
 

Synteny mapping seeks an alignment of entire chromosomes or genomes 

across species. Write a research proposal focused on the problems of 

creating these maps. What differentiates the creation of syntenic alignments 

from other sequence alignment algorithms, such as Needleman-Wunsch or 

FASTA? What technique would you use to create a synteny map between 

two species?  
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ABSTRACT 

As the number of organisms whose genomes that are mapped have 

increased the question of how those genomes align assumes greater 

importance.  In this paper I describe an algorithm to align the entire genome 

sequences of eukaryotic and prokaryotic organisms. I use an efficient data 

structure called a suffix tree to rapidly align sequences containing millions of 

nucleotides. The central idea of the algorithm takes two input sequences, 

either DNA or proteins, and finds all unique subsequences longer than a 

specified minimum length k that are identical between the two inputs. The 

algorithm can also find syntenic chromosomal regions, genomic duplications 

and strain-to-strain comparisons. 

 

DIFFERENCES BETWEEN GENOME AND SEQUENCE ALIGNMENT 

There are highly efficient algorithms for alignment of protein sequences, 

implemented in systems like BLAST [7, 8] and FASTA [9, 10]. There has 

been vast amount of research done for aligning two sequences. The earliest 

work done by Needleman and Wunsch [3], Smith and Waterman [4] focused 

on comparing single proteins or DNA sequences contatining single gene. 

These algorithms are mostly ineffective in aligning entire genomes. The 

problem here is of size: single gene sequences may be as long as tens of 



thousands of nucleotides, whole genomes are usually millions of nucleotides 

are larger. The method for aligning large scale DNA sequences deals with 

millions of nucleotides. The current algorithms either run out of memory or 

take prolonged time to complete. Also, previous algorithms were designed 

mainly to discover insertions, deletions and point mutations but not to look for 

large scale changes that come out in whole genome comparisions, like 

tandem repeats. 

The algorithms for sequence alignments rely on either dynamic 

programming or hashing techniques. Naïve versions of dynamic programming 

use O(N2) (N is the length of shortest sequence compared) space and time, 

which makes computation almost impossible for sequences of size >= 4MB. 

Better versions take O(N) space solving the memory problem but still taking 

longer times. Hashing techniques operate faster on average, but they use a 

‘match and extend’ strategy, the extend part taking O(N2) time. More complex 

dynamic programming algorithms can be used for alignment when the error is 

expected is to be low. For example two similar sequences with atmost E 

differences can be aligned in time proportional to E times the length of the 

longer sequence. Sim3 [5] program uses an algorithm which runs in O(N) 

time when the sequences are highly similar and even very long. However, 

they do not work for whole genome alignments since the number of 

differences may be in the order of 104 or 105 nucleotides. Sim2 [6] uses a 

BLAST like hashing method to identify k-mer matches, which are extended to 



maximal length matches. Then dynamic programming is used to combine 

them into local alignment chains.  

In this paper I propose a method for aligning whole genome sequences. I 

assume the sequences are closely related, and hence can quickly compare 

sequences that are millions of nucletides long. I intend to output a base to 

base alignment of the sequences highlighting the differences such as single 

nucleotide polymorphisms (SNP), large inserts, repeats and reversals.  

 

ALGORITHM 

The algorithm uses a data structure known as suffix Tree which is used to 

find efficiently all distinct subsequences in a given sequence. There are 3 

basic steps in the algorithm: building a suffix tree to find the maximal unique 

match, finding the longest increasing subsequence and filling the gaps using 

Smith- Waterman alignment.  

Let us assume the input sequences as Genome A and Genome B. The 

alignment process consists of the following steps. 

1. Find a maximal unique match (MUM) decomposition of the 2 genomes. 

An MUM is a subsequence that occurs uniquely in Genome A and 

Genome B and is not contained in any longer such sequence. Thus, 



MUM is bounded on both sides with mismatches. The assumption is 

this sequence is almost certain to be part of the golbal alignment. 

2. The matches found in the MUM alignment are sorted and the longest 

possible sets of matches that occur in the same order in both the 

genomes are extracted. This is done using a variation of the LIS 

algorithm.  

3. The gaps in the alignment are closed by identifying large inserts, SMP, 

repeats and small mutated regions. 

4. The alignment including all the matches in the MUM alignment and 

also the regions that do not match exactly are output as the final result. 

 

MUM DECOMPOSITION 

The goal of this step is to identify maximal unique sequences in both the 

genomes. The naïve algorithm matches every subsequence in Genome A with 

Genome B. There are O(N2) such subsequences (N is the sum of the lengths of 

the 2 genomes) and each match takes O(N) time using standard pattern 

matching methods. I can use a suffix tree to store all possible suffixes of an input 

sequence S. Each suffix can be obtained by traversing the unique path from the 

root node to leaf node. The simple brute force algorithm to construct suffix trees 

runs in quadratic time. I use McCreight’s algorithm [12] which builds the tree in 

linear time by using sets of pointers. I construct a suffix tree T for Genome A and 

then add the suffixes for Genome B to T. Each leaf node in T is labelled to 



indicate which suffix it represents in which genome, A or B. MUMs are 

represented by internal nodes with exactly 2 child nodes, such that the child 

nodes are leaf node from different genomes. The maximal matches can be 

identified by the presence of mismatches at their end. Thus, all MUMs can be 

identified in a single scan of the suffix tree. Because the tree construction and all 

the subsequent steps take linear time and space, the overall runnig time and 

space of the system is also linear. 

 

MUM’S SORTING 

After finding all the MUM’s the next step is to sort them according to their 

position in Genome A. In the cases of transposition or reversal between the 

genomes, the B positions are not in ascending order. I employ a variation of the 

LIS algorithm to find the longest set of MUM’s which occur in ascending order in 

both Genome A and Genome B. For example, if the order of B position is given 

by the sequence (1, 2, 9, 6, 8, 3, 10), the LIS is (1, 2, 6, 8, 10). The algorithmic 

variations deal with the lengths of MUM sequences and the fact that they can 

overlap. This algorithm requires O(K log K) time or O(N) time, where K is the 

number of MUMs.  

 

 



CLOSING THE GAPS 

After sorting the MUM’s the local gaps need to be closed to complete the 

alignment. A gap is defined as an interruption in the MUM alignment and falls into 

one of the four classes.  

1. SNP interruption: Exactly one base differs between the two sequences. In 

the simpler case, it is surrounded by an MUM subsequence. In other 

cases SNP is adjacent to sequences that are not unique. This is dealt by 

capturing the adjacent sequence and SNP and using the repaeat 

processing procedure described below. 

2. Insertion: A sequence that occurs in one genome but not the other. They 

can be divided into two classes i) transposition are subsequences that are 

deleted from one location and inserted elsewhere, they appear in the 

MUM alignment out of sequence. ii) Simple insertions are subsequences 

that apppear in only one of the genomes, these can be identified as they 

don’t appear in the MUM alignment. 

3. Polymorphic region: Many mutations in a short region. If the regions are 

sufficiently short, I can use a standard dynamic programming algorithm to 

do the alignment. For very large regions, I can apply the original matching 

procedure recursively using a reduced minimum MUM length, if required.  

4. Repeat sequence: The sequence is repeated in both the genomes. MUM 

alignment in these cases outputs intervals which overlaps indicating to the 

algorithm that a tandem repeat is present. The difference in overlap length 



in the two genomes indicates how many additional repeat bases are 

inserted in one of the genomes.  

 

IMPROVEMENTS 

1. In addition to base-to-base comparisons, all matching protein sequences 

can be clustered. This helps in detecting regions of conserved synteny - 

multiple proteins from one organism are found in the same order and 

orientation in another. For each chromosome, all the proteins can be 

concatenated in order to create mini-proteomes. The algorithm can then 

be used to align each chromosome to entire genome at the protein level.  

2. Algorithmic improvements: i) Reduction of amount of memory used to 

store suffix trees. Many nodes have more than two children, which 

reduces the actual memory requirement. ii) Only one sequence is stored 

in the suffix tree. The second sequence, also called query, is then 

‘streamed’ against the suffix tree, exactly as if it were being added but 

without actually doing so. We identify where the query sequence would 

branch off from the tree, thereby finding all matches to the reference 

sequence. If the branch occurs at a tree position with just a single leaf 

beneath it, the match is unique in the reference sequence. Iii) Clustering 

matches together and then find consistent paths within each cluster.  



These improvements improve the speed of the original algorithm by 

three times. Also, they permit the comparison of protein sequence and of 

multiple sequences from incomplete genomes.   

 

SUMMARY 

This paper describes the system for high resolution comparison of 

complete genome sequences. These techniques have been implemented in the 

MUMmer [1] system and used to perform complete alignments of 2 pairs of 

genomes: The first pair were two closely related strains of M.Tuberculosis of 4.4 

million nucleotide each, the second pair were two different Micoplasma bacteria 

with dissimilar lenth. In the former case, the system was very useful at 

pinpointing the SNP’s and significant insertions. In the latter case, where the 

organisms are not as closely related, the system is still able to align the genomes 

precisely. They also tested the system on even more distantly related sequences 

by comparing a syntenic region from the mouse and human genomes. The 

algorithm makes it possible to detect large-scale relationships between more 

distantly related organisms, which is becoming more important as more and 

more genomes are sequenced. 

 

 

 



REFERENCES 

1. A .L. Delcher, A. Phillippy, J. Carlton, S. L. Salzberg (2002) Fast algorithms for 

large-scale genome alignment and comparison. Nucleic Acids Research, Vol 30, 

No. 11, 2478-2483. 

2. A. L. Delcher, S. Kasif, R. D. Fleischmann, S. L. Salzberg (1999) Alignment of 

whole genomes. NAC, Vol 27, No. 11, 2369-2376. 

3. S. Needleman, and C. Wunsch. (1970) J. Mol. Biol., 48, 443-453. 

4. T. Smith, and M. Waterman. (1981) J. Mol. Biol., 14. 7, 195-197. 

5. K. M. Chao, J Zhang, J. Ostell, W. Miller. Comput. Appl. Biosci., 13, 75-80. 

6. K. M. Chao, J Zhang, J. Ostell, W. Miller. Comput Appl Biosci., 11, 147-153. 

7. S. Altschul, T. Madden, A. Schaffer, J. Zhang, D. Lipman, (1990) J. Mol Biol., 

215, 403-410. 

8. S. Altschul, T. Madden, A. Schaffer, J. Zhang, D. Lipman, (1997) Nucleic Acid 

Research, 25, 3389-3402 

9. W. R. Pearson (1995) Prot. Sci., 4, 1145-1160. 

10. W. R. Pearson, D. J. Lipman (1985) Science, 227, 1435-1441. 

11. T. Smith, M. Waterman. (1981) J. Mol. Biol. 147, 195-197. 

12. E. M. McCreight. (1976) J ACM, 23, 262-272. 


