
GENOMIC REARRANGEMENT ALGORITHMS

KAREN LOSTRITTO

Abstract. In this paper, I discuss genomic rearrangement. Specifically, I

describe the formal representation of these genomic rearrangements as well

as two basic algorithms for transforming between one genome permutation

and another. I discuss the most recent advances in the field and concepts

employed in these algorithms. I then propose an idea for obtaining a better

understanding of the biological significance of these algorithms. Although this

topic is related to the assigned synteny mapping topic, it is different in that

I am assuming that the synteny map already exists, and I am exploring the

calculation of genomic rearrangement and distance to yield the synteny map.

Throughout evolution, genomes have been rearranged through the breaking and

rejoining of the DNA backbone which results in scrambling of the genome. However

large chunks of DNA which did not contain breaks remain intact. Therefore by

comparing different organisms A and B with a common ancestor, we can track

what and where each chunk of DNA in organism B corresponds to in organism A.

This information can be depicted using a synteny map in which we start with the

karyotype of organism A and assign different colors to chunks of chromosomes to

represent what chromosome they correspond to in organism B, shown in figure 1[1].

Since genes from organism A and organism B will start out in the same order in a

common ancestor, the question arises of how the genome was cut apart and pasted

back together to form the gene order in organism A and organism B. So given a

synteny map of organism A, we ask how it can be rearranged to yield organism

B. This task is quite a challenge even though in cases like mice and humans there

have only been 250 genomic rearrangements between their genomes. We can define

the problem of transforming between genome A and genome B by defining a set of

1

2 K. LOSTRITTO

Figure 1. Synteny Map [2]

operations which we will use to transform the genome. The question is then deter-

mining the fewest number of operations necessary to complete this transformation.

This number does not tell us necessarily how the transformation actually occurred

in evolution, but it gives us a lower bound on the number of operations to perform

the rearrangement. However determining the fewest number of rearrangements is

rather difficult. An example of the operations used to define a rearrangement is

the operation of inversions (reversal). One step in this rearrangement is as follows

where segments 1, 2, and 3 are reversed.

In order to formalize modeling reversals, we define a permutation as the order of

the chunks (or genes) in the synteny map, so in the example above, we start with

permutation (1,2,3,4) and change to (3,2,1,4). In a signed permutation, the sign of

the integer represents the orientation of the gene. If a permutation π is defined as

GENOMIC REARRANGEMENT ALGORITHMS 3

π1π2π3...πn a reversal between positions i and j, p(i,j), yields the following trans-

formation:

p(i, j) ∗ π1..πiπi+1..πjπj+1...πn → π1...πj ...πi+1πiπj+1...πn

So the reversal distance is then just the minimum number of reversals neces-

sary to transform permutation π into permutation σ, and the reversal problem is

computing the shortest series of reversals to transform between permutation π and

permutation σ [3]. However there are many other possible operations to consider.

For example, we can use transpositions to transform rearrangements. A transpo-

sition p(i,j,k) can be seen as switching two adjacent blocks in the permutation.

Formally this is defined as:

p(i, j, k)∗π1..πi−1πiπi+1...πj−1πj ...πk−1πkπk+1....πn → π1..πi−1πjπk−1πiπi+1...πj−1πk....πn

Similarly, the transposition distance is the number of transpositions necessary to

transform π into σ. An inverted transposition is like the transposition above except

that one of the switched blocks has its order reversed. If it is a signed transposition,

then the sign of each reversed gene also gets switched. An example of an inverted

transposition follows:

p(i, j, k)∗π1..πi−1πiπi+1...πj−1πj ...πk−1πkπk+1....πn → π1..πi−1πjπk−1πj−1...πi+1πiπk....πn

A block interchange works in the same way as a transposition except that the

blocks to be switched are not adjacent, in other words, a transposition is a special

case of a block interchange[3]. Another type of genomic rearrangement is a translo-

cation, which exhanges segments between two different permutations (which can

be seen as different chromosomes). There are prefix-prefix translocations like the

following:

p(π, σ, i, j) ∗ (π1...πi...πn), (σ1...σj ...σn) → (π1...πi−1σjσn), (σ1...σj−1πi...πn)

4 K. LOSTRITTO

There are also prefix-suffix translocations where the prefix of one permutation

is swapped with the suffix of another permutation. A fusion of two permutations

p(π, σ) is concatenating one permutation right after the other, and fission of a

permutation p(π, i) splits the permutation into two permutations, one from po-

sitions 1 to i-1 and the other from positions i to n [3]. If we add the elements

0 and n+1 to a permutation yielding (0, π1....πn, n + 1), we can then define the

concept of a breakpoint as any pair (πi, πi+1) where |πi+1 − πi| 6= 1 for any i be-

tween 0 and n. The set of breakpoints defines the idea of strips, where πi...πj is a

strip if there are no breakpoints for any pairs between i and j and (πi−1, πi) and

(πj , πj+1) is a breakpoint. For example, in (0, 3, 4, 8, 5, 6, 7, 2, 1, 9), the breakpoints

are (0, 3), (4, 8), (8, 5), (7, 2), (1, 9), and the strips are (0), (3, 4), (8), (5, 6, 7), (2, 1), (9)[3,

4].

Given an algorithm which can perform the transformation of one permutation to

another, we ask how ”good” it is, meaning how close does it come to being optimal

i.e. fewest number of operations. This problem is identical to that of transforming

permutation π into the identity permutation I = (1, 2, 3, n) since transforming π

into σ would just involve transforming π into I and σ into I and then reversing the

steps for transforming σ into I. Therefore we consider the problem of transforming

π into I. Our algorithm A will perform A(π) steps to transform π into I. Then say

that the optimal algorithm O, which we may not know, will perform O(π) steps

to transform π into I. Therefore A(π) will be at least as big as O(π). A high level

of optimality would imply that A(π)
O(π) is close to 1 (as opposed to greater than 1).

We calculate the ratio for all sequences with the same length as π and find the

maximum of this ratio, which basically tells us the worst case for our algorithm to

differ from the optimal solution [4]. So formally we are calculating:

max|π|=n
A(π)
O(π))

Assuming that we are just using reversals to transform from one rearrangement

to another, I will explain the following SimpleReversal Sort algorithm which can

be used to transform from genome A to genome B. Although this algorithm will

GENOMIC REARRANGEMENT ALGORITHMS 5

guarantee that we successfully transform between these two genomes, it is not op-

timal, meaning that it will not perform the transformation in the least number

of steps. The following steps transform π into I. The algorithm first locates the

element numbered one and performs a reversal of the segment between it and the

first position, so now number one is correctly positioned. It then locates element

two and performs a reversal between its position and the second position. In this

way each reversal step increases by one the number of correctly positioned numbers

until after n-1 steps all n numbers are in the correct order[4]. However this is by

no means the fewest steps required to transform π into the identity. Here is an

example of this algorithm:

4, 1, 2, 5, 3 → 1, 4, 2, 5, 3 → 1, 2, 4, 5, 3 → 1, 2, 3, 5, 4 → 1, 2, 3, 4, 5

Compared with the SimpleReversalSort algorithm presented above, the following

algorithm uses the concept of breakpoints to obtain a closer to optimal solution.

First we extend our permutation by including π0 = 0 and πn+1 = n + 1. Since

the identity permutation has no breakpoints, one can view the task of transforming

π into the identity as equivalent to eliminating all breakpoints from π. Since any

given reversal is only affecting neighbors at the two endpoints of the reversal, at

the most, only two breakpoints can be removed. Therefore the number of reversals

necessary to transform to the identity, r(π) will be greater than or equal to the

number of breakpoints divided by 2, b(π)
2 . So the algorithm will start with our

permutation π and continually eliminate breakpoints through reversals until there

are none remaining [4]. Two important issues that arise in regards to this algo-

rithm are whether we can always perform a reversal which decreases the number

of breakpoints and then how close to optimal this algorithm is. In order to prove

that we can continually reduce the number of breakpoints, we start with the case

where there is at least one decreasing strip such as (321) or (65). (Note: Strips of

length 1 are usually defined as decreasing, except in the case of the first and last

6 K. LOSTRITTO

element which are always increasing.) If you find the smallest element k which is in

a decreasing strip (which implies it is the last element in that strip), then element

k-1 will be the last element in an increasing strip so performing a reversal after

the position of k-1 and after the position of k will cause k-1 and k to be joined

together thus decreasing the number of breakpoints. However in the case of all

increasing strips, we first reverse one of the strips so that we now have at least one

decreasing strip and our original logic applies [4]. An example of this is as follows.

In the permutation, 0541237689, four is the smallest element in a decreasing strip

implying that three is at the end of an increasing strip and therefore performing a

reversal between these elements yields 0543217689. Continuing in this way yields

0123457689 and then 0123456789, the identity. We want to find a bound for how

optimal this algorithm is. So as we saw in the previous proof, we need at most two

reversals to eliminate one breakpoint. Therefore our algorithm will take maximally

2b(π) to eliminate all the breakpoints. Given an optimal running time of r(π), the

ratio of interest is 2b(π)
r(π) and because we know that r(π) ≥ b(π)

2 , we have

2b(π)
r(π)

≤ 2b(π)
b(π)
2

= 4

An approximation ratio of 4 is far from the best algorithm in the field. A great

deal of work has been done on determining algorithms which give the minimum

number of rearrangements (for a certain subset of rearrangement types) in order

to transform one genome into another. The best approximation for rearranging

unsigned permutations by reversals is 1.375 [4]. For signed permutations, sorting

by reversals can be carried out in O(n2) time, elaboration in next paragraph [5].

However if we are only interested in calculating the number of reversals necessary

to do a transformation without knowing the series of reversals, there exists a linear

time algorithm which uses stacks [6].

The O(n2) algorithm for sorting signed permutations by reversals was con-

structed by Kaplan et al. Although I will not discuss the algorithm in detail, I

will highlight some of the main concepts used in the algorithm which relies heavily

GENOMIC REARRANGEMENT ALGORITHMS 7

on graph theory. First a breakpoint graph is constructed. The graph has vertices

0, π1, π2...πn, n + 1 and the edges are black and gray. Black edges will be (πi, πj)

such that |i − j| = 1 while |πi − πj | > 1, in other words adjacent nonconsecutive

elements i.e. breakpoints. The gray edges are (πi, πj) such that |πi − πj | = 1 while

|i−j| > 1, in other words non adjacent consecutive elements. We define cycles to be

those cycles (in the normal sense) which have edges of alternating colors. We define

a reversal as being proper if ∆b(π, ρ)−∆c(π, ρ) = −1 where ∆b(π, ρ) is the change

in the number of breakpoints after applying the reversal and ∆c(π, ρ) is the change

in the number of cycles after applying the reversal. An oriented edges is therefore

an edge in which a reversal acting on it is proper; otherwise it is unoriented. An

overlap graph, OV (π), is created from the breakpoint graph, and the concept of

a hurdle is then derived. The goal is to eliminate hurdles in the graph, and safe

reversals are those which do not create new hurdles. The algorithm proceeds by

first finding the overlap graph and then clearing the hurdles. Then the following

step is repeated until π becomes the identity: a safe reversal is performed and π

and OV (π) are updated [5].

An NP hard problem is one in which any other problem in the class NP (problems

with polynomial time verifiers) has a polynomial time reduction to it. It was found

that the problem of unsigned permutation rearrangement by reversals is NP-hard

[3]. The problem of reversals can be extended to include chromsomes which do not

necessarily contain the same set of genes. In this case, we want to determine how

many reversals , insertions, and deletions of gene groups need to be performed to

transform one signed permutation into the other. An O(n2) algorithm was found

to do this[7].

We can then look at results for rearrangement by transpositions. Algorithms

with running time O(n2) and O(n4) with an approximation ratio of 1.5 have been

developed, but it is not known whether there is a polynomial -time algorithm to

solve the transposition problem. Certain restrictions (like on which blocks can be

8 K. LOSTRITTO

swapped) can be imposed on transpositions in order to solve the problem or at least

to improve the approximation ratio [3].

In more realistic cases, we may want to consider rearrangements by some combi-

nation of the given rearrangement types. For example, we can look at calculating

rearrangements for transpositions and reversals. Unsigned permutation rearrang-

ments with these two types of operations have approximation ratio 3, and for signed

permutations, the approximation ratio is 2 [8]. The true evolutionary distance is

the number of transpositions, reversals and inverted transpositions which will be

necessary to transform one permutation into another [3].

The issue also arises of weighting different kinds of genomic rearrangements. So

far, we have been trying to find the minimum number of genomic rearrangement

events to transform one permutation into another. However in finding this mini-

mum number we may want some rearrangement events to count more because they

are less likely to occur. Since it has been found that transpositions occur with half

the frequency of reversals, we weight them twice as much in order to internalize

the lower probability of their occurence. For the problem of calculating the min-

imum weight series of transpositions, fusions and fissions to transfer between two

permutations, an O(n2) algorithm was found [9].

So far we have not considered algorithms for translocations. For the signed case

the translocation problem has been solved with a polynomial O(n3) as well as a

O(n2 log n) algorithm [3]. For the unsigned case, a solution has not been found,

but there is a polynomial-time approximation algorithm which has ratio 2, and

for cases of swapping equal length blocks, runs in O(n) time[10]. If we combine

translocations with reversals, fusions, and fissions for the signed permutation case,

there exists an O(n4) algorithm [3].

A complication to the genomic rearrangement problem is to consider the case of

having more than one copy of certain genes, in which case we create a string whose

characters represent genes on the chromosome. We assume that the number of

copies of each gene is the same for both strings. We wish to compute the minimum

GENOMIC REARRANGEMENT ALGORITHMS 9

number of reversals to transform between two strings. It was proved that sorting

strings by reversals is always NP-hard, regardless of the number of different types

of genes. The same was proved for sorting strings by block interchanges [11].

Another measure of distance between two genomes is syntenic distance. This

measure of distance is quite different from others because we ignore the ordering

of the genes on the chromosome and thus just represent each chromosome by an

unordered set of genes. A genome is then a collection of chromosomes. Given two

chromosomes A and B we can fuse them creating A ∪B. A fission of chromosome

A results in A1 and A2 where A1 ∪ A2 = A. A translocation of chromosomes A

and B, where A1 ∪A2 = A and B1 ∪B2 = B results in A1 ∪B2 and B1 ∪A2. The

syntenic distance is therefore defined as the fewest number of fusions, fissions, and

translocations to transform one genome into another. It was proved that computing

the syntenic distance between two genomes is NP-hard [12].

We can now ask ourselves what the purpose is of determining these minimum

number of genomic rearrangements and different distances between chromosomes

and genomes. Well, the object is to use these numbers as measures of distance

when constructing a phylogenetic tree. The phylogenetic tree problem is defined

as follows. Given a tree T and l leaves where each leaf is one of l chromosomes, we

want to assign a chromosome to each internal node such that the distances between

all nodes in the tree are minimized. Formally we want to minimize the weight

w(T) =
∑

(x,y)∈T d(x, y) where (x, y) is an edge in the tree and d is chosen from

the distance metrics. Heuristics have been designed to solve this problem [3].

I would like to propose an interesting extension and evaluation of these algo-

rithms. I think that it would be beneficial to perform a comparison among several

of these genomic rearrangement algorithms. Firstly, select a set of algorithms to be

tested, and then select several organisms for which the gene order and synteny map

is known enabling us to perform the algorithms to determine the series of genome

rearrangements. So I would select the first algorithm in my set of algorithms and

perform a neighbor joining / clustering algorithm as follows. Find the distance

10 K. LOSTRITTO

between all pairs in the set of genomes where distance is defined by the selected

algorithm. Then for the two genomes with the least distance between them, join

them together, and create an internal node as their common ancestor. This inter-

nal node could be some intermediate in the transformation from one to the other.

Then recalculate distance between pairs where now the closest two genomes are

replaced by their ancestor genome. Keep adding genomes to the tree and adding

internal nodes until a full phylogenetic tree is formed. Repeat this process for the

other algorithms under consideration. Then compare them to see which algorithm

yielded the minimum distances between certain pairs of genomes. Which algorithms

yield similar results? Does an algorithm which involves several types of genomic

rearrangements yield a tree which is an intermediate of trees by algorithms of each

of the genome rearrangements separately? Or does having several different types of

rearrangements allow for a much different tree with lower evoluationary distances

between genomes?

I would then compare these trees to a standard phylogenetic tree involving these

organisms and see which of the algorithm trees best represents the standard tree?

I would expect that the trees constructed through the algorithms would have a

shorter distance between organisms than would the standard tree. The reason is

that our algorithms calculate the minimum number of operations for transformation

but while that’s interesting computationally, it doesn’t necessarily reflect the true

number of rearrangements in biology. So it would be interesting to see which tree

best reflected the standard tree which is hopefully close to reality. I would imagine

that a weighted algorithm involving several different rearrangement types would

be close to the standard tree; however it’s possible that this may cause a too low

estimate for divergence time. I think that two items of interest in comparing trees

would be the divergence time between different genomes and the phylogenetic tree

architecture. Even if one method predicts a greater divergence time than another,

do they still give the same tree structure, in other words, are the same two genomes

the closest relatives even if the actual predicted closeness is different? I think

GENOMIC REARRANGEMENT ALGORITHMS 11

that testing out the algorithms in this or a similar way would be beneficial in our

understanding of the usefulness of these algorithms to model the reality of genomic

rearrangements.

References

[1] Griffiths, A., Gelbart, W., Lewontin, R., Miller, J., Modern Genetic Analysis. New York:

W.H. Freeman and Company, 2002.

[2] http://scienceblogs.com/pharyngula/upload/2006/06/human-tetraodonsyntenylg.gif

[3] Li, Z., Wang, L. Algorithmic Approaches for Genome Rearrangement: A Review. IEEE

Transactions onSystems, Man, and Cybernetics,36(2006):636-645.

[4] Jones, N., Pevzner, P. An Introduction to Bioinformatics Algorithms. Cambridge, MA: MIT

Press, 2004.

[5] Kaplan, H., Shamir,R., Tarjan, R. A Faster and Simpler Algorithm for Sorting Signed Per-

mutations by Reversals. SIAM Journal on Computing, 29(2000):880-892.

[6] Bader et al. A linear-time algorithm for computing inversion distance between signed permu-

tations with an experimental study. Proc. 7th Int. Workshop Algorithms and Data Structures

2001: 365-376.

[7] El-Mabroul, N., Sankoff, D. Hybridization and genome rearrangement. Proc. 10th Annu.

Symp. Combinatorial Pattern Matching, (1848)1999: 78-87.

[8] Walter, M., Dias, Z., Meidanis, J. Reversal and Transposition Distance of Linear Chromo-

somes. String Processing and Information Retrieval: A south American Symposium1998:

96-102.

[9] Dias, Z., Meidanis, J. Genome rearrangements distance by fusion, fission, and transposition

is easy. Proc. 8th Int. Symp. String Processing and Information Retrieval, 2001: 250-253.

[10] Kececioglu, J., Ravi, R. Of Mice and Men: Algorithms for Evolutionary Distances Between

Genomes with Translocation Proc. 6th Annual ACM-SIAM Symp. Discrete Algorithms, 1995:

604-613.

[11] Christie, D., Irving, R. Sorting strings by reversals and by transpositions. SIAM journal on

discrete math, 14(2001): 193-206.

[12] DasGupta, B., Jiang, T., Kannan, S., Li, M., Sweedyk, Z. On the complexity and approxima-

tion of syntenic distance Proc. 1st Annual Int. Conf. research in Computational Molecular

Biology, 1997: 99-108.

	References

