
Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 1 of 11 12/12/06

Synteny Determination: Processes, Problems, and Potentials

 The past several decades have seen a revolution in techniques for molecular biology, and

sequencing techniques are no exception to this. Building upon Sanger’s 1977 sequencing

method which helped to usher in the modern era of molecular biology, advances in sequencing

such as shotgun or expressed sequence tag sequencing have greatly improved our ability to

generate genomic data. The molecular biology side of genomics, however, only tells half of the

story. In parallel with biology advances was the growth in computing power that made the

analysis of the sequencing data generated possible. These advances in molecular biology and

computer technology led the completion of several genomes, starting with the first free-living

organism, H. influenza (Fleischmann et al., 1995), through the completed Human Genome six

years later (Lander et al., 2001; Venter et al., 2001), and on towards the current goal of a $1000

personal genome.

 The completion of multiple genomes has made possible whole genome or whole

chromosome comparisons. Early on, it was learned that gene order between genomes is

conserved. This concept is referred to as synteny, and it results from the evolutionary

relationship between organisms. Of course, this conservation is not perfect. For one-

chromosome events, inversions are a particularly common mutation, while for

multichromosomal events, reversals, translocations, fissions, and fusions can all occur. These,

combined with gene duplications and deletions among other processes, can explain how synteny

between organisms can decrease with evolutionary distance.

 Description of synteny and whole genome comparisons is not simply an academic

exercise. It has many practical ramifications and can lead to important biological understandings.

As was implied from the discussion above, synteny expresses phylogenetic relationships and

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 2 of 11 12/12/06

what steps were necessary to “convert” one genome into another on a macroscale (chromosomal

level rather than nucleotide level). While comparisons between genomes can give synteny, the

same comparisons within a single genome can also identify paralogs. Synteny can help with

gene identification and genome assembly. Identifying regions of homology between a genome

currently being sequenced and one already finished can speed up the completion of the first

genome (Pop et al., 2004). Similarly, comparing two genomes may lead to the identification of

new genes in each, whether through the identification of conserved—and hence possibly

functional—unknown regions or through a previously known gene product of one genome being

directly found in the other (Tomii and Kanehisa, 1998; Kihara and Kanehisa, 2000).

Comparative genomics can also help us understand biological function. A knowledge of gene

duplication events can shed light onto redundancy in genomes and its functional significance.

Additionally, genes that are close to each other on a chromosome may have coordinated

regulation, and observing changes within these regulatory blocks with time can potentially lead

to new understandings of their functionality. Comparative genomics may perhaps allow us to

better understand qualities of clinical interest, such as virulence or drug-resistance, too. At its

core, the ability to make accurate and practical synteny maps between genomes is a prerequisite

for making sense of the deluge of information currently being generated by sequencing efforts.

 The determination of synteny presents a number of difficulties not found in traditional

sequence comparison methods such as Neeldeman and Wunsch (1970) and Smith and Waterman

(1981). Perhaps chief among them is time. Simply put, genomes are very large. The human

genome, for instance, is 3.2 x 1012 bases. To align these by conventional dynamic programming

algorithms with present computing technology would be prohibitively slow. To be practical in

modern research, alignments must be able to be made on the order of minutes, hours, or days,

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 3 of 11 12/12/06

rather than weeks or months. As genome assemblies are often updated with more accurate

sequencing data, a method of efficiently carrying this updating through to the alignments already

done with other genomes is necessary, requiring fast large-scale alignment algorithms.

 There are other problems of varying degrees of difficulty in enacting whole genome

comparisons besides just their high computational demands. Some allowance must be made for

organisms having genomes of different sizes and with different numbers of chromosomes, as

well as for genes being able to be found in any orientation on a chromosome. Also, it is not

nearly as easy to accomplish and meaningfully interpret a comparison of closely related genomes

versus distantly related genomes; it is easier to draw relevant lessons from a human vs. mouse

comparison rather than a human vs. E. coli comparison. It must also be kept in mind what

exactly the goal is of a particular genome alignment. Different algorithm designs are best suited

for studying macroscale differences (i.e. an inversion of a portion of a chromosome) than for

studying microscale differences (a point mutation at a particular residue). Likewise, some

decision must be made about how to control for differences in the noncoding regions of the

genome. Different genomes can have vastly different amounts of repetitive DNA, leading to

very different gene densities. If one is interested only in relative gene order, a large insertion of

selfish DNA into a noncoding region might not be particularly relevant to the synteny between

two genomes. Like with traditional sequence alignments, repetitive DNA can lead to erroneous

alignments, and so there is often a need to mask it in whole genome comparisons. Finally, it

should be noted that the degree of synteny (macroscale conservation of genome arrangement)

and degree of homology (microscale conservation of a particular sequence) are different

concepts, although they often go hand-in-hand. As a side note, how to visualize syntenic

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 4 of 11 12/12/06

relationships so they can be readily understandable by a researcher is far from a trivial task, but

is outside the scope of this paper (Hunt et al., 2004).

 One of the largest divisions between different approaches in large-scale comparative

genomics is whether they are rooted in using protein or DNA to arrive at the synteny between the

genomes. Each approach has its advantages and disadvantages. Protein is more conserved than

DNA at a sequence level (and even more so if structure could be examined effectively on a

genome-wide scale). At far enough evolutionary distances, conservation will be able to be

detected at the protein level but not at the DNA level. Looking at protein for genome

comparisons, however, requires annotated genomes, and thus can miss un-annotated regions of

homology. DNA comparisons, in contrast, do not require annotations. This means that DNA

comparisons can see conservation among non-protein coding regions, such as among promoters,

enhancers, rRNA, small non-coding RNA, and other such genome features. DNA comparisons,

as mentioned above, may lead to the discovery of un-annotated genes.

 There are many algorithms to compare genomic-sized sequences; each one uses a

different method of addressing the problems above and has its own weakness and strengths. As

might be guessed from the preceding discussion, no one algorithm can effectively solve every

problem in synteny discovery. Below, several of these algorithms will be examined. This is not

meant to be a comprehensive listing of algorithms nor a complete descriptions of any particular

algorithm, but rather, to understand general approaches to effectively comparing genomes.

 A number of researchers have applied lessons first learned in the BLAST (Altschul et al.,

1990) and FASTA (Pearson, 2000) algorithms to identify regions of synteny. Schwartz et al.

(2003) were particularly interested in aligning neutrally evolving regions, and thus they wanted a

particularly sensitive algorithm. As a result, they used a modified BLASTZ. BLASTZ

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 5 of 11 12/12/06

(Schwartz et al., 2000) is based on Gapped BLAST (Altschul et al., 1997) with several changes,

including the removal of lineage-specific interspersed repeats, the requirement for matching

regions to occur in the same order and orientation, and a scoring system that makes it harder for

regions of biased nucleotide content to trigger a gapped alignment. BLASTZ was also modified

to increase speed by masking regions to which many segments of the other sequence match and

by looking at a larger window of 12 positions instead of the 8 previously used by BLASTZ, but

allowing for one transition. This modified BLASTZ was indeed sensitive and specific—more

sensitive than PatternHunter or BLAT to be discussed below—as was their goal. However, it

came at a price. Aligning 2.8 GB of human sequence with 2.5 GB of mouse sequence took 481

days of Pentium III CPU time. This is prohibitively slow for many applications. Also, their

modifications will throw out some potentially interesting regions of gene duplication. Thus,

while sensitive and good at recognizing homology in non-coding regions, Schwartz et al.’s

algorithm is very slow and misses some alignments.

 Ma et al. (2002) created an algorithm called PatternHunter. At its heart is a clever idea:

while BLAST uses a seed requiring the continuous alignment of multiple residues, PatternHunter

uses a discontinuous seed. For example, PatternHunter uses a seed of 111010010100110111,

where a 1 represents an exact match and 0 does not require a match. This method

simultaneously gives a higher probability of a hit in homologous regions while having a lower

frequency of random hits since the different positions function more as independent events. Hits

are then looked up in a hashtable to find diagonals and extended in a greedy fashion, allowing for

gaps. Compared to BLASTN, PatternHunter is 20 times faster, uses one-tenth the memory, and

gives better results. A comparison of the human genome with a total of 9 x 1012 base pairs from

unassembled mouse genome reads took 20 or 80 Pentium III CPU-days, depending on the

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 6 of 11 12/12/06

sensitivity used. While still slow, this represents a drastic improvement over previous BLAST

methods. PatternHunter was also later updated to improve performance (Li et al., 2004).

 PatternHunter was employed by Pevzner and Tesler (2003) to generate a synteny map

with the goal of determining the most parsimonious human-mouse rearrangement scenario.

Using bidirectional best local similarities, or anchors, from PatternHunter as a start, they used

GRIMM (Teseler, 2002) to generate synteny blocks. GRIMM (Genome Rearrangements In

Man and Mouse) forms an anchor graph whose vertex set is the anchor set, and if the vertices are

close enough together based upon the parameters selected, they are connected by an edge to form

a cluster. Small clusters are deleted since they are likely to be false orthologs. The clusters are

then outputted as synteny blocks. They used the common approach of concatenating the

chromosomes, and gave a sign to gene regions to mark orientation. While PatternHunter is still

relatively slow and the parameters must be set correctly for GRIMM, Pevzner and Tesler showed

how raw sequence alignments could be processed to form synteny maps.

 SSAHA (Sequence Search and Alignment by Hashing Algorithm) (Ning et al., 2001) and

BLAT (BLAST-Like Alignment Tool) (Kent, 2002) work by largely similar principles. Both of

them construct an index of k-tuples with their corresponding positions in the genome, which can

be screened against the query sequence. Each algorithm then has its own filters, such as SSAHA

ignoring any word with a frequency above a set point since it is likely to be repetitive DNA.

SSAHA finds runs of hits that lie along a diagonal, allowing for some gaps, to find regions of

homology, while BLAT clumps multiple perfect hits within a gap limit and then extends these

larger alignments. SSAHA is 3-4 orders of magnitude faster than BLAST or FASTA, although a

direct comparison of their sensitivities was not done. BLAT, which can work with both

nucleotide and protein alignments, took 16,300 CPU hours (Pentium III) to align the translated

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 7 of 11 12/12/06

human and mouse genomes. There are some other differences between them. SSAHA cannot

unsplice mRNA as BLAT can, and it uses a single perfect match as its seed. Also, BLAT’s

efficiency decreases when the percent nucleotide identity between the genomes is below 90%,

illustrating one of its weaknesses.

 Suffix trees were the approach taken by Delcher et al. to reduce calculation time for

whole genome comparisons in the MUMmer (1999) and MUMmer 2 (2002) algorithms.

MUMmer 2, which stands for maximal unique match, concatenates all protein sequences of a

chromosome (or translates the DNA sequence in all six frames first if the input is a nucleotide

sequence), finds all maximal unique matches, and clusters those that are on similar diagonals by

DNA position on an alignment matrix. The matches made are unique in that they occur once in

each genome and are maximal in that they cannot be extended while still exactly matching. A

filter is used on the translated genome to remove excessive numbers of stop codons, and the

reading frames are picked to maximize protein homology. Notable, this approach will miss non-

coding regions of DNA. MUMmer 2 improved upon the original MUMmer in speed and

memory by a factor of three by storing the suffix tree for only one genome and streaming the

second genome by it to find exact matches, in addition to other modifications to the suffix tree

(Kurtz, 1999) and clustering method. These changes help to alleviate earlier criticisms about

MUMmer’s excessive memory requirements. In terms of speed, MUMmer 2 can align two

bacterial genomes in under a minute on a standard desktop.

 Several algorithms start with all vs. all BLASTP searches as input, including ADHoRe

(Vandepoele et al., 2002), DiagHunter (Cannon et al., 2003), and DAGchainer (Haas et al., 2004).

Both ADHoRe, for Automatic Detection of Homologous Regions, and DiagHunter, do an all vs.

all BLASTP search to arrive at homology scores. Both algorithms’ hit clustering process,

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 8 of 11 12/12/06

although different, relies on an iterative process that connects clusters along a diagonal. Also,

both ADHoRe and DiagHunter keep track of gene orientation and collapses (ADHoRe) or

weights against (DiagHunter) tandem repeats to avoid disrupting the diagonal. DiagHunter also

has a compressing parameter that brings genes “closer together.” This can be used to adjust for

gene density and to speed up alignment. DiagHunter, while not performing a direct sequence

alignment, makes up for this weakness with its speed—under a minute on a PC for a comparison

of Arabidopsis vs. Arabidopsis—and it outperforms MUMmer, BLASTZ and PatternHunter at

identifying macroscale features. A third algorithm, DAGchainer, also starts with matches of

proteins from BLASTP, but uses a directed acyclic graph (DAG) to connect these. In the DAG,

the score is related to the strength of the homology, as measured by the BLASTP E-value, as

well as the distance between the genes and how tightly they are on the diagonal. Dynamic

programming is used to select the highest scoring paths through the DAG until all high scoring

paths are exhausted. The process is repeated, using a comparison against the reversed genome to

account for both orientations. DAGchainer took only 6 seconds with a Pentium 4 processor to

find duplications in the Arabidopsis genome, although it appears to only have an accuracy

slightly above 90%. These three programs also have the advantage over algorithms like

BLASTZ and MUMmer in that they directly give the identity of the syntenic genes, while the

other algorithms require an additional processing step to arrive at this.

 The last algorithm to be discussed is the UniMarker method (Liao et al., 2004).

Unimarker achieves high speed by bypassing direct sequence alignment. They first input the

location of all 16-mers that occur only once in the genome, which can be efficiently located

(Chen et al., 2002). They then scan the genomes with a 50 kb window that slides at 10 kb

intervals, and homologous regions of the two genomes are paired by the number of shared

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 9 of 11 12/12/06

unique 16-mers within the window. The large scanning window steps avoid small local

similarities that could confound results. A number of other processing steps were used to filter

results and increase accuracy. This method is very fast; it can map the human and mouse

genomes in only one day with a Pentium IV. One drawback of UniMarker is that it cannot

compare distantly related genomes due to excessive noise. Unimarker was designed to find

orthologous regions of the genome, not to do a fine-grained sequence analysis, but as a result is

very fast while still having a high accuracy as verified by comparisons with BLASTZ.

 From this discussion, it is clear that there are many approaches to aligning whole

genomes and identifying syntey, each one with its own advantages and drawbacks. No single

algorithm can simultaneously maximize speed, memory requirements, sensitivity, and specificity.

Although the rare algorithm is simultaneously able to make improvements in multiple

characteristics, generally, algorithms involve trade-offs. The most important of these is probably

an algorithm’s computing burden vs. its sensitivity. Likewise, some algorithms are good at

aligning microscale features with high sensitivity, while others shine at finding macroscale

homology. Some focus on aligning the whole genome in an unbiased way, while other started

with annotations and only align coding regions, but do so very efficiently. There is, then, no

single best algorithm, but rather, only best algorithms for one’s particular use. One approach to

overcoming each algorithm’s strengths and weaknesses and to increase accuracy is to integrate

the data from alignments with different algorithms, although this adds to the computational time

needed. Data integration from multiple sources, along with further algorithm advancements and

refinements, promises to yield outstanding alignments between the wealth of genomes currently

being sequenced.

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 10 of 11 12/12/06

Works Cited

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local
alignment search tool. J. Mol. Biol. 215, 403-410.

Altschul, S. F., Madden, T. L., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.
1997. Gapped BLAST and PSI-BLAST—a new generation of protein database search programs.
Nucleic Acids Res. 25, 3389-3402.

Cannon, S. B., Kozik, A., Chan, B., Michelmore, R., and Young, N. D. 2003. DiagHunter and
GenoPix2D: programs for genomic comparisons, large-scale homology discovery and
visualization. Genome Biol. 4, R68.

Chen, L. Y., Lu, S. H., Shih, E. S., and Hwang, M. J. 2002. Single nucleotide polymorphism
mapping using genome-wide unique sequences. Genome Res. 12, 1106-1111.

Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., and Salzberg, S. L. 1999.
Alignment of whole genomes. Nucleic Acids Res. 27, 2369-2376.

Delcher, A. L., Phillippy, A., Carlton, J., and Salzberg, S. L. 2002. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res. 30, 2478-2483.

Fleischmann, R.D. et al. 1995. Whole-genome random sequencing and assembly of
Haemophilus influenza Rd. Science 269, 496-512.

Haas, B. J., Delcher, A. L., Wortman, J. R., and Salzberg, S. L. 2004. DAGchainer: a tool for
mining segmental genome duplications and synteny. Bioinformatics 20, 3643-3646.

Hunt, E., Hanlon, N., Leader, D. P., Bryce, H., and Dominiczak, A. F. 2004. The visual
language of synteny. OMICS 8, 289-305.

Kent, W. J. 2002. BLAT—The BLAST-like Alignment Tool. Genome Res. 12, 656-664.

Kihara, D., and Kanehisa, M. 2000. Tandem cluster of membrane proteins in complete genome
sequences. Genome Res. 10, 731-743.

Kurtz, S. 1999. Reducing the space requirement of suffix trees. Software Pract. Experience 29,
1149-1171.

Lander, E. S. et al. 2001. Initial sequencing and analysis of the human genome. Nature 409,
860-921.

Li, M., Ma, B., Kisman, D., and Tromp, J. 2004. PatternHunter II: highly sensitive and fast
homology search. J Bioinform Comput Biol. 3, 417-439.

Genomics and Bioinformatics Final Project Wesley Greenblatt
Page 11 of 11 12/12/06

Liao, B. Y., Chang, Y. J., Ho, J. M., and Hwang, M. J. 2004. The UniMarker (UM) method for
synteny mapping of large genomes. Bioinformatics 20, 3156-3165.

Ma, B., Tromp, J., and Li, M. 2002. PatternHunter: faster and more sensitive homology search.
Bioinformatics 18, 440-445.

Needleman, S. and Wunsch, C. 1970. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453.

Ning, Z., Cox, A. J., and Mullikin, J. C. 2001. SSAHA: A Fast Search Method for Large DNA
Databases. Genome Res. 11, 1725-1729.

Pearson, W. R. 2000. Flexible sequence similarity searching with the FASTA3 program package.
Methods Mol. Biol. 132, 185-219.

Pevzner, P., and Tesler, G. 2003. Genome Rearrangements in Mammalian Evolution: Lessons
From Human and Mouse Genomes. Genome Res. 13, 37-45.

Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. 2004. Comparative genome assembly.
Brief Bioinform. 5, 237-248.

Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and
Miller, W. 2003. Human-Mouse Alignments with BLASTZ. Genome Res. 13, 103-107.

Schwartz, S., Zhang, Z. Frazer, K. A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. C.,
and Miller, W. 2000. PipMaker—a web server for aligning two genomic DNA sequences.
Genome Res. 10, 577-586.

Smith, T. and Waterman, M. 1981. Identification of common molecular subsequences. J. Mol.

Biol. 147, 195-197.

Tesler, G. 2002. GRIMM: genome rearrangements web server. Bioinformatics 18, 492-493.

Tomii, K., and Kanehisa, M. 1998. A comparative analysis of ABC transporters in complete
microbial genomes. Genome Res. 8, 1048-1059.

Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., and Van de Peer, Y. 2002. The Automatic
Detection of Homologous Regions ADHoRe and Its application to Microcolinearity between
Arabidopsis and Rice. Genome Res. 12, 1792-1801.

Venter, J.C. et al. 2001. The sequence of the human genome. Science 291, 1304-1351.

