Michael Sneddon

Genomics and Bioinformatics

Final Project – 12/11/06

Mike’s Multi Alignment (MMA)

I. Basic Overview

My program is an implementation of a basic progressive multiple alignment algorithm written in Java. It begins by reading in a list of sequences from a file saved in FASTA format, then reads in a substitution matrix from a separate file. It computes all pairwise alignments between the sequences. Next, my program progressively adds sequences to a multiple alignment in an order based on the pairwise scores. The highest scoring pair is obviously aligned first. Then the sequence with the highest pairwise score to either of the first two aligned sequences is added second. This process continues until all sequences are aligned.

To score a sequence vs. an existing multiple alignment, I use the average score of matching a residue in the new sequence to residues in a given position of the multiple alignment. In other words, if we were trying to align residue X to an existing multiple alignment where we had two gaps and another X in that position of the alignment, the score of this match would be the score of X matching X plus twice the score of a gap all divided by three.

The program uses the same substitution matrix for all alignments (unlike Clustal). Also, the gap penalty is not an affine gap penalty and is fixed per residue aligned to a gap. In other words, there is a zero gap open penalty and a fixed gap extension penalty. This obviously does not give the best biologically relevant alignment (and it seems to be clear where this happens), but it was much easier to implement.

Finally, the program outputs, in a nice format, the multiple sequence alignment to the console. The numbered order of the sequences is also the order that they were added to the final multiple alignment. (So sequences 1 and 2 are most similar, sequence 3 is most similar to either 1 or 2, and so on). Below the alignment, an asterisk marks where all residues in the alignment match.

II. How to Compile and Run MMA

MMA is a Java program so it should run on any computer that has the Java Runtime Environment properly installed, although it has only been tested in Windows. You can download the Java Runtime Environment from

http://java.sun.com/j2se/downloads
Also, if you are running MMA from Windows, you will have to update the Windows PATH variable correctly so that Windows knows where Java is installed so that it can run the program. There is a helpful online tutorial that can guide you through that process here:

http://java.sun.com/j2se/1.3/install-windows.html#Environment

Once your computer has been setup, running MMA is simple. I’ve created a .bat file named MMA.bat that you can simply double click in Windows that will run my program using the default Blossum62 substitution matrix, with a fixed gap penalty or –4, on the sample data that I’ve included.

Or, to run the program from the command prompt, while in the directory that the program exists, type:

> java MikeMultiAlign

This will run the program with the default settings. To run the program with different options, you can use additional command line arguments as follows:

>java MikeMultiAlign <SequenceFileName> <GapPenalty> <SubMatrixFileName>

For example, to run the program with the default parameters you would use the command:

>java MikeMultiAlign seq.txt –4 blossum62.txt

Note that you can include any or all of the command line arguments, although you must include them in this same order and include all other command line arguments up to the one you want to include. To recompile the program, use the javac command, or simply double click on the .bat file I wrote named recompileMMA.bat. If you have any other questions, please let me know.

III. Comparison To CLUSTAL

The alignment generated by MMA was compared to ClustalW to see how well it performs. On this test data (which was taken from an online ClustalW tutorial), MMA performs reasonably well. It clearly aligns most of the sequence correctly compared to ClustalW. However, it is also very obvious that MMA introduces more gaps that are biologically unreasonable compared to ClustalW. This, of course, is due to the fact that I did not implement affine gap penalties. You can take a look at how the two alignments compare in the file Clustal_Results.txt which shows how my alignment looks compared to the ClustalW version.

IV. Files Included

Java Files

MikeMultiAlign.java

-The main file that contains the executable code.

Matrix.java

ReadFile.java

Sequence.java

Class Files

MikeMultiAlign.class

Matrix.class

ReadFile.class

Sequence.class

Input files

Seq.txt

-The test data that I used to compare to ClustalW

Seq2.txt
-Another set of sequences for testing, also from an online tutorial. This file contains one query sequence that best matches one of the other remaining sequences while the other sequences only loosely match. From the alignment, it is clear which sequence matches the query sequence best and demonstrates that my program progressively aligns sequences in the best order.

Blosum62.txt
-The file that contains the substitution matrix

Other files

Clustal_Results.txt
-This file contains a line by line comparison of the Clustal alignment with MMA

MMA.bat

-A file that can run MMA in windows with the default settings

RecompileMMA.bat
-A file that recompiles MMA in windows (creating .class files from .java files)

