BIOINFORMATICS Simulation

Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a

<u>Overview:</u> Electrostatics + Basic Forces

- Electrostatics
 - ◊ Polarization
 - ♦ Multipoles, dipoles
 - ◊ VDW Forces
 - Electrostatic Interactions

Basic Forces

- Electrical non-bonded interactions
- bonded, fundamentally QM but treat as springs
- ♦ Sum up the energy

• Simple Systems First

<u>Overview:</u>

Methods for the Generation and Analysis of Macromolecular Simulations

1 Simulation Methods

- Optimization Potential Functions
- Minimization
- Molecular Dynamics
- Monte Carlo
- Simulated Annealing

2 Types of Analysis

- ◊ liquids: RDFs, Diffusion constants
- ◊ proteins: RMS, Volumes, Surfaces

- Established Techniques (chemistry, biology, physics)
- Focus on simple systems first (liquids). Then explain how extended to proteins.

- E = electric field = direction that a positive test charge would move
- Force/q = E
- Potential = W/q = work per unit charge = Fx/q = Ex
 - $\begin{array}{ll} \diamond & \mathsf{E} = \operatorname{grad} \phi \ ; \ \mathsf{E} = \\ & (d\phi/dx, \ d\phi/dy, \ d\phi/dz) \end{array}$

<u>Electric potential,</u> <u>a quick review</u>

Illustration Credit: Purcell

Maxwell's Equations

- 1st Pair (curl's)
 - A changing electric field gives rise to magnetic field that circles around it & vice-versa. Electric Current also gives rise to magnetic field. [no discuss here]
- 2nd Pair (div's)
 - Relationship of a field to sources
 - no magnetic monopoles and magnetostatics: div B = 0 [no discuss here]
- All of Electrostatics in Gauss's Law!!

curl	$\mathbf{E} = -\frac{1}{\alpha}$	$\frac{\partial \mathbf{B}}{\partial t}$	
curl	$\mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{I}}{\partial t}$	$\frac{\mathbf{E}}{t} + \frac{4\pi}{c} \mathbf{J}$	8
div	$\mathbf{E} = 4\pi\rho$		
div	$\mathbf{B} = 0$		

cgs (not mks) units above

Mark Gerstein,

(C)

S

<u>Multipole</u> Expansion

- Routinely done when an atom's charge distribution is replaced by a point charge or a point charge and a dipole
 - Ignore above dipole here
 - Harmonic expansion of pot.
- Only applicable far from the charge distribution
 - Helix Dipole not meaningful close-by
- Terms drop off faster with distance

Replace continuous charge distribution with point moments: charge (monopole) + dipole + quadrupole + octupole + ...

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, (c) Mark ဖ

Gauss' Law: Electrostatics

- div $\mathbf{E} = 4\pi\rho$
- Coulomb's Law
 - $\oint \operatorname{div} \mathbf{E} \, dV = \int 4\pi \rho \, dV$
 - $\oint \int \mathbf{E} \cdot d\mathbf{A} = \int 4\pi\rho \, dV$ [Divergence thm.]
 - ◊ Assume spherically symmetrical charge distribution
 - $\& E (4\pi r^2) = 4\pi Q = E = Q/r^2$
 - ◊ U = Q/r [assuming a zero at inf.]
- Equations for the Potential Based on the Charge in a Region plus Boundary Conditions
 - \diamond div grad U = $4\pi\rho$
 - $\nabla^2 U = 4\pi\rho$ [poisson's equation]
 - $\nabla^2 U = 0$ [Laplace's equation]

• $\phi(\mathbf{r}, \theta) = -q/R_1 + q/R_2$ $\diamond \phi(\mathbf{r}, \theta) = q(R_1 - R_2)/R_1R_2$

• If r is very much larger than L

- Vectors essentially parallel, like single-slit
- $\langle R_1 R_2 = r^2$
- $Prime R_2 R_1 = 2L \cos \theta$
- $\begin{array}{l} \diamond \quad q(R_2 R_1) = 2Lq\cos\theta = p \,\cos\theta \\ = p \cdot r/|r| \end{array}$
- ◊ p = dipole moment vector
 = [charge][separation]
 in direction from neg. to positive
 charge
- φ(r, θ) = p cos θ / r²
 E = grad φ(r, θ) ~ 1/r³ with a complex angular dependence
- Monopole is 1/r, which dominates over dipole (1/r²), dipole dominates quadrupole

Polarization

Polar molecules

Symmetrical molecules

Partially aligned polar molecules

Induced polarization

- Charge shifts to resist field
 - Accomplished perfectly in conductor
 - -- surface charge, no field inside
 - Insulators partially accommodate via induced dipoles

Induced dipole

- ◊ charge/ion movement (slowest)
- ◊ dipole reorient
- Image: Image:
- In the other state of the oth

Illustration Credit: Purcell, Marion & Heald

1.32

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, Mark (C) ດ

Dielectric const.

- Macro manifestation of polarization
- Values (measured in debye)
 - ♦ Air, 1
 - ◊ Water, 80
 - ◊ Paraffin Wax, 2
 - ◊ Methanol, 33
 - ♦ Non-polar protein, 2
 - ◊ Polar protein, 4
- High-frequency
 - ◊ water re-orient, 1ps
 - bond, angle stretch
 - electronic, related to index of refraction

- P = α E
 P = dipole moment per unit volume
- $\alpha =$ electric susceptability
- $\alpha = (\epsilon 1)/4\pi$
- $\varepsilon = dielectric const.$
- Effective Field Inside Reduced by Polarization

Polarity vs. Polarizability

From Sharp (1999): "Application of a classical electrostatic view to macromolecular electrostatics involves a number of useful concepts that describe the physical behavior. It should first be recognized that the potential at a particular charged atom *i* includes three physically distinct contributions. **The first is the** direct or Coulombic potential of j at i. The second is the potential at i from the polarization (from molecule, water and ionic) induced by j. This is often referred to as the screening potential, since it opposes the direct, Coulombic potential. The third arises from the polarization induced by i itself. This is often referred to as the reaction or self potential, and if solvent is involved, as the solvation potential. When using models which apply the concept of a dielectric constant (a measure of polarizability) to a macromolecule, it is important to distinguish between polarity and polarizability. Briefly, polarity may be thought of as describing the density of charged and dipolar groups in a particular region. Polarizability, by contrast, refers to the *potential* for reorganizing charges, orienting dipoles and inducing dipoles. Thus polarizability depends both on the polarity and the freedom of dipoles to reorganize in response to an applied electric field. When a protein is folding, or undergoing a large conformational rearrangement, the peptide groups may be quite free to reorient. In the folded protein these may become spatially organized so as to stabilize another charge or dipole, creating a region with high polarity, but with low polarizability, since there is much less ability to reorient the dipolar groups in response to a new charge or dipole without significant disruption of the structure. Thus, while there is still some discussion about the value and applicability of a protein dielectric constant, it is generally agreed that the interior of a macromolecule is a low polarizable environment compared to solvent. This difference in polarizability has a significant effect on the potential distribution."

VDW Forces: Start by Deriving **Dipole-Dipole** Energy Interaction energy of 2 pair of dipoles is a complex function of two angles (0, 7)

Simplify. Focus on Formula for Parallel Dipoles

Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu (C) 2

<u>Average</u> <u>Dipole-</u> <u>Dipole</u> <u>Interaction</u> <u>Energy</u>

 Multiplication of dipole-dipole energy (1/r³) and Boltz. Factor (~dipole-dipole energy) gives (1/r⁶)

AVERAGE INTERACTION ENERGY DRIENTATI ONS OVER $\langle V(R, O, \Psi) \rangle_{O, \Psi} = \langle v \rangle_{O, \Psi}$ $= \left\langle \underbrace{C P_{1} P_{2}}_{R^{3}} f(\mathcal{O}, \mathcal{V}) W(R, \mathcal{O}, \mathcal{V}) \right\rangle_{ori}$ W = AMOUNT TIME SPENT AT A PARTICULAR (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu ORIENTIAN = BOLTZMANN FACTOR = exp(-V(R,Q,Y)/kT)since $V \ll kT_1$ $W = I - V + \cdots$, $V = Cp_1 p_2 f$ R^3 Thus, $\langle V \rangle_{\text{ori}} = \langle C \xrightarrow{P_{i}P_{z}} f(0, \mathcal{V}) (1 - C \xrightarrow{P_{i}P_{z}} f(0, \mathcal{V})) \\ \xrightarrow{R^{3}} f(0, \mathcal{V}) (1 - C \xrightarrow{P_{i}P_{z}} f(0, \mathcal{V}))$ $= \underbrace{C_{p_1 p_2}}_{\mathbb{R}^3} \left\langle \left\langle f \right\rangle - \left\langle \frac{f^2 C_{p_1 p_2}}{\mathbb{R}^3} \right\rangle \right\rangle$ $= -\frac{C^2 p_1^2 p_2^2}{R^6} \langle f^2 \rangle \qquad \langle f^2 \rangle \underset{\mathcal{N}}{\overset{\circ}{\mathcal{N}_3}} \langle f^2 \rangle$ Thus, $\langle V \rangle_{ori} = -\underline{C}'$ က

~

Dipole-induced dipole Energy

• Multiplication of dipoledipole energy $(1/r^{3})$ and amount of induced dipole $(1/r^3)$ gives $(1/r^{6})$

INDUCED
INDUCED
DIPOLE (
$$rac{r}_{i} p_{z}^{*}$$
)
is always parallel to
permanent dipole ($rac{r}_{i}, p_{i}$)
 $\dot{P}_{z}^{*} = \alpha \vec{E}$
 $\vec{E}_{dipole} = \nabla \underline{P_{i} \cdot \hat{r}} = -\frac{\alpha p_{i}}{R^{2}}$
Jsing parallel dipole formula above,
 $V(R) = \frac{\alpha p_{i} p_{z}^{*}}{R^{3}} = -\frac{4 p_{i}^{2} \alpha}{R^{6}} = -\frac{c}{R^{6}}$

VDW Foces: Induced dipole-induced dipole

- Too complex to derive induced-dipole-induced dipole formula, but it has essential ingredients of dipoledipole and dipole-induced dipole calculation, giving an attractive 1/r⁶ dependence.
 - $\diamond\,$ London Forces
- Thus, total dipole cohesive force for molecular system is the sum of three 1/r⁶ terms.
- Repulsive forces result from electron overlap.
 - $\diamond\,$ Usually modeled as A/r12 term. Also one can use exp(-Cr).
- VDW forces: V(r) = A/r¹² B/r⁶ = $4\epsilon((R/r)^{12} (R/r)^6)$

 $\diamond~\epsilon$ ~ .2 kcal/mole, R ~ 3.5 A, V ~ .1 kcal/mole [favorable]

Packing ~ VDW force

- Longer-range isotropic attractive tail provides general cohesion
- Shorter-ranged repulsion determines detailed geometry of interaction
- Billiard Ball model, WCA Theory

Close-packing is Default

- No tight packing when highly directional interactions (such as H-bonds) need to be satisfied
- Packing spheres (.74), hexagonal
- Water (~.35), "Open" tetrahedral, H-bonds

Illustration Credit: Atkins

<u>Small Packing</u> <u>Changes</u> <u>Significant</u>

- Exponential dependence
- Bounded within a range of 0.5 (.8 and .3)
- Many observations in standard volumes gives small error about the mean (SD/sqrt(N))

atom		E (kJ/ mole)	σ (Å)	charge (electrons)
carbonyl ca	rbon	0.5023	3.7418	0.550
α-carbon	(incorporating 1 hydrogen)	0.2034	4.2140	0.100
β-carbon	(incorporating 3 hydrogens)	0.7581	3.8576	0.000
amide nitro	gen	0.9979	2.8509	-0.350
amide hydr	ogen	0.2085	1.4254	0.250
carbonyl ox	xygen	0.6660	2.8509	-0.550
water oxyg	en in interactions with the helix	0.6660	2.8509	-0.834
water hydro	ogen in interactions with the helix	0.2085	1.4254	0.417
water O in	interactions with other waters	0.6367	3.1506	-0.834
water H in	interactions with other waters	0.0000	0.0000	0.417

Different Sets of Radii

Despite sensitivity of VDW radius and r₀ parameter there is considerable disagreement!

Atom T	ype & Symbol	Bondi	Lee & Richards	Shrake & Rupley	Richards	Chothia	Rich- mond & Richards	Gelin & Karplus	Dunfield et al.	ENCAD derived	CHARMM derived	Tsai et al.
		1968	1971	1973	1974	1975	1978	1979	1979	1995	1995	1998
-CH3	Aliphatic, methyl	2.00	1.80	2.00	2.00	1.87	1.90	1.95	2.13	1.82	1.88	1.88
$-CH_2-$	Aliphatic, methyl	2.00	1.80	2.00	2.00	1.87	1.90	1.90	2.23	1.82	1.88	1.88
>CH-	Aliphatic, CH	-	1.70	2.00	2.00	1.87	1.90	1.85	2.38	1.82	1.88	1.88
=CH	Aromatic, CH	-	1.80	1.85	*	1.76	1.70	1.90	2.10	1.74	1.80	1.76
>C=	Trigonal, aromatic	1.74	1.80	*	1.70	1.76	1.70	1.80	1.85	1.74	1.80	1.61
$-NH_3+$	Amino, protonated	-	1.80	1.50	2.00	1.50	0.70	1.75		1.68	1.40	1.64
$-NH_2$	Amino or amide	1.75	1.80	1.50	-	1.65	1.70	1.70		1.68	1.40	1.64
>NH	Peptide, NH or N	1.65	1.52	1.40	1.70	1.65	1.70	1.65	1.75	1.68	1.40	1.64
=0	Carbonyl Oxygen	1.50	1.80	1.40	1.40	1.40	1.40	1.60	1.56	1.34	1.38	1.42
-OH	Alcoholic hydroxyl	-	1.80	1.40	1.60	1.40	1.40	1.70		1.54	1.53	1.46
-OM	Carboxyl Oxygen	-	1.80	1.89	1.50	1.40	1.40	1.60	1.62	1.34	1.41	1.42
-SH	Sulfhydryl	_	1.80	1.85	_	1.85	1.80	1.90		1.82	1.56	1.77
-S-	Thioether or -S-S-	1.80	-	_	1.80	1.85	1.80	1.90	2.08	1.82	1.56	1.77

<u>Molecular</u> <u>Mechanics:</u> <u>Simple</u> <u>electrostatics</u>

- U = kqQ/r
- Molecular mechanics
 water H in interactions with other waters
 uses partial unpaired charges with monopole
 - ◊ usually no dipole
 - $\diamond\,$ e.g. water has apx. -.8 on O and +.4 on Hs
 - However, normally only use monopoles for unpaired charges (on charged atoms, asp O)
- Longest-range force
 - ◊ Truncation? Smoothing

atom	E (kJ/ mole)	σ (Å)	charge (electrons)
carbonyl carbon	0.5023	3.7418	0.550
α-carbon (incorporating 1 hydrogen)	0.2034	4.2140	0.100
β-carbon (incorporating 3 hydrogens)	0.7581	3.8576	0.000
amide nitrogen	0.9979	2.8509	-0.350
amide hydrogen	0.2085	1.4254	0.250
carbonyl oxygen	0.6660	2.8509	-0.550
water oxygen in interactions with the helix	0.6660	2.8509	-0.834
water hydrogen in interactions with the helix	0.2085	1.4254	0.417
water O in interactions with other waters	0.6367	3.1506	-0.834
water H in interactions with other waters	0.0000	0.0000	0.417

H-bonds subsumed by electrostatic interactions

- Naturally arise from partial charges
 onormally arise from partial charge
- Linear geometry
- Were explicit springs in older models

Illustration Credit: Taylor & Kennard (1984)

FIGURE 4.4

The geometries of $C=O \cdots H-N$ hydrogen bonds observed in crystal structures of small molecules. The definitions of the angles ϕ and θ are illustrated at the *top*, and the relative frequencies of their observed values in intermolecular hydrogen bonds (R. Taylor et al., J. Amer. Chem. Soc. 105:5761-5766, 1983) are given by the contours. The angle ϕ measures departures from linearity of the C=O bond and the H atom; the most frequently observed values are in the region of 50°-60°. The angle θ measures the extent to which the H atom lies out of the plane defined by the R. C, and O atoms: the most commonly observed values are in the region of 0°-7°. The lone-pair electrons of the oxygen atom are believed to project at angles of $\phi = 60^\circ$. $\theta = 0^{\circ}$. The spherical polar coordinate system used here gives a bias toward small values of θ that could be corrected by plotting sin θ .

biointo.mbb.yale.edu

Table 4.7 Lengths of H-N...O=C hydrogen bonds^a

	Mean HO Distance for Different Acceptors (Å)					
Donor	Carboxyl*	Carboxylate	Amide			
N-H ^d	2.002 ± 0.012	1.928 ± 0.012	1.934 ± 0.005			
N+-Hr	1.983 ± 0.055	1.869 ± 0.028	1.858 ± 0.043			
NH4+	1.916 ± 0.041	1.886 ± 0.018	1.988 ± 0.075			
R-NH3+	1.936 ± 0.014	1.841 ± 0.008	1.891 ± 0.034			
$R_2 - NH_2^+$	1.887 ± 0.047	1.796 ± 0.014	1.793 ± 0.070			
R,—NH+		1.722 ± 0.025	1.845 ± 0.014			

* The N-H distance is generally 1.03 Å; adding this value to the tabulated distances gives the distance between the N and O atoms.

*C=O oxygen atom of unionized carboxylic acids and esters.

• Oxygen atom of carboxyl anions (-CO2-).

"Uncharged donor.

* Charged donor with trigonal geometry.

From R. Taylor and O. Kennard, Acc. Chem. Res. 17:320-326 (1984).

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, (c) Mark 22

Bond Length Springs

- F= -kx -> E = kx²/2
- Freq from IR spectroscopy
 - \diamond -> w= sqrt(k/m), m = mass => spring const. k
 - k ~ 500 kcal/mole*A² (stiff!),
 w corresponds to a period of 10 fs
- Bond length have 2-centers

Bond angle, More Springs

Torsion angle

- 4-centers
- U(A)=K(1-cos(nA+d))
 - \diamond cos x = 1 + x²/2 + ..., so minima are quite spring like, but one can hoop between barriers

U

• K ~ 2 kcal/mole

Potential Functions

- Putting it all together
- Springs + Electrical Forces

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu 25 <u>Sum up to</u> <u>get total</u> <u>energy</u>

- Each atom is a point mass (m and x)
- Sometimes special pseudo-forces: torsions and improper torsions, H-bonds, symmetry.

Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu (C) 26

<u>Energy</u> <u>Scale of</u> <u>Interactions</u>

.

١

Illustration Credit: M Levitt

THE SCALE OF INTERACTIONS				
Interaction	Energy	(heal/mole)		
van der Waals in water	-0 ī			
van dar Waals in vacuo	-0.3			
Hydrogen bond in water	-1.0			
Hydrogen bond in vacuo	-5.0	N-H- 0-¢		
Torsion barrier about -c-c-	+3.0	シᡶᡧ		
Torsim barnier about double bond	+20	<u>रू</u> =र(
Barrier to breaking a bond	+100	C—C		
Energy to change a bond angle by 10°	+2	C're		
Energy to stretch a bond length by 0.1Å	+2.5	C−C -7		
Thermal energy at 300°4	0.6	kΤ		

Yale, bioinfo.mbb.yale.edu 1999, (c) Mark Gerstein, 27

Elaboration on the Basic Protein Model

• Geometry

- ◊ Start with X, Y, Z's (coordinates)
- Derive Distance, Surface Area, Volume, Axes, Angle, &c

• Energetics

- Add Q's and k's (Charges for electrical forces, Force Constants for springs)
- ◊ Derive Potential Function U(x)

Dynamics

- Add m's and t (mass and time)
- ◊ Derive Dynamics (v=dx/dt, F = m dv/dt)

<u>Goal:</u> <u>Model</u> **Proteins** and <u>Nucleic</u> <u>Acids</u> as Real **Physical Molecules**

Yale, bioinfo.mbb.yale.edu 1999, (c) Mark Gerstein, 29

Steepest Descent Minimization

- Particles on an "energy landscape." Search for minimum energy configuration
 - ◊ Get stuck in local minima
- Steepest descent minimization
 - Follow gradient of energy straight downhill
 - ◊ i.e. Follow the force:
 step ~ F = -∇ U
 so
 x(t) = x(t-1) + a F/|F|

<u>Multi-dimensional</u> <u>Minimization</u>

- In many dimensions, minimize along lines one at a time
- Ex: U = x²+5y², F = (2x,10y)

Figure 4–5. Minimization Path following a Steepest-Descents Path without Line Searches

The searching starts from point a and converges on the minimum in about 12 iterations. Although the number of iterations is slightly larger than in Figure 4–4, the total minimization is five times faster since, on average, each iteration used only 1.3 function evaluations. Note that, in most applications in molecular mechanics, the function evaluation is the most time-consuming portion of the calculation.

Figure 4-4. Minimization Path following a Steepest-Descents Path

When complete line searches starting from point a are used, the minimum is reached in about 12 iterations. Here, where a rigorous line search is carried out, approximately 8 function evaluations are needed for each line search using a quadratic interpolation scheme. Note how steepest descents consistently overshoots the best path to the minimum, resulting in an inefficient, oscillating trajectory.

Illustration Credit: Biosym, discover manual

Other Minimization Methods

- Simplex, grid search
 ◊ no derivatives
- Conjugate gradient
 step ~ F(t) bF(t-1)
 - ◊ partial 2nd derivative
- Newton-Raphson
 - using 2nd derivative, find minimum assuming it is parabolic
 - \lor V = ax2 + bx + c
 - ◊ V' =2ax + b & V" =2a
 - ◊ V' =0 -> x* = -b/2a

- Problem is that get stuck in local minima
- Steepest descent, least clever but robust, slow at end
- Newton-Raphson faster but 2nd deriv. can be fooled by harmonic assumption
- Recipe: steepest descent 1st, then Newton-raph. (or conj. grad.)

Yale, bioinfo.mbb.yale.edu 1999, (c) Mark Gerstein, 34

Adiabatic mapping

- Interpolate then minimize
 - ◊ Gives apx. energy
 (H) landscape
 through a barrier
 - can sort of estimate transition rate rate = (kT/h) exp (dG/kT)
 - Used for ring flips, hinge motions

<u>Molecular</u> Dynamics

- Give each atoms a velocity.
 - If no forces, new position of atom (at t + dt) would be determined only by velocity
 x(t+dt) = x(t) + v dt
- Forces change the velocity, complicating things immensely

 $\mathbf{F} = d\mathbf{p}/dt = m d\mathbf{v}/dt$

Molecular Dynamics (cont)

 On computer make very small steps so force is nearly constant and velocity change can be calculated (uniform a)

$$\Delta \mathbf{v} = \frac{\mathbf{F}}{m} \Delta t$$

[Avg. **v** over Δt] = (**v** + Δ **v**/2)

• Trivial to update positions:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + (\mathbf{v} + \frac{\Delta \mathbf{v}}{2})\Delta t$$
$$= \mathbf{x}(t) + \mathbf{v}\Delta t + \frac{\mathbf{F}}{2m}\Delta t^{2}$$

- Step must be very small

 - This is why you need fast computers
- Actual integration schemes slightly more complicated
 - Verlet (explicit half-step)
 - Beeman, Gear (higher order terms than acceleration)
Yale, bioinfo.mbb.yale.edu 1999, Gerstein, (c) Mark 37

Phase Space Walk

- Trajectories of all the particles traverses space of all possible configuration and velocity states (phase space)
- Ergodic Assumption: Eventually, trajectory visits every state in phase space
- Boltzmann weighting: Throughout, trajectory samples <u>states</u> fairly in terms of system's energy <u>levels</u>
 - $\diamond~$ More time in low-U than high-U states
 - Probability of being in a state ~ exp(-U/kT)
- Consequently, statistics (average properties) over trajectory are thermodynamically correct

1999, Yale, bioinfo.mbb.yale.edu (c) Mark Gerstein, 38

Monte Carlo

- Other ways than MD to sample states fairly and compute correctly weighted averages? Yes, using Monte Carlo calculations.
- Basic Idea: Move through states randomly, accepting or rejecting them so one gets a correct "Boltzmann weighting"

- Formalism:
 - System described by a probability distribution ρ(n) for it to be in each state n
 - Random ("Markov") process π operates on the system and changes distribution amongst states to πp(n)
 - At equilbrium original distribution and new distribution have to be same as Boltzmann distribution

$$\pi\rho(n) = \rho(n) = \frac{1}{Z} \exp\left(\frac{-U(n)}{kT}\right)$$

♦ Particle in empty box of side 2r (energy of all states same)

 $\therefore \pi = 6 \text{ x}$ [Fraction of times particles is within r of center]

"Fun" example of MC Integration

Monte Carlo (cont)

- Metropolis Rule (for specifying π)
 - 1 Make a random move to a particle and calculate the energy change dU
 - 2 dU < 0 \rightarrow accept the move
 - 3 Otherwise, compute a random number R between 0 and 1: $R < \sim exp(-U/kT) \rightarrow$

accept the move

otherwise ->

reject the move

MC vs/+ MD

- MD usually used for proteins. Difficult to make moves with complicated chain.
- MC often used for liquids. Can be made into a very efficient sampler.
- Hybrid approaches (Brownian dynamics)
- Simulated Annealing. Heat simulation up to high T then gradually cool and minimize to find global minimum.

(c) Mark Gerstein,

42

<u>Moving</u> Molecules Rigidly

- $X_i(t+1) = (x_i(t), y_i(t), z_i(t))$ = coordinates of ith atom in the molecule at timestep t
- Rigid-body Translation of all i atoms
 - For each atom atom i do \Diamond $x_{i}(t+1) = x_{i}(t) + v$

- Rigid-body Rotation of all i atoms
 - ♦ For each atom atom i do $\mathbf{x}_{i}(t+1) = \mathbf{R}(\phi, \theta, \psi) \mathbf{x}_{i}(t)$
 - \diamond Effectively do a rotation around each axis (x, y, z) by angles ϕ, θ, ψ (see below)
 - Any conventions for doing this

BELOW IS ONLY FOR MOTIVATION

- 1999, Yale, bioinfo.mbb.yale.edu Consult Allen & Tildesley (1987) or Goldstein for the formulation of the rotation matrix using the usual conventions
- Or How does one do a random rotation? Trickier than it seems

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\psi & -\sin\psi \\ 0 & \sin\psi & \cos\psi \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Finally, rotate by θ around z axis Second, rotate by ϕ around y axis First, rotate by ψ around x axis

Typical Systems: Water v. Argon

43 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

Typical Systems: DNA + Water

<u> Typical Systems: Protein + Water</u>

Practical Aspects: simulation cycle I

- Divide atoms into types (e.g. alpha carbon except for Gly, carbonyl oxygen)
- Initially
 - Associate each atom with a mass and a point charge
 - ◊ Give each atom an initial velocity
- Calculate Potential
- Calculating non-bonded interactions take up all the time
 - Electrostatics hardest since longest ranged
 - Neighbor lists

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Illustration Credit: McCammon & Harvey (1987)

Practical Aspects: simulation cycle II

- Update Positions with MD equations, then recalculate potential and continue
- Momentum conservation
- Energy Conserved in NVE ensemble
- Hydrophobic interaction naturally arises from water behavior

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Illustration Credit: McCammon & Harvey (1987)

Sample REMARKS TOPH19.PRO (protein topology) REMARKS Charges and atom order modified for neutral chooses REMARKS Histidine charges set to Del Bene and Cohen sto-3g calculation Protein REMARKS Default for HIStidines is the doubly protonated state set echo=false end !! for use with PARAM19 parameters (no special hydrogen bonding potential) H. denom und !! donor and acceptor terms just for analysis (toph19.pro) AUTOGENERATE ANGLES=TRUE END {* protein default masses *} 1.00800! hydrogen which can h-bond to neutral atom MASS Η MASS = " = = " = = " = НC 1.00800! to charged atom 1.00800! aliphatic hydrogen MASS ΗA MASS CT 12.01100! aliphatic carbon MASS С 12.01100! carbonyl carbon MASS 13.01900! extended atom carbon with one hydrogen CH1E two hydrogens MASS CH2E 14.02700! = " = = " = = " = = " = = " = MASS CH3E 15.03500! = " = three hydrogens MASS CR1E 13.01900! = " = = " = in an aromatic ring with one H 14.00670! peptide nitrogen with no hydrogens attached MASS Ν 14.00670! nitrogen in an aromatic ring with no hydrogens MASS NR 14.00670! pyrole nitrogen MASS \mathbf{NP} MASS 14.00670! peptide nitrogen bound to one hydrogen NH1 = " = = " = ="= two hydrogens MASS NH2 14.00670! MASS NH3 14.00670! nitrogen bound to three hydrogens 14.00670! charged quandinium nitrogen bound to two hydrogens MASS NC2 MASS 0 15.99940! carbonyl oxygen 15.99940! carboxy oxygen MASS OC 15.99940! hydroxy oxygen MASS OH1 32.06000! sulphur MASS S 33.06800! extended atom sulfur with one hydrogen MASS SH1E

!some empirical rules for the following topologies:

!

. RESIdue GROUp	ALA					Sample
ATOM N	TYPE=NH1	CHARge=-0.35	END			
ATOM H	TYPE=H	CHARge= 0.25	END			Drotain
ATOM CA	TYPE=CH1E	CHARge= 0.10	END			Protein
GROUp						
ATOM CB	TYPE=CH3E	CHARge= 0.00	END			Daramatara
GROUP		CUADGO- 0 FF	TINIT	1.#		Falameters
ATOM C	TIPE-C TVDF-O	CHARGE= 0.55 CHARGE= 0.55	END FND	:# !#		
AIOM O	IIFE-0	CIARGE= 0.55	BIND	• #		(toph10 pro)
BOND N	CA					
BOND CA	С					
BOND C	0					
BOND N	Н					
BOND CA	СВ					
IMPRoper DONOr H ACCEptor	CAN N OC	C CB !tetrah	nedral	CA		
IC N	C *CA CI	в 0.0000	0.00	120.00	0.00	0.0000
END $\{ALA\}$						
!						
RESIdue AR	G					
GROUp						
ATOM N	TYPE=NH1	CHARge=-0.35	END			
ATOM H	TYPE=H	CHARge= 0.25	END			
ATOM CA	TYPE=CH1E	CHARge= 0.10	END			
GROUp						
ATOM CB	TYPE=CH2E	CHARge= 0.00	END			
ATOM CG	TYPE=CH2E	CHARge= 0.00	END			
GROUP						
ATOM CD	TYPE=CH2E	CHARGE= 0.10	END	!#		
A'I'OM NE	TYPE=NH1	CHARge=-0.40	END	!#		

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu 49

bond C C 450.0 1.38! B. R. GELIN THESIS AMIDE AND DIPEPTIDES bond C CHIE 405.0 1.52! EXCEPT WHERE NOTED. CHIE, CH2E, CH3E, CHIE bond C CH2E 405.0 1.52! ALL TREATED THE SAME. UREY BRADLEY TEMPOLE bond C CH2E 405.0 1.53 bond C CT 405.0 1.53 bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR PARAMENTED SAME bond C NRE 471.0 1.33 bond C NRE 471.0 1.33 bond C NR 471.0 1.33 bond C O 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OH1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.52 bond CH1E CH2 225.0 1.52 bond CH1E NH2 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E NH1 422.0 1.45 bond CH2E S 450.0 1.81 FROM PARMFIX9 bond CH2E SH1E 450.0 1.81 FROM PARMFIX9 bond CH2E SH1E 450.0 1.81 FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	remai	ck – p	paramete	er file	PARAM1	[•] - Sample	
bond C CHIE 405.0 1.52! EXCEPT WHERE NOTED. CHIE, CH2E, CH3E, CH3E, CH3E, 405.0 1.52! ALL TREATED THE SAME. UREY BRADLEY TERM CLEIN bond C CH3E 405.0 1.52 bond C CTI 405.0 1.53 bond C CT 405.0 1.33 bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR CARACTERS PARAMETERS bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR CARACTERS PARAMETERS bond C NP 471.0 1.33 bond C NP 471.0 1.33 bond C NP 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C O 580.0 1.23 bond C O 1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH1E CH1E 225.0 1.52 bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E NH 422.0 1.45 bond CH2E SH 450.0 1.81 FROM PARMFIX9	bond	С	С	450.0	1.38!	B. R. GELIN THESIS AMIDE AND DIPEPTIDES	
bond C CH2E 405.0 1.521 ALL TREATED THE SAME. UREY BRADLEY TERM CHCCIII bond C CH2E 405.0 1.52 bond C CRIE 450.0 1.53 bond C N 471.0 1.33 bond C NC2 400.0 1.331 bond C NH1 471.0 1.33 bond C NH2 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C O 580.0 1.23 bond C O 580.0 1.23 bond C O 580.0 1.23 bond C O 1431 FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C NH1 422.0 1.45 bond CH1E CH2E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.54 bond CH2E NH 422.0 1.45 bond CH2E SH 450.0 1.81	bond	С	CH1E	405.0	1.52!	EXCEPT WHERE NOTED. CH1E, CH2E, CH3E, ADD S + C	
bond C CH3E 405.0 1.52 bond C CH3E 450.0 1.53 bond C CT 405.0 1.53 bond C NC2 400.0 1.331 bond C NC2 400.0 1.331 bond C NH2 471.0 1.33 bond C NH2 471.0 1.33 bond C NP 471.0 1.33 bond C NP 471.0 1.33 bond C O S80.0 1.23 bond C O 580.0 1.23 bond C O 1.381 bond C O 580.0 1.23 bond C O 1.381 bond C O 1.381 bond C O 1.381 bond C O 1.45 bond CH1E CH1E 225.0 1.52 bond CH1E CH2E 225.0 1.52 bond CH1E NH2 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.54 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.54 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E SH1E 450.0 1.811 FROM PARMFIX9	bond	С	CH2E	405.0	1.52!	ALL TREATED THE SAME. UREY BRADLEY TERMS DECIT	
bond C CRIE 450.0 1.38 bond C CT 405.0 1.53 bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR DEPENDENT 19.000 C NH1 471.0 1.33 bond C NH2 471.0 1.33 bond C NP 471.0 1.33 bond C NP 471.0 1.33 bond C O 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OLI 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OC 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OLI 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.43! FROM DEP NORMAL MODE FIT bond CHIE CHIE 225.0 1.52 bond CHIE CH2E 225.0 1.52 bond CHIE NH1 422.0 1.45 bond CHIE NH1 422.0 1.45 bond CHIE NH1 422.0 1.45 bond CH2E CH2E 225.0 1.54 bond CH2E CH2E 225.0 1.54 bond CH2E CH2E 225.0 1.54 bond CH2E CH2E 225.0 1.54 bond CH2E NH2 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E SH1E 450.0 1.81! FROM PARMFIX9 (NO VALUE 1972 JACS 96:5612 bond CH2E SH1E 450.0 1.81! FROM PARMFIX9	bond	С	CH3E	405.0	1.52		
bond C CT 405.0 1.53 bond C N 471.0 1.33 bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR DETAILS PARAMETER PARA	bond	С	CR1E	450.0	1.38	Daramatara	
bond C N 471.0 1.33 bond C NC2 400.0 1.33; bond C NH1 471.0 1.33 bond C NH2 471.0 1.33 bond C NP 471.0 1.33 bond C NP 471.0 1.33 bond C O 580.0 1.23; bond C O 580.0 1.23; bond C OC 580.0 1.23; bond C OC 580.0 1.23; bond C OS 292.0 1.38; bond C OS 292.0 1.43; bond C H1 450.0 1.38; bond C H1 450.0 1.38; bond C H1 452.0 1.43; bond C H1 422.0 1.44; bond C H1 422.0 1.45 bond C H1 422.0 1.45 bond C H1 422.0 1.45 bond C H1 400.0 1.42; bond C H1 400.0 1.42; bond C H2 CH2 225.0 1.54 bond CH2 CH1 400.0 1.45; from WarSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2 NH 422.0 1.45; bond CH2 CH1 400.0 1.42; bond CH2 S H12 420.0 1.45; bond CH2 S H12 420.0 1.45; bond CH2 S 450.0 1.81; from PARMFIX9 (NO VALUE IN GELIN THESIS) 5 5 5 5 5 5 5 5 5 5	bond	С	СТ	405.0	1.53	raialleleis	
bond C NC2 400.0 1.33! BOND LENGTH FROM PARMFIX9 FOR PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.43! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C HIE CHIE 225.0 1.52 bond CHIE CHIE 225.0 1.52 bond CHIE NH 422.0 1.45 bond CHIE VIE 225.0 1.52 bond CHIE NH 422.0 1.45 bond CHIE VIE 225.0 1.52 bond CHIE NH 422.0 1.45 bond C	bond	С	Ν	471.0	1.33		
bond C NH1 471.0 1.33 bond C NH2 471.0 1.33 bond C NP 471.0 1.33 bond C NR 471.0 1.33 bond C NR 471.0 1.33 bond C O 580.0 1.23 bond C O 580.0 1.23 bond C OC 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OH1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.43! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C HIE CHIE 225.0 1.52 bond CHIE CHIE 225.0 1.52 bond CHIE CHIE 225.0 1.52 bond CHIE NH1 422.0 1.45 bond CHIE NH1 422.0 1.45 bond CHIE NH3 422.0 1.45 bond CHIE NH3 422.0 1.45 bond CHIE NH3 422.0 1.45 bond CHIE CHIE 225.0 1.52 bond CHIE NH3 422.0 1.45 bond CHIE CHIE 225.0 1.52 bond CHIE NH3 422.0 1.45 bond CHIE CHIE 225.0 1.54 bond CHIE NH3 422.0 1.45 bond CHIE CHIE 225.0 1.54 bond CHIE NH3 422.0 1.45 bond CHIE SHIE 450.0 1.81! FROM PARMFIX9 bond CHIE SHIE 450.0 1.81! FROM PARMFIX9	bond	С	NC2	400.0	1.33!	BOND LENGTH FROM PARMFIX9 FOR FAR APROXIMATE O nro	
bond C NH2 471.0 1.33 bond C NP 471.0 1.33 bond C NR 471.0 1.33 bond C O 580.0 1.23 FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OH1 450.0 1.381 FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.431 FROM DEP NORMAL MODE FIT bond CHIE CHIE 225.0 1.52 52 52 bond CHIE CH2 225.0 1.45 50 bond CH1E NH1 422.0 1.45 52 bond CH1E NH2 422.0 1.45 52 bond CH1E NH3 422.0 1.45 52 bond CH2E CH2E 225.0 1.52 52 bond CH2E CH2E 225.0 1.52 52 bond CH2E CH2E 225.0 1.52 52 bond CH2E CH2E 225.0 1.45 52	bond	С	NH1	471.0	1.33	(parann 3.pro	
bond C NP 471.0 1.33 isoperative	bond	С	NH2	471.0	1.33		eq
bond C NR 471.0 1.33 bond C 0 580.0 1.23 bond C 0C 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C 0 bond C 0H1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C 0S 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.52 bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.52 bond CH2E CH3E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.54 bond CH2E NH 422.0 1.45! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E NH 422.0 1.45 bond CH2E NH 422.0 1.45 bond CH2E NH 422.0 1.45 bond CH2E NH 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E SH1E 450.0 1.81! FROM PARMFIX9 (NO PARMFIX9	bond	С	NP	471.0	1.33		e.
bond C 0 580.0 1.23 bond C 0C 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C 0 bond C 0H1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C 0S 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.53 bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.54 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.54 bond CH2E NH1 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E SH14 400.0 1.42 bond CH2E SH14 450.0 1.81! FROM PARMFIX9 bond CH2E SH14 450.0 1.81!	bond	С	NR	471.0	1.33		ya
bond C OC 580.0 1.23! FORCE DECREASE AND LENGTH INCREASE FROM C O bond C OH1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C OS 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.52 bond CH1E CH2E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E OH1 400.0 1.45! bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.52 bond CH2E CH3E 225.0 1.52 bond CH2E CH3E 250.0 1.45! bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 <tr< td=""><td>bond</td><td>С</td><td>0</td><td>580.0</td><td>1.23</td><td></td><td>0</td></tr<>	bond	С	0	580.0	1.23		0
bond C 0H1 450.0 1.38! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond C 0S 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.53 integration integration bond CH1E CH2E 225.0 1.52 integration integration integration integration bond CH1E NH2 422.0 1.45 integration	bond	С	OC	580.0	1.23!	FORCE DECREASE AND LENGTH INCREASE FROM C O	qu
bond C OS 292.0 1.43! FROM DEP NORMAL MODE FIT bond CH1E CH1E 225.0 1.53 bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E NH 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! bond CH2E CH2E 225.0 1.52 bond CH2E CH2E 225.0 1.52 bond CH2E CR1E 250.0 1.45! bond CH2E NH 422.0 1.45 bond CH2E NH 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45	bond	С	OH1	450.0	1.38!	FROM PARMFIX9 (NO VALUE IN GELIN THESIS)	0.0
bond CH1E CH1E 225.0 1.53 bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E NH1 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.54 bond CH2E NH 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E SH1E 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	С	OS	292.0	1.43!	FROM DEP NORMAL MODE FIT	nfc
bond CH1E CH2E 225.0 1.52 bond CH1E CH3E 225.0 1.52 bond CH1E N 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E NH 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E S 450.0 1.81! FROM PARMFIX9	bond	CH1E	CH1E	225.0	1.53		oi
bond CH1E CH3E 225.0 1.52 bond CH1E N 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CH3E 225.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	CH2E	225.0	1.52		b.
bond CH1E N 422.0 1.45 bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	CH3E	225.0	1.52		<u>e</u>
bond CH1E NH1 422.0 1.45 bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CH1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E SH1E 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	N	422.0	1.45		/a
bond CH1E NH2 422.0 1.45 bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	NH1	422.0	1.45		
bond CH1E NH3 422.0 1.45 bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	NH2	422.0	1.45		66
bond CH1E OH1 400.0 1.42! FROM PARMFIX9 (NO VALUE IN GELIN THESIS) bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 600	bond	CH1E	NH3	422.0	1.45		19
bond CH2E CH2E 225.0 1.52 bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH1E	OH1	400.0	1.42!	FROM PARMFIX9 (NO VALUE IN GELIN THESIS)	,
bond CH2E CH3E 225.0 1.54 bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH2E	CH2E	225.0	1.52		ei.
bond CH2E CR1E 250.0 1.45! FROM WARSHEL AND KARPLUS 1972 JACS 96:5612 bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH2E	CH3E	225.0	1.54		LS1
bond CH2E N 422.0 1.45 bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH2E	CR1E	250.0	1.45!	FROM WARSHEL AND KARPLUS 1972 JACS 96:5612	O
bond CH2E NH1 422.0 1.45 bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 0000 000000000000000000000000000000000000	bond	CH2E	Ν	422.0	1.45		
bond CH2E NH2 422.0 1.45 bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 G bond CH2E SH1E 450.0 1.81	bond	CH2E	NH1	422.0	1.45		arl
bond CH2E NH3 422.0 1.45 bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 G bond CH2E SH1E 450.0	bond	CH2E	NH2	422.0	1.45		Σ
bond CH2E OH1 400.0 1.42 bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH2E	NH3	422.0	1.45		C)
bond CH2E S 450.0 1.81! FROM PARMFIX9 bond CH2E SH1E 450.0 1.81	bond	CH2E	OH1	400.0	1.42		
bond CH2E SH1E 450.0 1.81	bond	CH2E	S	450.0	1.81!	FROM PARMFIX9	50
	bond	CH2E	SH1E	450.0	1.81		

angle	С	С	С	70.0	106.5!	FROM B. R. GELIN THESIS WITH HARMONI Samo	
angle	C	C	CH2E	65.0	126.5!	PART OF F TERMS INCORPORATED. ATOMS SAIIIPIC	
angle	C	C	CH3E	65.0	126.5!	WITH EXTENDED H COMPENSATED FOR LACK	
angle	C	C	CRIE	70.0	122.5!	OF H ANGLES. Drotoin	
angle	C	C	CT	70.0	126.5		
angle	C	C	HA	40.0	120.0!	AMIDE PARAMETERS FIT BY LEAST SQUARES	
angle	C	C	NHL	65.0	109.0!	TO N-METHYL ACETAMIDE VIBRATIONS	
angle	C	C	NP	65.0	112.5!	MINIMIZATION OF N-METHYL ACETAMIDE ALARCETERS .	
angle	C	C	NR	65.0	112.5		
angle	C	C	OHI	65.0	119.0		、
angle	C	C	0	65.0	119.0 !	ror netropsin (naram19 nro	
angle	CHIE	C	N	20.0	11/.5	<u>(paramis.pro</u>	
angle	CHIE	C	NHI	20.0	11/.5		e
angle	CHIE	C	0	85.0	121.5		<u>e</u>
angle	CHIE	C		85.0	11/.5		/a
angle	CHIE	C	OHI	85.0	120.0		
angle	CHZE	C	CRIE	70.0	121.5		q
angle	CHZE	C	N NUL1	20.0	117 5		- E
angle	CHZE	C	NHL	20.0	117 5		<u>9</u>
angle	CHZE	C	NHZ NGO	20.0	117 5	TOD NEEDODGIN	i Li
angle	CHZE	C	NCZ	20.0	11/.5 !	FOR NETROPSIN	.0
angle	CHZE	C	NR	60.0	101 6		2
angle	CHZE	C	0	85.0	121.0		O
angle	CHZE	C		85.0	118.5		a
angle	CHZE	d	UHI	20.0	117 5		
angle	CUDE	d	IN NTI 1	20.0	117 E		66
angle	СПЭЕ	C		20.0	121.5		6
angle		C		65.0	121.5		_
angle	CRIE CP1F	C	CRIE NH1	65 0	110 51 1		j.
angle	CRIE	C	ND	65 0	122 5	JED ONLI IN HIS, NOT IT IKF	Ste
angle	CRIE	C	ND	65 0	122.5		S.
angle	CR1E CR1F	C	OH1	65 0	119 0		ŭ
angle	CRIB	C	N	20 0	117 5		×
angle	CT	C	NH1	20.0	1175		ar
angle	CT	C	NH2	20.0	117 5		Σ
angle	CT	C	0	85 N	121 5		O
angle	CT	C	0C	85.0	118.5		Ĵ
angle	CT	C	OH1	85.0	120.0		~
angle	HA	C	NH1	40.0	120.0		ß
	۲'A	-	NTTT O	10 0	100 0		

!angle NR	FΕ	CM		5.0	180.0			
!angle NR	FE	OM		5.0	180.0! JUST	r a gue:	SS FROM EXISTING FE CM DATACOM	
							Sample	
dihe CH1E	С	Ν	CH1E	10.0	2	180.0!	PRO ISOM. BARRIER 20 KCAL/MOL	
dihe CH2E	С	Ν	CH1E	10.0	2	180.0	Protein	
dihe CR1E	С	С	CR1E	5.0	2	180.0!	=> TRP OOP. VIB 170CM 1	
dihe CR1E	С	С	С	2.5	2	180.0!	SEE BEHLEN ET AL JCP 75:5685 81	
dihe CR1E	С	С	NH1	2.5	2	180.0	Paramotore	
dihe X	С	CH1E	Х	0.0	3	0.0!	FROM GELIN THESIS AMIDES CALCULUS	
dihe X	С	CH2E	Х	0.0	3	0.0!	USING A SINGLE	_
dihe X	С	CR1E	X	10.0	2	180.0!	DIHEDRAL PER BOND ATHED rom 10 pro	
dihe X	С	СТ	Х	0.0	3	0.0!	THAN MULTIPLE TORS ON A A A A A A A A A A A A A A A A A A	
dihe X	С	Ν	Х	8.2	2	180.0!	ALKANE TORSION REDUCED TO	-
dihe X	С	NC2	Х	8.2	2	180.0!	1.6 FROM 1.8 TO COINCIDE WITH	9.0
dihe X	С	NH1	Х	8.2	2	180.0!	THE EXPERIMENTAL BARRIER.	ale
dihe X	С	NH2	Х	8.2	2	180.0		Ň
dihe X	С	OH1	Х	1.8	2	180.0		9
dihe X	С	OS	Х	1.8	2	180.0	! INFERRED FROM C-OH1	hh
dihe X	CH1E	CH1E	Х	1.6	3	0.0		. .
dihe X	CH1E	CH2E	Х	1.6	3	0.0		fc
dihe X	CH1E	Ν	Х	0.3	3	0.0!	FROM HAGLER ET AL TABULATION OF	i,
dihe X	CH1E	NH1	Х	0.3	3	0.0!	EXP. DATA AND 6 31G CALC.	oi c
dihe X	CH1E	NH2	Х	1.8	3	0.0!	PROTONATED SECONDARY AMINE	
dihe X	CH1E	NH3	Х	0.6	3	0.0!	1/PROTON SO 3 FOR THE BOND	
dihe X	CH1E	OH1	Х	0.5	3	0.0!	CHANGED TO ROUGHLY MEOH	ž
dihe X	CH2E	CH2E	Х	1.6	3	0.0		Ő
dihe X	CH2E	Ν	Х	0.3	3	0.0!	SEE CH1E COMMENTS	6
dihe X	CH2E	NH1	Х	0.3	3	0.0		19
dihe X	CH2E	NH2	Х	0.6	3	0.0		Ĵ,
dihe X	CH2E	NH3	Х	0.6	3	0.0		ei.
dihe X	CH2E	OH1	Х	0.5	3	0.0		Ste
dihe X	CH2E	S	Х	1.2	2	0.0		er.
dihe X	СТ	СТ	Х	1.6	3	0.0		Ū
dihe X	СТ	Ν	Х	0.3	3	0.0!	SEE CH1E COMMENTS	X
dihe X	СТ	NC2	Х	0.3	3	0.0		ar
dihe X	СТ	NH1	Х	0.3	3	0.0		Σ
dihe X	СТ	NH2	Х	0.6	3	0.0		ΰ
dihe X	СТ	NH3	Х	0.6	3	0.0		Ĵ
dihe X	СТ	OH1	Х	0.5	3	0.0		2
dihe X	СТ	S	Х	1.2	2	0.0		S
!dihe X	FE	NR	Х	0.05	5 4	0.0		

sigma

eps

eps(1:4) sigma(1:4)

<u>Sample</u> <u>Protein</u> <u>Parameters</u> (param19.pro)

!		(kcal/mol	L) (A)	1	<u> </u>
! NONBonded	Н	0.0498	1.4254	0.0498	1.4254
NONBonded	HA	0.0450	2.6157	0.0450	2.6157 !- charged group.
NONBonded !	HC	0.0498	1.0691	0.0498	1.0691 ! Reduced vdw radius
NONBonded	С	0.1200	3.7418	0.1000	3.3854 ! carbonyl carbon
NONBonded	CH1E	0.0486	4.2140	0.1000	3.3854 ! \
NONBonded	CH2E	0.1142	3.9823	0.1000	3.3854 ! extended carbons
NONBonded	CH3E	0.1811	3.8576	0.1000	3.3854 ! /
!! NONBonde	d CM	0.0262	4.4367	0.1000	3.3854
NONBonded	CR1E	0.1200	3.7418	0.1000	3.3854 ! ring carbons
!! NONBonde	d CT	0.0262	4.4367	0.1000	3.3854
NONBonded	N	0.2384	2.8509	0.2384	2.8509
NONBonded	NC2	0.2384	2.8509	0.2384	2.8509
NONBonded	NH1	0.2384	2.8509	0.2384	2.8509
NONBonded	NH2	0.2384	2.8509	0.2384	2.8509
NONBonded	NH3	0.2384	2.8509	0.2384	2.8509
NONBonded	NP	0.2384	2.8509	0.2384	2.8509
NONBonded !	NR	0.2384	2.8509	0.2384	2.8509
NONBonded	0	0.1591	2.8509	0.1591	2.8509
NONBonded	OC	0.6469	2.8509	0.6469	2.8509
NONBonded	OH1	0.1591	2.8509	0.1591	2.8509
!! NONBonde	d OM	0.1591	2.8509	0.1591	2.8509
NONBonded !	OS	0.1591	2.8509	0.1591	2.8509
NONBonded	S	0.0430	3.3676	0.0430	3.3676
NONBonded !	SH1E	0.0430	3.3676	0.0430	3.3676
!! NONBONDE	D FE	0.000	1.1582	0.000	00 1.1582

1

Periodic Boundary Conditions

- Make simulation system seem larger than it is
- Ewald Summation for electrostatics (Fourier transform)

Average over simulation

- Deceptive Instantaneous Snapshots (almost anything can happen)
- Simple thermodynamic averages
 - Average potential energy <U>
 - $T \sim Kinetic Energy > = \frac{1}{2} m < v^2 >$
- Some quantities fixed, some fluctuate in different ensembles
 - ◊ NVE protein MD ("microcanonical")
 - NVT liquid MC ("canonical")
 - NPT more like the real world

Motion	length	time	_	
	(Å)	(fs)		
bond vibration	0.1	10		
water hindered rotation	0.5	1000	<u>Timescales</u>	e.edu
surface sidechain rotation	5	10 ⁵		lbb.yal
water diffusive motion	4	10 ⁵	(From	oinfo.m
buried sidechain libration	0.5	10 ⁵	McCammon & Harvey	rale, bi
hinge bending of chain	3	10 ⁶	Eisenberg &	1999, \
buried sidechain rotation	5	10 ¹³	Kauzmann)	erstein,
allosteric transition	3	10 ¹³		lark Ge
local denaturation	7	10 ¹⁴		(c) N
			—	56

<u>D & RMS</u>

- Diffusion constant
 - Measures average rate of increase in variance of position of the particles
 - Suitable for liquids, not really for proteins

• RMS more suitable to proteins $RMS(t) = \sqrt{\frac{\sum_{i=1}^{N} d_i(t)}{N}}$

$$d_i(t) = \mathbf{R}(\mathbf{x}_i(t) - \mathbf{T}) - \mathbf{x}_i(0)$$

- di = Difference in position of protein atom at t from the initial position, after structures have been optimally rotated translated to minimize RMS(t)
- Solution of optimal rotation has been solved a number of ways (Kabsch, SVD)

= Number of atoms per unit volume averaged over simulation divided by the number you expect to have in the same volume of an ideal "gas"

"at r" means contained in a thin shell of thickness dr and radius r.

Number Density (cont)

- Advantages: Intuitive, Relates to scattering expts
- D/A: Not applicable to real proteins
 - ◊ 1D RDF not structural
- Number densities measure spatial correlations, not packing
 - Low value does not imply cavities
 - Complicated by asymmetric molecules
 - How things pack and fit is property of instantaneous structure - not average

molarbo

Major Protein Simulation Packages

• AMBER

- http://www.amber.ucsf.edu/amber/amber.html
- http://www.amber.ucsf.edu/amber/tutorial/index.html

• CHARMM/XPLOR

- http://yuri.harvard.edu/charmm/charmm.html
- http://atb.csb.yale.edu/xplor
- http://uracil.cmc.uab.edu/Tutorials/default.html

• ENCAD

GROMOS

- http://rugmd0.chem.rug.nl/md.html
- "Advanced Crash Course on Electrostatics in Simulations" (!) (http://rugmd0.chem.rug.nl/~berends/course.html)

<u>Molecular Biophysics & Biochemistry</u> 400a/700a (Advanced Biochemistry)

Computational Aspects of: Simulation (Part II), Electrostatics (Part II), Water and Hydrophobicity

Mark Gerstein

Classes on 11/12/98 & 10/17/98 Yale University

The Handouts

Notes

- Ocoming on Tuesday!!!
- Perhaps available on-line at http://bioinfo.mbb.yale.edu/course
- Presentation Paper
 - Duan, Y. & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution *Science* 282, 740-4.
 - http://bioinfo.mbb.yale.edu/course/private-xxx/kollman-science-longsim.pdf
 - http://www.sciencemag.org/cgi/content/abstract/282/5389/740
- Fun
 - Pollack, A. (1998). Drug Testers Turn to'Virtual Patients' as Guinea Pigs. New York Times. Nov. 10
 - http://www.nytimes.com/library/tech/98/11/biztech/articles/10health-virtual.html
 - http://bioinfo.mbb.yale.edu/course/private-xxx/pollack-nytimes-bioinfo.html

The Handouts II

Review

- Sharp, K. (1999). Electrostatic Interactions in Proteins. In International Tables for Crystallography, International Union of Crystallography, Chester, UK.
- Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D. & Chan, H. S. (1995). Principles of protein folding--a perspective from simple exact models. *Protein Sci* 4, 561-602.
- Gerstein, M. & Levitt, M. (1998). Simulating Water and the Molecules of Life. *Sci. Am.* 279, 100-105.
 - http://bioinfo.mbb.yale.edu/geometry/sciam
- ◊ Franks, F. (1983). *Water.* The Royal Society of Chemistry, London. Pages 35-56.

• Homework Paper

Honig, B. & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. *Science* 268, 1144-9.

<u>Outline</u>

Last Time

- ◊ Basic Forces
 - Electrostatics
 - Packing as VDW forces
 - Springs
- Minimization, Simulation

• Now

- Simulation, Part II: Analysis, What can be Calculated from Simulation?
- Ilectrostatics Revisited: the Poisson-Boltzmann Equation
- Vater Simulation and Hydrophobicity
- Simplified Simulation

Practical Aspects: simulation cycle I

- Divide atoms into types (e.g. alpha carbon except for Gly, carbonyl oxygen)
- Initially
 - Associate each atom with a mass and a point charge
 - ◊ Give each atom an initial velocity
- Calculate Potential
- Calculating non-bonded interactions take up all the time
 - Electrostatics hardest since longest ranged
 - Neighbor lists

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Illustration Credit: McCammon & Harvey (1987)

Practical Aspects: simulation cycle II

- Update Positions with MD equations, then recalculate potential and continue
- Momentum conservation
- Energy Conserved in NVE ensemble
- Hydrophobic interaction naturally arises from water behavior

Fig. 4.1. Schematic flow chart of algorithms for energy minimization and molecular dynamics. Features which apply only to molecular dynamics are indicated by asterisks. Dashed lines indicate optional input. Each cycle of energy minimization represents a step in conformation space, while each cycle of molecular dynamics represents a step in time.

Illustration Credit: McCammon & Harvey (1987)

Major Protein Simulation Packages

• AMBER

- http://www.amber.ucsf.edu/amber/amber.html
- http://www.amber.ucsf.edu/amber/tutorial/index.html

• CHARMM/XPLOR

- http://yuri.harvard.edu/charmm/charmm.html
- http://atb.csb.yale.edu/xplor
- http://uracil.cmc.uab.edu/Tutorials/default.html

• ENCAD

GROMOS

- http://rugmd0.chem.rug.nl/md.html
- "Advanced Crash Course on Electrostatics in Simulations" (!) (http://rugmd0.chem.rug.nl/~berends/course.html)

<u>Moving</u> <u>Molecules</u> <u>Rigidly</u>

- X_i(t+1) = (x_i(t),y_i(t),z_i(t)) = coordinates of ith atom in the molecule at timestep t
- Rigid-body Translation of all i atoms
 - ◊ For each atom atom i do
 x_i(t+1) = x_i(t) + v

- Rigid-body Rotation of all i atoms
 - ♦ For each atom atom i do $\mathbf{x}_i(t+1) = \mathbf{R}(\phi, \theta, \psi) \mathbf{x}_i(t)$

 - Any conventions for doing this

BELOW IS ONLY FOR MOTIVATION

- Consult Allen & Tildesley (1987) or Goldstein (1980) for the formulation of the rotation matrix using the usual conventions
- How does one do a random rotation? Trickier than it seems

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\psi & -\sin\psi \\ 0 & \sin\psi & \cos\psi \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Finally, rotate by θ around z axis Second, rotate by ϕ around y axis First, rotate by ψ around x axis

Simulation, Part II: Analysis: What can be Calculated from Simulation?

Average over simulation

- Deceptive Instantaneous Snapshots (almost anything can happen)
- Simple thermodynamic averages
 - Average potential energy <U>
 - $T \sim Kinetic Energy > = \frac{1}{2} m < v^2 >$
- Some quantities fixed, some fluctuate in different ensembles
 - ◊ NVE protein MD ("microcanonical")
 - NVT liquid MC ("canonical")
 - NPT more like the real world

Energy and Entropy

- Energy
 - At each point i (with coordinates x_i) on the pot. energy surface there is a well-defined "energy" U(x_i)
- Probability of occurrence
 - $P_i = \exp(-U_i/kT)/Q$
 - The boltzmann distribution
 - Q = Sum over all P_i, to normalize probabilities to 1

- Entropy
 - $\circ S(A) = k \sum (P_i \ln P_i),$ where the sum is over points i in A
 - Free Energy
 \$\Omega G(A) = U(A) TS(A)\$
 - Entropy and Free Energy are only defined for distinctly diff. "states" -e.g. A ("unfolded")and B ("folded")
 - State B has a lower U and its minimum is more probable than State A
 - However, state A has a broader minimum that can be occupied in more ways
 - Relative Prob
 - - exp (G(B)/kT)

<u>Application of Simulation:</u> <u>Thermodynamic Cycles</u>

Molecular mutation

The difference of free energy of solvation $\Delta \Delta \mu_{YX}$ between two solutes X and Y can be calculated by the following thermodynamic cycle:

where $\Delta \mu_X$ and $\Delta \mu_Y$ are, respectively, the free energy of solvation of X and Y, and $\Delta \mu_{YX}$ (gas) and $\Delta \mu_{YX}$ (solv.) are the free energies of mutating X in Y in, respectively, in the gas phase and the solution phase. (*Computational alchemy*.)

The differences of free energies of solvation is

$$\Delta \Delta \mu_{\mathbf{YX}} = \Delta \mu_{\mathbf{Y}} - \Delta \mu_{\mathbf{X}} = \Delta \mu_{\mathbf{YX}} (\text{solv.}) - \Delta \mu_{\mathbf{YX}} (\text{gas})$$
(138)

Text block adapted from on-line notes at Rutgers Chemistry

= Number of atoms per unit volume averaged over simulation divided by the number you expect to have in the same volume of an ideal "gas"

"at r" means contained in a thin shell of thickness dr and radius r.

Number Density (cont)

- Advantages: Intuitive, Relates to scattering expts
- D/A: Not applicable to real proteins
 - ◊ 1D RDF not structural
- Number densities measure spatial correlations, not packing
 - Low value does not imply cavities
 - Complicated by asymmetric molecules
 - How things pack and fit is property of instantaneous structure - not average

Moleculos

Measurement of Dynamic Quantities I

- The time-course of a relevant variable is characterized by
- (1) Amplitude (or magnitude), usually characterized by an RMS value
 - $R = sqrt[< (a(t) <a(t)>)^2 >]$ $R = sqrt[< a(t)^2 - 2a(t) < a(t)> + <a(t)>^2 >]$
 - $R = sqrt[< a(t)^2 > < a(t) >^2$
 - similar to SD
 - fluctuation
- Relevant variables include bond length, solvent molecule position, H-bond angle, torsion angle

Illustration from M Levitt, Stanford University

Measurement of Dynamic Quantities II

- The time-course of a relevant variable is characterized by
- (2) Rate or time-constant
 - Time Correlation function

 - Orrelation usually exponentially decays with time t
 - decay constant is given by the integral of C(t) from t=0 to t=infinity
- Relevant variables include bond length, solvent molecule position, H-bond angle, torsion angle

Illustration from M Levitt, Stanford University

<u>D & RMS</u>

- Diffusion constant
 - Measures average rate of increase in variance of position of the particles
 - Suitable for liquids, not really for proteins

• RMS more suitable to proteins $RMS(t) = \sqrt{\frac{\sum_{i=1}^{N} d_i(t)}{N}}$

$$d_i(t) = \mathbf{R}(\mathbf{x}_i(t) - \mathbf{T}) - \mathbf{x}_i(0)$$

- di = Difference in position of protein atom at t from the initial position, after structures have been optimally rotated translated to minimize RMS(t)
- Solution of optimal rotation has been solved a number of ways (Kabsch, SVD)

<u>Observed</u> RMS values

COMPARISON	OF OVER	BALL V	ALVES	
Property	Value			
	in vacuo	in solm.	expt.	
• All-Atom R.M.S. Deviation (Å)	2.60	1.55	1.3(0.5	
• C ^d Fluctuation (Å)	0.54	0.43	0.68	
•Radius of Gyration (Å	10-9	11.5	11.5	

Illustration from M Levitt, Stanford University

<u>Other Things</u> to Calculate

- Fraction of Native Contacts
- Percent Helix
- Radius of Gyration

Illustration and Caption from Duan & Kollman (1998)

Caption: Time evolution of (A) fractional native helical content, (B) fractional native contacts, (C) R and the main chain rmsd from the native structure, and (D) SFE of the protein. The helical content and the native contacts are plotted on a logarithmic time scale. The helical content was measured by the main chain - angle

 $(60^{\circ} \pm 30^{\circ}, 40^{\circ} \pm 30^{\circ})$. The native contacts were measured as the number of neighboring residues present in 80% of the last 50 ns of the native simulation. Residues are taken to be in contact if any of the atom pairs are closer than 2.8 Å, excluding residues i and i+1, which always have the contacts through main chain atoms. The SFE was calculated as described by Eisenberg and McLachlan (31) using their parameters (0.0163, 0.00637, 0.02114, 0.02376, and 0.05041, in kcal mol Å2, for the surface areas of nonpolar, polar, sulfur, charged oxygen, and charged nitrogen, respectively). The straight line represents the SFE of the native structure.

Monitor Stability of <u>Specific</u> Hydrogen **Bonds**

HYDROGE	N BO	NDS	
y 0., H	4	Stabilit	y (%)
e Pai	r in	Vacuo	in soln
351	8	12	57
18 3	5	85	63
1 33. 2	0	31	76
° (3 20. 3	33	80	86
31. 3	22	53	93
22	3)	82	87
29.	24	72	67
24	29	37	34
45	21	63	86
21	45	14	42
17. 47.	51	76	66
48.	52	13	90
G 49.	53	90	98
50.	54	78	90
51	55	73	93
52.	56	-	42
bonds in s	solution a	re as stron	ام مد اش ۷
	HY D ROGE 9 0 H Pai 35 H 18 3 33 2 20 5 21 24 45 21 47 48 49 50 51 52 bonds in	HYDROGEN BC y = 0 H e = Pair in 3518 1835 3320 2033 3122 2231 2924 2429 4521 2145 4751 4852 4953 5054 5155 5256	HYDROGEN BONDS g O H Stabilit e Pair in vacuo $35 \cdot 18$ 12 $18 35$ 85 $33 20$ 11 $20 33$ 80 $31 22$ 53 $22 31$ 82 $29 24$ 72 $24 29$ 37 $45 21$ 63 $21 455$ 14 $47 51$ 76 $48 52$ 13 $47 51$ 76 $49 53$ 90 $50 54$ 78 $51 55$ 73 $52 56$ -

Illustration from M Levitt, **Stanford University**

1999, Yale, bioinfo.mbb.yale.edu Gerstein, (c) Mark 80

Energy Landscapes and Barriers Traversed in a Simulation

bioinfo.mbb.yale.edu ale, ≻ 9999, Gerstein, Mark (C) 8

Motion	length	time	
	(Å)	(fs)	
bond vibration	0.1	10	
water hindered rotation	0.5	1000	<u>limescales</u>
surface sidechain rotation	5	10 ⁵	lev.ddr
water diffusive motion	4	10 ⁵	Values from McCammon &
buried sidechain libration	0.5	10 ⁵	Harvey (1987) and Eisenberg & Kauzmann
hinge bending of chain	3	10 ⁶	1999.
buried sidechain rotation	5	10 ¹³	erstein.
allosteric transition	3	10 ¹³	lark Ge
local denaturation	7	10 ¹⁴	(C) X
			8

Electrostatics Revisited: the Poisson-Boltzmann Equation

Poisson-Boltzmann equation

- Macroscopic dielectric
 - As opposed to microscopic one as for realistic waters
- Linearized: $\sinh \phi = \phi$
 - o counter-ion condense

- The model
 - Protein is point charges embedded in a low dielectric.
 - Output Boundary at accesible surface
 - Discontinuous change to a new dielectric (no dipoles, no smoothly varying dielectric)

Simplifications of

<u>the Poisson-</u> Boltzmann equation

- Laplace eq.
 - $\diamond \text{ div grad V} = \rho$
 - \diamond grad V = **E** field
 - Only have divergence when have charge source

· Finite Difference Soln. to PDE (PDE has deriv. WRT to 2 var. ODE like Newton's Eq. has deriv. WRT to 1 var.) • $\overrightarrow{\nabla}^{z} \varphi(\overrightarrow{r}) = \underbrace{\underbrace{\forall \overrightarrow{r}}_{FE}}_{FE} \varphi(\overrightarrow{r})$ $\cdot \frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\nabla_{j+1} - \nabla_{j}}{x} \right) = \left(\frac{\nabla_{j+1} - \nabla_{j}}{x^2} \right) - \left(\frac{\nabla_{j} - \nabla_{j-1}}{x^2} \right)$ ob.yale.edu $(\partial x = A)$, $\partial q = V_{j+1} - V_j$ · Yi+1, l + Vi-1, l + Vi, l+1 + Vi, l-1 - 4 Vil = BCQjil 9×9=81 Vil Unknown T 9×9=81 Protein on 5 Q 10+10+8+8=36 a Grid Vil -⊕≃₽ FNOWN = 92 $2 \rightarrow$ Boundary For intuition ONLY -- Don't Condittons need to know in detail!! 8 7 З a ð 1

Demand Consistency on the Grid

- · System of Equations -> solve for Unknown Vjil
- · Matrix Inversion in Finite Diff. method

For intuition ONLY -- Don't need to know in detail!!

<u>Electrostatic Potential</u> <u>of Thrombin</u>

The proteolytic enzyme Thrombin (dark backbone worm) complexed with an inhibitor, hirudin (light backbone worm). The negatively charged (Light gray) and positively charged (dark gray) sidechains of thrombin are shown in bond representation.

Graphical analysis of electrostatic potential distributions often reveals features about the structure that complement analysis of the atomic coordinates. For example, LEFT shows the distribution of charged residues in the binding site of the proteolytic enzyme thrombin. RIGHT shows the resulting electrostatic potential distribution on the protein surface. The basic (positive) region in the fibrinogen binding, while it could be inferred from close inspection of the distribution of charged residues in TOP, is more apparent in the potential distribution.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Illustration Credit: Sharp (1999) Text captions also from Sharp (1999)

Increasing Ionic Strength

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at physiological ionic strength (0.145M)

TOP shows the effect of increasing ionic strength on the potential distribution, shrinking the regions of strong potential in comparison to BOTTOM.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Illustration Credit: Sharp (1999) Text captions also from Sharp (1999)

Increasing Dielectric

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated using the same polarizability for protein and solvent.

TOP is calculated assuming the same dielectric for the solvent and protein. The more uniform potential distribution compared to BOTTOM shows the focusing effect that the low dielectric interior has on the field emanating from charges in active sites and other cleft regions.

Solvent accessible surface of thrombin coded by electrostatic potential (dark: positive, light: negative). Hirudin is shown as a light backbone worm. Potential is calculated at zero ionic strength.

Illustration Credit: Sharp (1999) Text captions also from Sharp (1999)

pKa shifts

Charge transfer processes are important in protein catalysis, binding, conformational changes and many other functions. The primary examples are acid-base equilibria, electron transfer and ion binding, in which the transferred species is a proton, an electron or a salt ion respectively. The theory of the dependence of these three equilibria within the classical electrostatic framework can be treated in an identical manner, and will be illustrated with acid-base equilibria. A titratable group will have an intrinsic ionization equilibrium, expressed in terms of a known intrinsic pK^oa. Where $pK^{o}a = -\log_{10}(K^{o}a)$, K^oa is the dissociation constant for the reaction $H^+A = H^+A$ and A can be an acid or a base. The pKOa is determined by all the quantum chemical, electrostatic and environmental effects operating on that group in some reference state. For example a reference state for the aspartic acid side-chain ionization might be the isolated amino acid in water, for which $pK^{Oa} = 3.85$. In the environment of the protein the pKa will be altered by three electrostatic effects. The first occurs because the group is positioned in a protein environment with a different polarizability, the second is due to interaction with permanent dipoles in the protein, the third is due to charged, perhaps titratable, groups. The effective pKa is given by (where the factor of 1/2.303kT converts units of energy to units of pKa):

Text block from Sharp (1999)

$pKa = pKoa + (\Delta\Delta Grf + \Delta\Delta Gperm + \Delta\Delta Gtit)/2.303kT$

1. Desolvation, Rx Field 2. Permanent Dipoles

3. Other Charges

<u>pKa</u> continued I

1. Desolvation,	
Rx Field	

Text block from Sharp (1999)

The first contribution, $\Delta\Delta G^{rf}$, arises because the completely solvated group induces a strong favorable reaction field (See section 22.3.2.3) in the high dielectric water, which stabilizes the charged form of the group (The neutral form is also stabilized by the solvent reaction field induced by any dipolar groups, but to a lesser extent). Desolvating the group to any degree by moving it into a less polarizable environment will preferentially destabilize the charged form of that group, shifting the pKa by an amount

$$\Delta\Delta G^{\rm rf} = \frac{1}{2} \sum_{i} \left(q_i^{\rm d} \Delta \phi_i^{\rm rf,d} - q_i^{\rm p} \Delta \phi_i^{\rm rf,p} \right)$$
(12)

where q_i^p and q_i^d are the charge distributions on the group, $\Delta \phi_i^{\text{rf},p}$ and $\Delta \phi_i^{\text{rf},d}$ are the changes in the group's reaction potential upon moving it from its reference state into the protein, in the protonated (superscript p) and deprotonated (superscript p) forms respectively, and the sum is over the group's charges.

The contribution of the permanent dipoles is given by

$$\Delta\Delta G^{\text{tit}} = \sum_{i} \left(q_{i}^{d} - q_{i}^{p} \right)_{i}^{perm}$$
(13)

where ϕ_i^{perm} is the interaction potential at the *i*'th charge due to all the permanent dipoles in the protein, including the effect of screening. It is observed that intrinsic pKa's of groups in proteins are rarely shifted by more than 1 pKa unit indicating that the effects of desolvation are often compensated to a large degree by the $\Delta\Delta G^{perm}$ term. 2. Permanent Dipoles

pKa continued II

The final term accounts for the contribution of all the other charge groups:

$$\Delta\Delta \mathbf{G}^{\text{titr}} = \sum_{i} \left(q_i^{d} < \phi_i^{} >_{p\mathrm{H,c,}\Delta\mathrm{V}}^{d} - q_i^{p} < \phi_i^{} >_{p\mathrm{H,c,}\Delta\mathrm{V}}^{p} \right)$$
(14)

where $\langle \phi_i \rangle$ is the mean potential at group charge *i* from all the other titratable groups. The charge state of the other groups in the protein depend in turn on their intrinsic "pKa's", on the external pH if they are acid-base groups, the external redox potential ΔV if they are redox groups, and the concentration of ions, c, if they are ion binding sites, as indicated by the subscript on $\langle \phi_i \rangle$. Moreover, the charge state of the group itself will 1999, affect the equilibrium at the other sites. Because of this linkage, exact determination of the complete charged state of a protein is a complex procedure. If there are N such groups, the rigorous approach is to compute the titration state partition function by evaluating the relative electrostatic free energies of all 2^N ionization states for a given set of pH, c, ΔV . From this one may calculate the mean ionization state of any group as a function of pH, ΔV etc. For large N this becomes impractical, but various approximate schemes work well, including a Monte-Carlo procedure

3. Other Charges

Text block from Sharp (1999)

Water Simulation and Hydrophobicity

<u>Simulating</u> Liquid Water

> Illustrations from M Levitt, Stanford University

• 3 interaction centers 0	50 H +0	41c
· Completely flexible	6 H +0.4	
• Smooth cutoff at 6Å (list b&Å) Electro Van dev	statics } long Waals force
Productit to experiment	(25	°c)
Topercy	Experiment	Jimulatia
Potential energy (keal/mol)	- 9.2	- 9.5
Pressure (atmospheres)	(1)	-61
Classical Specific Heat (cal/ok)	27	26
Diffusion Constant (A2/pr)	0-23	0.22
Rotational Relaxation Time (pr)	2	1.6
Radial Distribution Function r.	2.8	2.7
	2-5 3.0*	3.21
- Yoo -> h		2.2
- Y _{oo} → h ₁	3.3	
$ \begin{array}{c} - Y_{00} \rightarrow \\ \\ \end{array} \begin{array}{c} h_1 \\ Y_2 \\ h_2 \end{array} \end{array} $	3-3	0.8
$ \begin{array}{c} -Y_{00} \rightarrow \\ Y_{2} \\ h_{1} \\ Y_{2} \\ h_{2} \\ Y_{3} \end{array} $	3-3 0-8 4-6	0.8

Periodic Boundary Conditions

- Make simulation system seem larger than it is
- Ewald Summation for electrostatics (Fourier transform)

<u>Tetrahedral</u> Geometry of Water

HYDROGEN BONDS give water its unique properties. The hydrogen bond is a consequence of the electrical attraction between the positively charged hydrogen on one water molecule (H1) and the negatively charged oxygen on another water molecule (O'). The electrostatic repulsion between this oxygen and the oxygen that the hydrogen is covalently bonded to (O) gives the hydrogen bond a nearly linear geometry. Each water molecule can act as a donor of two hydrogen bonds to neighboring water oxygens. Each water can also accept two hydrogen bonds. This double-donor, doubleacceptor situation naturally tends to favor a tetrahedral geometry with four waters around each water oxygen, as shown. Ice has this perfect tetrahedral geometry. However, in water, the tetrahedral geometry is distorted, and it is possible for a water molecule to accept or donate more than two hydrogen bonds (which are consequently highly distorted). Such a distortions of tetrahedral geometry are shown, which is taken from a frame in a simulation. Note that the central water molecule accepts three hydrogen bonds.

Mark Gerstein,

(C)

98

Hydrophobicity

<u>Arises</u> <u>Naturally</u> in Simulation

- Add no hydrophobic Effect
 - This arises naturally from entropic effects during the simulation

Mixing is a spontaneous process: a substance will naturally dissolve in water unless there are manifestly unfavorable interactions between it and water. Scientists usually discuss the favorableness of particular interactions in terms of the energy associated with the intermolecular forces. Almost always there are at least some energetically favorable dispersion interactions between the solute and the water. However, the more salient issue is how the interaction between a solute and a water molecule *compares* in strength to the interaction between two water molecules or between two solute molecules. For instance, a polar molecule such as glucose is able to make comparable hydrogen bonds to water as water molecules can make with each other. Thus, there are no unfavorable interactions preventing it from dissolving and it is very soluble.

In contrast, water molecules are not able to hydrogen bond to methane, an insoluble, non-polar solute. They would rather interact with each other. The methane molecules, moreover, can favorably interact with each other through attractive dispersion forces. One can see how this situation leads to methane molecules trying to minimize their *relatively* unfavorable interactions with water molecules. An obvious way they can do this is by clumping together, aggregating, and coming out solution. Such aggregation of non-polar solutes in water is often called the *hydrophobic effect* and, as we shall, it is very important in macromolecular structure.

In terms of water structure at room temperature, the relatively unfavorable interaction between water and methane induces each water molecule next to methane to "turn away" from it and hydrogen bond to neighboring water molecules. If one of these turned water molecules manages to keep itself correctly oriented over time, it will have will not have to sacrifice any of its usual four to five hydrogen bonds. This brings up an interesting paradox: From the standpoint of favorable interactions, or energy in more formal terminology, water has not paid any price in solvating the methane. Consequently, there appears to be no energetic reason for methane to be insoluble in water.

This paradox is resolved by entropy. According to one way of thinking, entropy reflects the number of possible states a molecule can exist in. Thus, the more states a water molecule can exist in, the better its situation is entropically, and if a solute "pins down" a water molecule or restricts its freedom of motion, it is entropically unfavorable. All solutes restrict the freedom of motion of water molecules to some degree, but this is particularly true for a non-polar solute, such as methane. Thus, since turning away from methane "pins down" each water molecule slightly, the price of hydrating this non-polar solute is paid indirectly in terms of entropy and not directly in terms of energy.

The hydrophobic effect is currently receiving intense scrutiny from simulation and experiment. The picture that is emerging is somewhat more complicated than the simplified account presented here since at high temperatures, hydrophobic hydration is still unfavorable but for energetic and not entropic reasons. Nevertheless, irrespective of whether the price is paid in terms of energy or entropy, the hydrophobic effect is fundamentally caused by the *relatively* unfavorable interactions between water and hydrophobic solutes.

Different Behavior of Water around Hydrophobic and Hydrophilic Solutes

POLAR AND NON-POLAR SOLUTES have very different effects on water structure. We show two solutes that have the same Y-shaped geometry but different partial charges. The polar solute, urea *(left)*, has partial charges on its atoms. Consequently, it is able hydrogen-bond to water molecules and to fit right into the water hydrogen-bond network. In contrast, the non-polar solute, isobutene *(right)*, does not have (substantial) partial charges on any of its atoms. It, thus, can not hydrogen-bond to water. Rather, the water molecules around it "turn away" and interact strongly only with other water molecules, forming a sort of hydrogen-bond "cage" around the isobutene.

<u>Consequences of Hydrophobic</u> Hydration and "Clathrate" Formation

- Hydrophobic hydration is unfavorable (G) but the reason is different at different T
 - Intropically (S) unfavorable at low temperatures because of ordering
 - In the original of the orig
- Volume of mixing is negative
- Compressibility
- High heat capacity of hydrophobic solvation
 - ◊ Signature of hydrophobic hydration
 - ◊ Hydration creates new temperature "labile" structures

Compare standard volumes with amino acids CRYSTAL volumes

Example residue volume: Leu (Å3)	
Residue in the protein core	165
- VDW envelope	128
Absolute packing efficiency	78 %
- Sidechain in the protein core	101
² - Sidechain in a.a. crystal	110
4 - Sidechain in solution	107
Example atomic volume: -CH2- (Å3)	
Protein core	23.5
In solution	26.5
In organic solvent	29.0

Overall comparison to crystal volumes

3- • 4% less on avg.
• Exceptionally

tight core packing

Water around Hydrophobic Groups on protein surface is more Compressible

- Fluctuations in polyhedra volume over simulation related to compressibility
 - ◊ Same way amplitude of a spring is related to spring constant
 - Isomorphic Rigorous for NPT only, approximately true for part of NVE
- Simulation Results (avg. fluctuations as %SD and compressibility)

Protein core	9.7 %	.14
◊ Protein surface	11.7 %	.29
Vater near protein	13.2 %	.50
Our Bulk water	11.9 %	.41

- Onsistent with more variable packing at protein surface
- Results verified by doing high-pressure simulation (5000 atm, 10000 atm)
 - Allows calculation of compressibility from definition

<u>Interaction</u> <u>Between</u> <u>Water and the</u> <u>Protein Surface</u>

THE PROTEIN SURFACE presents a very interesting interface from the point of view of water structure since it has a very irregular shape and has polar and non-polar atoms juxtaposed in close proximity. A slice through one frame of a simulation of water around a protein is shown. The protein is shown with white atoms in the center. Water molecules strongly interacting with polar and non-polar atoms on the protein surface are shown in magenta and green, respectively. Water molecules weakly interacting with protein are shown in blue. The "region of influence" of the protein extends to roughly the second layer of water molecules. After that the water molecules are not strongly perturbed by the protein. These unperturbed, "bulk" water molecules are shown in yellow. Also, at the center of the protein one can see two buried waters (magenta).

For usual RDF "volume elements" are concentric spherical shells Here, they are tiny vertical <u>columns</u> and <u>helices</u> perpendicular to page More intuition about \diamond Here, they are tiny

- \Diamond More intuition about 1999, groove expansion
- Compare water packing with that of simple liquid ("rescaled Ar")

• Number density

g = Normal \Diamond water, straight & helical projections

- ♦ For usual RDF

Mark Gerstein,

(C)

107

Simple Two Helix System

Hydration Surface

• Bring together two helices

- Our Unusually low water density in grooves and crevices especially, as compared to uncharged water
- ◊ Fit line through second shell

Water Participates in Protein Unfolding

A PROTEIN HELIX CAN UNFOLD more easily in solution (than in vacuum) because water molecules can replace its helical hydrogen bonds. An unfolding helix is shown. The bottom half the helix is intact and has its helical hydrogen bonds while the top half is unfolded. In the middle a water molecule *(green)* is shown bridging between two atoms that would be hydrogen-bonded in a folded helix: the carbonyl oxygen *(red)* and the amide nitrogen *(blue)*.

Simplified Simulation

Simplification

OF

SIMPLIFICATION

BASIS

Illustration from M Levitt, Stanford University

115

Illustration from M Levitt, Stanford University

<u>How Well Do Lattice Structures</u> <u>Match Real Protein Structure?</u>

Illustration Credit: Dill et al. (1995)

Illustration Credit: Hinds & Levitt (1992)

Yale, bioinfo.mbb.yale.edu 999, Gerstein, Mark (C) 116

Simplified Solvent

- Smit et al. (1990) Surfactant simulation
- Three types of particles, o, w and s
 - S consists of W-W-O-O-O-O
 - Is has additional springs
- all particles interact through L-J potential
 - ◊ o-w interaction truncated so purely repulsive
- Above sufficient to give rise to the formation of micelles, membranes, &c

Review -- Basic Forces

- Basic Forces
 - ♦ Springs --> Bonds
 - ◊ Electrical
 - dipoles and induced dipoles --> VDW force --> Packing
 - unpaired charges --> Electrostatics --> charge-charge

• Electrostatics

- All described the PBE
- kqQ/r -- the simplest case for point charges
 - Multipoles for more complex dist.
 - Validity of monopole or dipole Apx. (helix dipole?)
- Olarization (epsilon)
 - Qualitative understanding of what it does
 - 80 vs 3

Review -- Simulation

- Moving on an Energy Landscape
 - Minimization -- steepest descent
 - ◊ Monte Carlo
 - O Molecular Dynamics
 - Know how an atom will move
 - ◊ The problems
 - Too complex --> Simplified Models
 - Potential Problems
- Analysis
 - Number density --> RDF, structural quantities
 - Opamic quantities, correlation functions, diffusion
 - time course of variables
 - ◊ Hydrophobicity arises naturally in water simulation
 - clathrate formation
 - high heat capacity, volume effects, &c.

<u>Demos</u>

Minimization Demo

http://www.javasoft.com/applets/jdk/1.0/demo/GraphLayout/example2.html

• Adiabatic Mapping Demo

- One Molecular Motions Database
- http://bioinfo.mbb.yale.edu/MolMovDB

• Rotation Matrices, Rigid Body Motion Demo

◊ 1swm, 2hbs, rasmol

- Allen, M. P. & Tildesley, D. J. (1987). *Computer Simulation of Liquids.* Claredon Press, Oxford
- Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. *J. Comp. Chem.* 4, 187-217.
- Daggett, V. & Levitt, M. (1993). Realistic Simulations of Native-Protein Dynamics in Solution and Beyond. Ann. Rev. Biophys. Biomol. Struct. 22, 353-380.
- Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D. & Chan, H. S. (1995). Principles of protein folding--a perspective from simple exact models. *Protein Sci* 4, 561-602.
- Duan, Y. & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a 1microsecond simulation in aqueous solution *Science* 282, 740-4.
- Eisenberg, D. & Kauzmann, W. (1969). *The Structure and Properties of Water.* Clarendon Press, Oxford.

- Franks, F. (Ed.) (1973). Water: A Comprehensive Treatise. New York: Plenum Press.
- Franks, F. (1983). *Water.* The Royal Society of Chemistry, London.
- Gelin, B. R. & Karplus, M. (1979). Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. *Biochemistry* 18, 1256-1268.
- Gerstein, M. & Chothia, C. (1996). Packing at the Protein-Water Interface. *Proc. Natl. Acad. Sci.* USA 93, 10167-10172.
- Gerstein, M. & Levitt, M. (1998). Simulating Water and the Molecules of Life. *Sci. Am.* **279**, 100-105.
- Gerstein, M. & Lynden-Bell, R. M. (1993a). Simulation of Water around a Model Protein Helix.
 2. The Relative Contributions of Packing, Hydrophobicity, and Hydrogen Bonding. *J. Phys. Chem.* 97, 2991-2999.
- Gerstein, M. & Lynden-Bell, R. M. (1993b). What is the natural boundary for a protein in solution? *J. Mol. Biol.* **230**, 641-650.
- Gerstein, M., Tsai, J. & Levitt, M. (1995). The volume of atoms on the protein surface: Calculated from simulation, using Voronoi polyhedra. *J. Mol. Biol.* 249, 955-966.
- Hinds, D. A. & Levitt, M. (1992). A lattice model for protein structure prediction at low resolution. *Proc Natl Acad Sci U S A* 89, 2536-40.

- Honig, B. & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. *Science* 268, 1144-9.
- Karplus, M. & McCammon, J. A. (1986). The dynamics of proteins. *Sci. Am.* **254**, 42-51.
- Karplus, M. & Petsko, G. A. (1990). Molecular dynamics simulations in biology. *Nature* 347, 631-639.
- Levitt, M. (1982). Protein conformation, dynamics, and folding by computer simulation. *Ann. Rev. Biophys. Bioeng.* 11, 251-271.
- Levitt, M. (1983a). Molecular dynamics of a native protein. I. Computer simulation of trajectories. *J. Mol. Biol.* **168**, 595.
- Levitt, M. (1983b). Molecular dynamics of a native protein. II. Analysis and Nature of the Motion. *J. Mol. Biol.* 168, 621-657.
- Levitt, M., Hirschberg, M., Sharon, R. & Daggett, V. (1995). Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. *Computer Phys. Comm.* **91**, 215-231.
- Levitt, M. & Sharon, R. (1988). Accurate Simulation of Protein Dynamics in Solution. *Proc. Natl. Acad. Sci. USA* 85, 7557-7561.
- McCammon, J. A. & Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids. Cambridge UP,
- Park, B. H. & Levitt, M. (1995). The complexity and accuracy of discrete state models of protein structure. *J Mol Biol* **249**, 493-507.

- Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1992). *Numerical Recipes in C.* Second. Cambridge University Press, Cambridge.
- Pollack, A. (1998). Drug Testers Turn to'Virtual Patients' as Guinea Pigs. New York Times. Nov. 10,
- Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1992). *Numerical Recipes in C.* Second. Cambridge University Press, Cambridge.
- Sharp, K. (1999). Electrostatic Interactions in Proteins. In *International Tables for Crystallography*, International Union of Crystallography, Chester, UK.
- Sharp, K. A. & Honig, B. (1990).
 Electrostatic interactions in macromolecules. *Annu. Rev. Biophys. Biophys. Chem.* 19, 301-32
- Smit, B., Hilbers, P. A. J., Esselink, K., Ruppert, L. A. M., Os, N. M. v. & Schlijper (1990). Computer simulation of a water/oil interface in the presence of micelles. *Nature* 348, 624-625.

- Ilen, M. P. & Tildesley, D. J. (1987). Computer Simulation of Liquids. Claredon Press, Oxford.
- Biosym (1994). *Discover 2.9.5 Manual.* Biosym Inc., San Diego, CA.
- Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. *J. Comp. Chem.* 4, 187-217.
- Daggett, V. & Levitt, M. (1993). Realistic Simulations of Native-Protein Dynamics in Solution and Beyond. Ann. Rev. Biophys. Biomol. Struct. 22, 353-380.
- Gelin, B. R. & Karplus, M. (1979). Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. *Biochemistry* 18, 1256-1268.
- Goldstein, H. (1980). *Classical Mechanics.* 2nd edition. Addison-Wesley, New York.
- Jackson, J. (1975). Classical Electrodynamics. Wiley, New York.

- Karplus, M. & McCammon, J. A. (1986). The dynamics of proteins. *Sci. Am.* **254**, 42-51.
- Karplus, M. & Petsko, G. A. (1990). Molecular dynamics simulations in biology. *Nature* 347, 631-639.
- Levitt, M. (1982). Protein conformation, dynamics, and folding by computer simulation. *Ann. Rev. Biophys. Bioeng.* **11**, 251-271.
- Levitt, M. (1983a). Molecular dynamics of a native protein. I. Computer simulation of trajectories. *J. Mol. Biol.* 168, 595.
- Levitt, M. (1983b). Molecular dynamics of a native protein. II. Analysis and Nature of the Motion. *J. Mol. Biol.* 168, 621-657.
- Levitt, M. (1983c). Protein folding by restrained energy minimization and molecular dynamics. J Mol Biol 170, 723-64.
- Levitt, M., Hirschberg, M., Sharon, R. & Daggett, V. (1995). Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. *Computer Phys. Comm.* **91**, 215-231.

- Levitt, M. & Sharon, R. (1988). Accurate Simulation of Protein Dynamics in Solution. *Proc. Natl. Acad. Sci. USA* 85, 7557-7561.
- Marion, J. B. & Heald, M. A. (1980). Classical Electromagnetic Radiation. Academic Press, New York.
- McCammon, J. A. & Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids. Cambridge UP,
- Pettitt, B. M. & Karplus, M. (1985). The Potential of Mean Force Surface for the Alanine Dipeptide in Aqeous Solution: A Theoretical Approach. *Chem. Phys. Lett.* **121**, 194-201.
- Atkins, P. (1990). *Physical Chemistry*. Oxford UP

- Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1992). *Numerical Recipes in C.* Second. Cambridge University Press, Cambridge.
- Purcell, E. M. (1985). *Electricity and Magnetism.* McGraw-Hill, New York.
- Brünger, A. T. (1993). X-PLOR 3.1, A System for X-ray Crystallography and NMR. Yale University Press, New Haven.
- Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. *Science* 235, 458-60.
- Rice, L. M. & Brunger, A. T. (1996). Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. *Proteins* 19, 277-290