

<u>Large-scale Database Surveys</u> <u>(contents)</u>	
 Fold Library Parts Lists: homologs, motifs, orthologs, folds Overall Sequence-structure Relationships, Annotation Transfer Function Classification Cross-tabulation, folds and functions Parts in Genomes, shared & common folds Genome Trees Extent of Fold Assignment: the Bias Problem Bulk Structure Prediction The Genomic vs. Single-molecule Perspective Understanding Biases in Sampling Relationship to experiment: LIMS, target selection 	2 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

Fold Library
Parts Lists: homologs, motifs, orthologs, folds
Overall Sequence-structure Relationships, Annotation Transfer
Function Classification
Cross-tabulation, folds and functions
Parts in Genomes, shared & common folds
Genome Trees
Extent of Fold Assignment: the Bias Problem
Bulk Structure Prediction
The Genomic vs. Single-molecule Perspective
Understanding Biases in Sampling
Relationship to experiment: LIMS, target selection

They have been deed door, speeded, speeded, and out of the out of	
Many of the most outlandsh lakes come from the study of Drosophila, the full files. IIPPCC, a novel fly gene, which was described in the August issue of the journal interact Molocular Biology, is one nevert	
was named for the reaction of Katarina Koxstrom-Lindquist, a graduate student at the	
"vippee" in the margin of her notebook and her for an and her for the formation	
In such cases, the appellation any more about the scientist than the game. Star Tiels alcientades surface	
with same like vullcan and klingon. For a nit lands life, stranded at second. a clar way to destribut a share to derive designed, surdly in the result lands line; five a piet lands life, stranded at second.	np
make their way out of the cabinet and into the literature with gones such as Grappa	le.e
Bat for name are to douby ited to popular tasks or calture. Scientists more effect nely on scriptural, Henzy or historical sources to douis a colorful term that describe what they are under the missionspe.	.ya
A gene that affects female fertility was dubbed sarah after the wife of Abraham who was infertile for	qq
many years but eventually bore a child. One matrix the cases to entry to remain had ease to entry	E.
barentise of the local of Cliffing, builts barene of orders or product a barene of the local states of the	, bioinfe
wrong place. Agoraphobic refers to a mutant for which the larvae look normal but never crawl out of the egg shell.	9, Yale
receiption in 1987 these to summed a Description in Single-minded after the visual effect of the	199
mutant morphology. Flies with mutations in this gene possess a single bundle of axons in their	Ľ.
nervous	ste
systems instead of two. He had also considered using simple-minded but abandoned that label	Ger
because	1 E
the name could have been taken as offensive, openly if the function of the operlady of the operlady of the function of the operlady of the ope	:) Mai
bilied concents his index how more in the spars. In 100 3 restarting by sparse with denoved that consent bank to store the most low restarting how more index how point benefits and after mice higher disapposed. A similar interaction are more research, where is no scored as a fraction librarity index anticonset. In this for a second new how more index of the investignary, Negadi and Taby the source starting and the trends of the investignary. They how fraction and the corresponding general scored and index of the source starting and the trends of the starting of the source starting.	33 (c

(Common Fold	ls in Ger	nome	e, Varie	es B	etw. (Geno	ome	<u>es</u>	
Depe meth (new Blast get sl	ends on comparison od, DB, sfams v folds, &c top superfamilies via <i>ψ</i> -, , Intersection of top-10 to hared and common)	Top-10 V	Vorn	n Folds	class	num. matches in worm genome (N)	frac. all worm dom. (F)	in EC?	in SC?	
<u></u>		lg			В	830	1.7%			3
L C J	A A A A A	Knottins			SML	565	1.1%			.ed
	-	Protein kinase	s (cat. d	core)	MULT	472	0.9%			ale
	and	C-type lectin-li	ke		A+B	322	0.6%			b.y
	Maria	corticoid recep	. (DNA	-bind dom.)	SML	276	0.5%			gu
Δ		Ligand-bind do	om. nuc	. receptor	A	257	0.5%			fo.r
	9-40-00	alpha-alpha su	iperheli	x	A	247	0.5%			oin.
	ø.	C2H2 Zn finge	r		SML	239	0.5%			biq
	- 772	P-loop NTP Hy	/drolase	e	A/B	235	0.5%			le,
	_ &∕_ _ →	Ferrodoxin			A+B	207	0.4%			\geq
Rank 1 2 3 4 5 6 Total ORFs with Common Superfamilies	M genitatium B subilis Superfaminy 8 Superfaminy Superfaminy 8 Superfaminy Superfaminy 8 Superfaminy Superfaminy 10 Superfaminy Bostamenty 10 Superfaminy Bostamenty 11 Superfaminy Bostamenty 12 PLP superfaminy Class 11 Charlies and Discrete 11 Charlies and Superfaminy 12 Charlies and Superfamin	E. coll I Superfarmly II Superfarmly II III Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly Image: Superfarmly	Rank 1 2 3 4 5 6 Total ORFs with Common Superfamilies	M. thermo- autotophcum Sejertimy z Proce hydoyase 93 Prosphate- to the second Prosphate- to the second Prosphate- Prosphat-	A. fulg Superior A. fulg Notice Prospheric Binding Frenedic SAM mo tranfer PLP-trans	Interface Pank smithy a size 118 arm 104 arm 104 athref 56 xins 49 ythyle 24 feranses 18 3009 1105 3009 With C	1 X P 3 X P 3 X P 5 Rit ORFs Common families	S. cerevisiae Supertamily P-loop hydrolyase totein kinase Rossmann domain RNA-binding domain SAM methyl- transferase bionuclease H like	# 249 123 90 75 63 57 6218 560 (9%)	(c) Mark Gerstein, 1999,
	Eubacteri	а		Archae	ea		Yea	ıst		8

bioinfo.mbb.yale.edu Fold Library · Parts Lists: homologs, motifs, orthologs, folds Overall Sequence-structure Relationships, Annotation Transfer · Parts in Genomes, shared & common folds Genome Trees Yale, · Extent of Fold Assignment: the Bias Problem 1999. Bulk Structure Prediction · The Genomic vs. Single-molecule Perspective Gerstein, Understanding Biases in Sampling Relationship to experiment: LIMS, target selection Mark · Function Classification 0 · Cross-tabulation, folds and functions 69

<u>2° Structure</u> Prediction	Fraction o residues Predicted to be in	strand	helix	
 Bulk prediction of 2° struc. in genomes Same fraction of α and β (by element, half each) 	Avg SD	17% 1%	39% 2%	ale.edu
 Both overall and only for unknown soluble proteins. 	EC HI HP	17% 16% 15%	39% 41% 42%	nfo.mbb.ya
Structurally Uncharacterized (186)	MG MJ Z ⁴ MP	17% 19% 17%	39% 37% 39%	Yale, bioi
1 PDB Match (152) 3 TM helix (30) 5 Colled-Coll 2 Low Complexity Region (116) 4 Linker Region (5) 6 All-alpha or All-beta Region	SC SS	17% 16%	34% 38%	in, 1999,
 Diff From PDB: 31% helical and 21% strand. Related results: Frishman since 	expected e			74 (c) Mark Gerste

Different	Different Amino Acid Composition														
<u>Amino Acid</u>		EC	н	SS	sc	HP	MP	MG	MJ	TM-hlx	helix	strand			
Composition	к	4.4	6.3	4.2	7.3	8.9	8.6	9.5	10.4	8.8	-1.5	-0.4			
	С	1.2	1.0	1.0	1.3	1.1	.8	.8	1.3	-2	-1.1	-0.8			
Should Give	R	5.5	4.5	5.1	4.5	3.5	3.5	3.1	3.8	12.3	-1.9	-0.4			
	Ν	4.0	4.9	4.0	6.1	5.9	6.2	7.5	5.3	4.8	-1	-0.5	qr		
Different 20	Q	4.4	4.6	5.6	3.9	3.7	5.4	4.7	1.5	4.1	-1.3	-0.4	e.e		
	Α	9.5	8.2	8.5	5.5	6.8	6.7	5.6	5.5	-1.6	-1.9	0	ale		
	1	6.0	7.1	6.3	6.6	7.2	6.6	8.2	10.5	-3.1	-1.2	-1.3	b.)		
Structure	н	2.3	2.1	1.9	2.2	2.1	1.8	1.6	1.4	3	-1.1	-0.4	dr		
	S	5.8	5.8	5.8	9.0	6.8	6.5	6.6	4.5	-0.6	-1.1	-0.9	0.1		
	М	2.8	2.4	2.0	2.1	2.2	1.6	1.5	2.2	-3.4	-1.4	-0.9	i		
Each a.a. has different	P	4.4	3.7	5.1	4.3	3.3	3.5	3.0	3.4	0.2	3	>3.0	bio		
propensity for local	G	7.4	6.6	7.4	5.0	5.8	5.5	4.6	6.3	-1	0	1.2	é		
structure	F	3.9	4.5	4.0	4.5	5.4	5.6	6.1	4.2	-3.7	-1	-1.1	Yal		
->	E	5.7	6.5	6.0	6.5	6.9	5.7	5.7	8.7	8.2	-1.2	-0.2	ົດົ		
Different Compositions (K	Y	2.9	3.1	2.9	3.4	3.7	3.2	3.2	4.4	0.7	-1.2	-1.6	66		
from 4.4 in EC to 10.4 in	v	7.1	6.7	6.7	5.6	5.6	6.5	6.1	6.9	-2.6	-0.8	-0.9	-		
MJ, Q too)	T	5.4	5.2	5.5	5.9	4.4	6.0	5.4	4.0	-1.2	-0.6	-1.4	eir		
->	D	5.1	5.0	5.0	5.8	4.8	5.0	4.9	5.5	9.2	-1	0.9	Is		
Different Local Structure		10.6	10.5	11.4	9.6	11.2	10.3	10.7	9.5	-2.8	-1.6	-0.5	B		
(but compensation?)	w	1.5	1.1	1.6	1.0	.7	1.2	1.0	.7	-1.9	-1.1	-1	ž		
Propensities from Regan	total p	ropen	sitv										Ma		
(beta) and Baldwin (alpha)	α	-1.00	-1.02	-0.96	-1.00	-1.05	-1.03	-1.05	-1.01				0		
	ß	-0.27	-0.33	-0.26	-0.36	-0.37	-0.38	-0.42	-0.36				ß		
	r.												ñ		

bioinfo.mbb.yale.edu Fold Library · Parts Lists: homologs, motifs, orthologs, folds Overall Sequence-structure Relationships, Annotation Transfer · Parts in Genomes, shared & common folds Genome Trees Yale, · Extent of Fold Assignment: the Bias Problem Gerstein, 1999, Bulk Structure Prediction · The Genomic vs. Single-molecule Perspective Understanding Biases in Sampling Relationship to experiment: LIMS, target selection Mark Function Classification (c) · Cross-tabulation, folds and functions 1

with Gen	<u>ome Co</u>	<u>mpa</u>	riso	<u>n</u>	
tertiary (EK)	Organism	Category	Genome Abbreviation	# of Proteins	Physiological condition
local (DK)	Pyrococcus horikoshii (Strain OT3) (Kawarabayasi et al., 1998)	archaea	ОТ	2061	98° C, anaerobe
EEEHHHHHHHHHCCEEEEEEEECC	Aquifex aeolicus (Deckert et al., 1998)	eubacteria, gram negative	AA	1522	95° C
EAPAGNIDIIKAGMKSPVQLTVKNDT	Methanococcus janaschii (Bult et al., 1996)	archaea	MJ	1735	85°C, anaerobe
Protein Length	Archaeoglobus fulgidus (Klenk et al., 1997)	archaea	AF	2409	83°C,
	Methanobacterium thermoautotrophicum (Smith et al., 1997)	archaea	MT	1869	65° C, anaerobe
Tertiary Salt Bridge	Haemophilus influenzae (Fleischmann et al., 1995)	eubacteria, gram negative	HI	1680	mesophilic temp.
R	Mycoplasma genitalium (Fraser et al., 1995)	eubacteria, gram positive	MG	470	mesophilic temp.
Đ D	Mycoplasma pneumoniae (Himmelreich et al., 1996)	eubacteria, gram positive	MP	677	mesophilic temp.
	Helicobactor pylori (Tomb et al., 1997)	eubacteria, gram negative	HI	1590	mesophilic temp.
	Escherichia coli (Blattner et al., 1997)	eubacteria, gram negative	EC	4288	mesophilic temp.
ΘE	Synechocystis sp. (Kaneko et al., 1996)	cyanobacteria	SS	3168	mesophilic temp.
Local Salt Bridge	Saccharomyces cerevisiae (Goffeau et al., 1997)	eukaryote, fungus	SC	6218	mesophilic temp.

SC	PAB PS	(PA)	SS EC			Ai Ho	mi ow F St	nc Rep truc) A ore: ctur Con	AC ser res	id ntat of ete	C tive the	e a e F er	are Pro	th tei	O e l ns ?	Sİ Kn	tion n	<mark>OI</mark> wr	<u>ח</u> ו		du
	MP ²		(ABS.	rms	к	ıс	Q	w N	۰ F	LG	A	Р	SF	хн	м	Е	D	т	Y	v	.yale.e
Name	Soluble	= all-β	MJ + all-α	EC HI SS		4.4 6.3 4.2	6.0 1.2 7.1 1.0 6.3 1.0	4.4 4.6 5.6	1.5 4.0 1.1 4.9 1.6 4.0	3.9 1 4.5 1 4.0 1	0.6 7.4 0.5 6.6	9.5	4.4 3.7 5.1	5.8 5 5.8 4 5.8 5	.5 2.3 .5 2.3	8 2.8 2.4 2.0	5.7 6.5 6.0	5.1 5.0 5.0	5.4 5.2 5.5	2.9 3.1 2.9	7.1 6.7 6.7	fo.mbb.
A	PDB 8.40%	6.8%	9.2%	SC HP MP		7.3 8.9 8.6	6.6 1.3 7.2 1.1 6.6 .8	3.9 3.7 5.4	1.0 6.1 .7 5.9 1.2 6.2	4.5 5.4 1 5.6 1	9.6 5.0 1.2 5.8 0.3 5.5	0 5.5 3 6.8 5 6.7	4.3 3.3 3.5	9.0 4 6.8 3 6.5 3	.5 2.3 .5 2.3 .5 1.4	2 2.1 1 2.2 3 1.6	6.5 6.9 5.7	5.8 4.8 5.0	5.9 4.4 6.0	3.4 3.7 3.2	5.6 5.6 6.5	, bioin
C D E	1.72% 5.91% 6.29%	1.6% 5.9% 5.2%	1.4% 5.8% 7.3%	MG MJ		9.5	8.2 .8 10.5 1.3	4.7	1.0 7.5 .7 5.3	6.1 1 4.2	0.7 4.6 9.5 6.3	5 5.6 3 5.5	3.0 3.4	6.6 3 4.5 3		5 1.5 1 2.2	5.7 8.7	4.9 5.5	5.4 4.0	3.2	6.1 6.9	, Yale
F G H	3.94% 7.79% 2.19%	4.2% 8.4% 2.1%	4.2% 6.4% 2.2%	SD Diff.		2.3	1.4 .2	4.2	.3 1.2	4.0 <u>1</u> .8	.7 1.0	0 1.5	.7	1.3	.9	3.4	1.0	.3	5.2 .7	.5	6.4 .6	1999
I K L	5.54% 6.02% 8.37%	5.4% 5.6% 7.3%	5.1% 6.5% 9.6%	EC HI	16 17	-25 8	8 -29 27 -38	19 24	7 -15 -21 6	-2 12	28 -6 26 -15	6 13 5 -2	-5 -20	-3 -2	16 : -6 -	8 <u>28</u> 7 10	-7 5	-14 -17	-7 -11	-22 -14	1 -4	rstein
M N P	2.15% 4.57% 4.70%	1.7% 5.3% 5.1%	2.4% 4.4% 4.4%	SS SC HP	20 21 27	-29 24 52	13 -39 18 -21 29 -34	49 5 0	9 -13 -27 31 -51 27	1 14 36	37 -6 15 -36 34 -26	5 1 5 -34 5 -18	11 -7 -29	-3 51 14 -	6 -14 -7 -3 28 -4	5 -8 2 -4 4 _ 2	-2 5 11	-16 -4 -20	-6 0 -25	-20 -8 1	-4 -20 -20	rk Gei
R S	3.73% 4.78% 5.97%	3.5% 4.2% 7.2%	4.2% 5.4% 5.7%	MP MG MJ	28 36 38	45 61 77	18 -55 48 -50 88 -23	44 27 -61	-17 35 -32 62 -49 14	41 53 6	24 -29 28 -41 14 -19	-20 -33 -35	-25 -36 -28	8 - 11 - -25 -	27 -18 35 -28 20 -35	3 -28 3 -30 5 1	-8 -8 40	-17 -18 -8	2 -8 -31	-11 -11 20	-7 -12 -2	c) Ma
V W Y	5.87% 6.96% 1.46% 3.64%	7.6% 7.6% 1.7% 3.8%	5.2% 5.7% 1.5% 3.5%	AVG RMS		26 45	31 -36 39 38	13 35	-23 19 31 30	20 28	26 -22 27 25	2 -16 5 24	-17 23	6 - 21	13 -1: 21 18	3 -4 3 18	4 16	-14 15	-11 15	-8 15	-9 11	06

PDB	Select	length	class	name	Name	Hydroph.	Soluble	biophys.	Rel.	
lsty	-	137	β	Staph nuclease		Polar	PDB	nroteins	Diff	
lcgp	a:9-137	129	β	CAP		i olui	100	proteinio	Dill.	Dianhyciaa
1bgh	-	85	β	Gene V protein						DIUPITYSICa
1pht	-	83	β	SH3 domain			PS	BP	BP/PS -1	
ltpf	a:	250	α/β	ТІМ						Protoine
lwsy	a:	248	α/β	Trp Synthase	P	н	1 7%	3 7%	-21%	<u>1 10temis</u>
8dfr	-	186	α/β	DHFR			4.170	0.170	2170	
2rn2	-	155	α/β	Ribonuclease H	F	н	4.0%	3.2%	-19%	
1brs	d:	87	α/β	Barstar	М	н	2.1%	1.8%	-16%	Drotoine that
lgbs	-	185	α+β	Hen Lyzozyme	D	Р	6.0%	5.1%	-16%	Proteins that
1191	-	162	α+β	T4 lysozyme	V		7.0%	6.2%	120/	inform our view
1931	-	129	α+β	alpha-Lactabumin	v	п	7.076	0.2 /0	-12/0	
/rsa	-	124	α+β	RNAse A	С	н	1.7%	1.5%	-9%	of the folding
16rn	1:	108	α+β	Barnase	S	Р	6.0%	5.7%	-5%	of the folding
11 KG	-	107	α+β	FK500	G		7.8%	7.7%	-1%	process as
Joho 1	-	104	α+β	RINASE I I			5.00/	5.50	100	p
10hi	a. -	76	a+p	Ubiquitin		п	5.6%	5.5%	-1%	compared to
1001	-	63	a B	CL2 inhibitor	N	Р	4.6%	4.6%	0%	
ligd	-	61	α+β	B1 domain	W	н	1.4%	1.5%	1%	the PDB.
1mbd	-	153	a	Globin	т	P	5.8%	6.0%	2%	
1hrc	-	105	α	Cytochrome c			0.070	0.070	2 /0	Shorter
2wrp	r:	104	α	Trp Repressor	L	н	8.4%	8.7%	5%	Shorter
111i	a:	89	α	Cro Repressor	A		8.4%	8.8%	6%	(116 v 161)
lcop	d:	66	α	Lambda Repressor	Y		3.7%	3.9%	6%	(110 1 101)
1rpo	-	61	α	ROP	н	P	2.2%	2.4%	6%	_
1myk	a:	47	α	Arc Repressor		r	2.2%	2.4%	070	⊢ewer
2zta	a:	31	α	GCN4 zipper	Q	Р	3.7%	4.0%	6%	la alta alta alta a
1btl	-	263	М	beta-Lactamase	R	Р	4.8%	5.2%	9%	nyarophobes
1bpi	-	58	s	BPTI	F	Р	6.2%	7.0%	13%	
					-		5.270	7.070	200/	
AVG		116			r.	Ρ	5.9%	1.1%	30%	

bioinfo.mbb.yale.edu · Fold Library · Parts Lists: homologs, motifs, orthologs, folds Overall Sequence-structure Relationships, Annotation Transfer · Parts in Genomes, shared & common folds Genome Trees Gerstein, 1999, Yale, · Extent of Fold Assignment: the Bias Problem • Bulk Structure Prediction · The Genomic vs. Single-molecule Perspective Understanding Biases in Sampling · Relationship to experiment: LIMS, target selection (c) Mark Function Classification · Cross-tabulation, folds and functions 33

 Fold Library Parts Lists: homologs, motifs, orthologs, folds Overall Sequence-structure Relationships, Annotation Transfer Parts in Genomes, shared & common folds Genome Trees Extent of Fold Assignment: the Bias Problem Bulk Structure Prediction The Genomic vs. Single-molecule Perspective Understanding Biases in Sampling Relationship to experiment: LIMS, target selection Function Classification Cross-tabulation, folds and functions
--