembly algorithm

(see Figure 1). Six sets of reads were

created from strain 2603, corresponding

to a WGS project at 1, 2, 3, 5, 7 and 9-

fold coverage respectively. For each data

set the reads were selected in the order

they were originally sequenced, to

accurately simulate a sequencing project

at the specified coverage.

Three different tests were performed;

the results are presented in Tables 1 and 2.

In the control experiment, an attempt was

made to assemble strain 2603 using itself

as a reference (columns headed ‘v. 2603’

in the tables). This experiment allowed us

to concentrate on the algorithm’s ability

to assemble the genome correctly, and

especially to resolve repeats. In the second

experiment, strain 2603 was assembled

using strain NEM 316 as a reference

(columns headed ‘v. NEM 316’ in the

tables). In a third test the WGS reads were

assembled from scratch using Celera

Assembler,5 thus providing a baseline for

Test data available at
NCBI trace archive

Experimental setup

A

B
C

D
E

Figure 7: Detecting errors. Read A is
probably incorrect since it disagrees with
reads B and C. Reads D and E probably
indicate a polymorphism between the target
and the reference

Reference

Target A

A

Figure 8: Effect of short flanking repeats on
the alignment of a read to the reference in
the case of an insertion in the reference. The
repeat is shown in grey, and the dashed lines
connect sections of read A that occur twice
in the reference but once in A and in the
target genome
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the expected performance of a typical

assembly program (columns headed

‘CelAsm’ in the tables). For each of these

tests we collected statistics on the size of

the contigs generated by the assembly

programs (number of contigs, total contig

size and N50 contig sizes in Table 1) and

on how well these contigs cover the

target genome (number and size of the

gaps in the alignment as well as

percentage of the genome covered in

Table 2). The consensus sequence of the

contigs was aligned to the complete

sequence of strain 2603 using the

MUMmer package, retaining only those

contigs that matched the reference over

more than 90 per cent of their length at

better than 90 per cent similarity. (The

few contigs not satisfying these criteria

were removed from the analysis in Table

2; note that these exclusions do not affect

the overall statistics as the excluded

contigs were few in number and shorter

than 2 kbp.)

The comparative assembly using strain

2603 as a reference (the control)

significantly outperformed the scratch

assembly, producing larger contigs and

better coverage of the target genome at all

depths of coverage, from 13 to 93. This

result demonstrates that AMOS-Cmp can

utilise the alignment to the reference to

identify and resolve repeats that cannot be

correctly resolved by Celera Assembler.

The highly repetitive region in the first

5 Kbp of both test genomes caused the

only significant misassembly in the Celera

Assembler data – a misassembled 17 Kbp

contig – while all comparative assembly

experiments (including those with NEM

316 as the reference) correctly resolved

the region. Secondly, this result shows

that AMOS-Cmp can assemble together

reads that overlap by as little as 10 bp,

AMOS-Cmp
performance

Unassemblable regions

Table 1: Overall statistics on assemblies produced by AMOS-Cmp

3 v. 2603 v. NEM 316 CelAsm

N Total contig
size

N50 N Total contig
size

N50 N Total contig
size

N50

1 604 1,001,743 0 527 839,315 0 585 903,184 0
2 619 1,593,364 2,294 586 1,393,287 1,479 657 1,488,287 1,595
3 443 1,856,394 5,707 450 1,640,231 4,179 506 1,812,266 4,981
5 243 2,043,842 14,915 277 1,829,976 10,395 293 2,046,730 12,458
7 144 2,100,541 27,364 198 1,891,527 18,142 189 2,110,396 21,926
9 86 2,119,579 42,679 155 1,919,237 24,239 130 2,132,490 33,953

Table 2: Overall statistics of alignment to S. agalactiae strain 2603 V/R. The total gap size indicates the total number of
bases missing from the assembled contigs after mapping them to the finished genome. The column marked LW represents
the theoretical estimate of coverage based on Lander–Waterman19 statistics

3 v. 2603 v. NEM 316 CelAsm LW

N gaps Total ga
size

% genome
covered

N gaps Total gap
size

% genome
covered

N gaps Total gap
size

% genome
covered

% genome
covered

1 588 1,168, 208 45.92 511 1,329,996 38.43 562 1,261,419 41.61 39.31
2 596 577,987 73.24 552 778,491 63.96 601 679,386 68.55 74.10
3 430 301,899 86.02 415 530,417 75.45 455 365,736 83.07 89.88
5 232 119,917 94.45 240 347,697 83.90 257 153,824 92.88 98.56
7 132 62,410 97.11 155 292,068 86.48 146 81,406 96.23 99.79
9 80 43,408 97.99 110 270,210 87.49 97 61,544 97.15 99.97
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while Celera Assembler requires a

minimum overlap of 40 bp. This greater

sensitivity is possible because the read

overlaps are inferred from longer (and

therefore more specific) alignments to the

reference, so avoiding the false overlaps

that would result from the use of short

overlaps in conventional assembly

programs.

The assemblies using strain NEM 316

as a reference appear, in at least one

respect, to be worse than those created by

the Celera Assembler. Table 2 shows that

the NEM 316 reference assembly

consistently left more bases unassembled

than the scratch assembly. This apparent

shortcoming of our method can be

explained by (a) insertions in the 2603

strain with respect to the NEM 316 strain,

and (b) regions of significant sequence

divergence. By its very design (as

explained above), a purely comparative

assembler cannot assemble such regions,

because they simply do not exist in the

reference genome. The total length was

calculated of all regions in the 2603 strain

that had no homologue in the NEM 316

strain, and 254,657 bases were found that

cannot be assembled by a comparative

assembler. If this amount is subtracted

from the total gap size column in Table 2,

it can be seen that AMOS-Cmp

consistently outperforms the scratch

assembly on those regions for which an

assembly is possible.

To illustrate further the differences

between assemblies, all contigs from the

three experimental assemblies are mapped

to the first megabase of S. agalactiae 2603.

The top three rows in Figure 9

correspond to the alignment of these

contigs to the completed genome of strain

2603. The bottom row shows an

alignment of strain NEM 316 to strain

2603, highlighting both repeats (arrows

stacked on top of each other) and regions

of dissimilarity (gaps in the alignment).

Several features are immediately apparent

in this figure. First of all, Celera

Assembler contigs tend to end at repeat

boundaries, while both of the

comparative assemblies manage to

correctly span many of these repeats.

Second, the NEM 316 reference assembly

does not cover the regions of dissimilarity

Estimating the extent of
unassemblable regions

Table 3: Portion of the genome that cannot be assembled through the comparative assembly method computed for four
pairs of closely related genomes. For each pair the genome being assembled (target) and the genome used as a reference
are identified, together with their sizes. The number of bases that cannot be assembled by AMOS-Cmp as well as the
fraction of the target genome contained in these regions are given

Reference genome
(# bases)

Staphylococcus epidermidis
RP62A [unpublished]
(2,616,530)

Streptococcus pyogenes
MGAS31526(1,900,521)

Streptococcus pyogenes
MGAS823221(1,895,017)

Streptococcus agalactiae
2603 V/R9(2,160,267)

Target genome
(# bases)

Staphylococcus epidermidis
ATCC 1222822

(2,499,279)

Streptococcus pyogenes SF370
serotype M123 (1,852,441)

Streptococcus pyogenes SF370
serotype M123 (1,852,441)

Streptococcus pyogenes SF370
serotype M123 (1,852,441)

Region that cannot be
assembled
(# bases, %)

143,007
(5.72%)

148,192
(7.99%)

142,495
(7.69%)

1,640,396
(88.55%)

CA

2603

NEM

0 200,000 400,000 600,000 800,000

nucmer

Figure 9: Assemblies of the first megabase of strain 2603 at 93
coverage. The rows correspond (top to bottom) to: CA – scratch
assembly contigs created by Celera Assembler; 2603 – AMOS-Cmp
contigs created using strain 2603 as a reference; NEM – AMOS-Cmp
contigs using strain NEM 316 as a reference; and nucmer – the alignment
of strain NEM 316 to strain 2603. Stacked arrows in the bottom row
correspond to repeats
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between the two strains. The breaks in

the contiguity of the NEM assembly

occur at locations where either there is a

break in the alignment of the two strains,

or the break is shared by the other two

assemblies (probably because of a lack of

coverage in the original WGS sample).

Effects of genome similarity on
quality of assembly
These results allow us to start to answer

the question: how similar do two

genomes have to be in order for the

comparative assembly method to work?

The answer lies in the nature of the

differences between the two genomes.

Insertions in the target genome cannot be

assembled through this method, and

rearrangements will often lead to breaks in

the contigs. In order to provide the reader

with a sense of what genomes can be

assembled with our technique we

computed the extent of the regions that

cannot be assembled through the

comparative assembly method for several

pairs of genomes. The results are

summarised in Table 3.

In each of the three pairs of bacteria

representing different strains of the same

species, AMOS-Cmp is able to assemble

92–94 per cent of the target genome.

When the target and reference genomes

are more distantly related, as is the case

with the distinct species S. agalactiae

2603V/R and S. pyogenes SF370, our

method is only useful for a relatively small

proportion of the target genome (just 212

out of 1850 Kbp in this case).

Scaffolding
As a final test of our method the contigs

produced in the ‘v. NEM’ and ‘CelAsm’

tests were scaffolded using the Bambus

package.5 This test examines a more

subtle characteristic of assemblies. Most

assemblers will incorrectly place at least

some reads from repetitive sequences into

a wrong copy of those repeats. The

misplaced reads, together with their

associated mates, lead to incorrect linking

information being provided to the

scaffolding program, thereby complicating

the scaffolding problem and often

decreasing the quality of the scaffolds.

The resulting scaffolds were similar in

number and size, showing that not only is

the assembly of the repeats similar in the

two sets of assemblies, but also that mate-

pair information is able to offset the

smaller size of the ‘v. NEM’ assembly (see

Table 1). Furthermore, owing to the

absence of any significant rearrangements

between the chosen genomes, Bambus

will produce a single scaffold spanning the

entire S. agalactiae genome by using the

alignment information to infer contig

adjacency.

Timing
Because AMOS-Cmp skips the most

computationally expensive part of

assembly, the overlap step, it is faster than

a scratch assembly. Our assembly of S.

agalactiae 2603 onto the NEM 316

reference, using 31,779 reads as input,

took just under 3.5 minutes on a desktop

Pentium computer (2.8 GHz) running

Linux. It also uses far less memory than a

conventional assembler: just 178

megabytes (MB) of memory were used

for the most memory-intensive step. In

contrast, the Celera Assembler (which is

far faster than earlier generation

assemblers such as phrap3 and TIGR

Assembler24) on the same data took 23

minutes and 1.9 GB of memory on an HP

Alpha ES40 computer running OSF1 (on

the same machine AMOS-Cmp took just

under 9 minutes).

Comparative v. ab initio
assembly
The results on timing described in the

previous section indicate the comparative

assembler is significantly faster than a

typical ab initio assembler. While the

difference does not appear significant, 9

versus 23 minutes, the reader should bear

in mind the size of the genome being

assembled. The assembly process currently

takes more than one week for large

eukaryotes and, frequently, multiple

assemblies are performed in order to

produce the best possible reconstruction

Effects of assembly
quality on scaffolding

AMOS-Cmp uses less
resources than
traditional assemblers

AMOS-Cmp correctly
assembles repeats
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of the genome. Comparative assembly

will dramatically speed up this process

when multiple strains of the same large

eukaryote are being sequenced.

Furthermore, the simplicity of the

process, as well as the limited number of

parameters that can be tuned, make

comparative assembly accessible to most

biologists. The assembly of large

eukaryotes is currently performed only at

large centres with significant

bioinformatics expertise.

At a qualitative level, comparative

assembly methods are less sensitive to

repeats and haplotype differences –

regions that provide a significant

challenge to existing assembly algorithms.

The comparative assembly method is

specifically designed to handle

polymorphisms between DNA molecules,

therefore it can gracefully handle the

presence of multiple, divergent,

haplotypes in the data being assembled.

Furthermore, repeats are accurately

identified and resolved, in contrast to

traditional assemblers that rely on

statistical tests to identify repeats in the

shotgun data (such tests are sometimes

incorrect due to non-randomness in the

shotgun libraries).

Finally, the comparative assembly

method can be used to assess the natural

diversity of bacterial strains found through

environmental sequencing.25,26 Thus,

from a pool of bacteria found in an

environment, one could generate a hybrid

assembly of all strains that are similar to a

known bacterium – a task difficult to

achieve with existing assemblers.

CONCLUSION
The comparative assembly method

described in this paper performs very well

when compared with a standard assembly

program such as Celera Assembler. The

AMOS-Cmp assembler outperforms

traditional assembly programs in both

speed and memory requirements, thereby

allowing scientists with limited

computing resources (ie a standard

desktop computer) to run their own

genome assemblies. Our algorithm

correctly handles several classes of repeats

that sometimes confound other

assemblers. In addition, our method

allows the assembly of reads that overlap

by 10 base pairs or fewer, allowing for the

contiguous assembly of low-coverage

areas. Finally, the comparative assembler

provides useful information even at

extremely low-coverage levels where

traditional assembly methods have limited

use. Knowledge that a particular read

matches the reference genome leads to a

significant improvement over standard

assembly programs where distinguishing

between unassembled (singleton) reads

due to lack of coverage and those due to

contaminants or sequencing errors is

practically impossible. For many recent

survey sequencing projects, where funds

are scarce, low-coverage WGS

sequencing (often just 13 to 33) is

becoming increasingly common.27

The comparative assembly method

does have drawbacks, most obviously its

dependence on the sequence of a closely

related genome. Rearrangements between

the two genomes cause fragmentation of

the contigs in the resulting assembly,

while some regions cannot be assembled

owing to lack of similarity to the

reference genome. Nonetheless, the

comparative assembly method should

have an increasing number of applications

with the ever-growing number of

genomes being deposited in public

databases.
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