

<u>Aligning T</u>	ext Strings Core
Raw Data ??? T C A T G C A T T G	4 matches, 1 insertion
2 matches, 0 gaps T C A T G	TCA-TG IIII CATTG
CATTG	4 matches, 1 insertion
3 matches (2 end gaps)	
T C A T G . . C A T T G	. CATTG
	4

- 1

St Put 1's where	: e	<u>ף</u> (כ	1 Si	m	- I iI	M al	al rit	Ke Y	n	a 1 <i>a</i>	D ati	01 rix	<u>:</u> F <)	2	ot Core	du
		A	В	С	Ν	Y	R	Q	С	L	С	R	Ρ	М		ale.e
	A	1														b.ya
	Y					1										dm.
	С			1					1		1					infc
	Y					1										bio
	Ν				1											ale,
	R						1					1				2, Y
	С			1					1		1					200
	Κ															ein,
	С			1					1		1					erst
	R						1					1				Ğ
	В		1													Mar
	Ρ												1			(C)
															-	9

	S	St	a	rt	t (С	0	n	าเ	<u>י</u> כו	S ut	<u>te</u> cir	ep no	<u>כ</u> ג	<u>2</u> tł	<u>,</u>	 e		Sı	ıı	r		N	la	(at	ri	C X	0	re	
	n	ew_ ce +	val 11 Max	Lue (R, (c) c)]	_ce C) ell ell	11 (H s (H s (H	(R, (R+1, R+1, R+2	C) C to	<= +1) +2 R_	, to max	C_1	max C+1	{ ;),{ ;),{	Di Di Do	ld iag own	va ion i a	lue all ro co	y 1 w,	eit Dow ma , m	her n, kir aki	: 1 no .g (or ga col ro	0 ps vç	lab	} } }					
	A	В	С	N	Y	R	Q	С	L	С	R	Ρ	М			A	в	С	N	Y	R	Q	С	L	С	R	Ρ	М		
A	1														A	1														
Y				_	1				_	_	_			-	Y			1		1			1		1					
C			1		1			1		1					v			1		1			1		1		-			
N				1	-	-	\vdash		\vdash	\vdash					- N				1	-				\vdash	-	-	┢			
R					F	1	\square				1		F		R						1					1				
С			1					1		1					С			1					1		1					
К															к													Ц		
С			1					1		1					С			1					1		1			Ц		
R						1					1				R						1					2	0	0		
В		1													в	1	2	1	1	1	1	1	1	1	1	1	0	0		
															_	~	~	~	•	~	<u> </u>					• •				

Amino Acid		1978	1991	
	L	0.085	0.091	
Frequencies	A	0.087	0.077	
of	G	0.089	0.074	
<u>01</u>	S	0.070	0.069	
Occurrence	v	0.065	0.066	
Cocarrence	Е	0.050	0.062	.edt
	Т	0.058	0.059	yale
	K	0.081	0.059	bb.
	I	0.037	0.053	o.m
	D	0.047	0.052	oinf
	R	0.041	0.051	e, bi
	P	0.051	0.051	Yale
	N	0.040	0.043	02,
	Q	0.038	0.041	, 20
	F	0.040	0.040	tein
	Y	0.030	0.032	3ers
	м	0.015	0.024	rk 0
	н	0.034	0.023) Ma
	С	0.033	0.020	(C)
	W	0.010	0.014	25

Principles of Scoring Matrix Construction, in detail

The Dayhoff Matrix: Proteins evolve through a succession of independent point mutations, that are accepted in a population and subsequently can be observed in the sequence pool. (Dayhoff, M.O. *et al.* (1978) Atlas of Protein Sequence and Structure. Vol. 5, Suppl. 3 National Biomedical Reserved Foundation, Washington D.C. U.S.A).

First step: Pair Exchange Frequencies

A **PAM** (Percent Accepted Mutation) is one accepted point mutation on the path between two sequences, per 100 residues.

 $f_i = \frac{observations of i}{observations of any amino acid}$

		<u>Constru</u>	ction, i	<u>n det</u>	<u>ail #2</u>	
				Th	ird step: Relative Mutabilities	Γ
		Second step:	$m_{i} = f_{i}$ (num	her of times	i is observed to change)	
		Frequencies of	Polativ	a mutabilities of	amino acide:	
		Occurrences of	Relative	1070	1001	
		Occurrence		1978	1991	
A mino	acid frequenci	ec.	A	100	100	
Ammo	, acia il cqueilei	1001	C	20	44	
-	1978	1991	D	106	86	
2	0.085	0.031	E	102	77	
A C	0.087	0.074	F	41	51	
c c	0.085	0.074	G	49	50	
v	0.065	0.066	Н	66	91	
Ē	0.050	0.062	т	96	103	
т	0.058	0.059	r I	50	72	
K	0.081	0.059	К. -	10	12	
I	0.037	0.053	L	40	54	
D	0.047	0.052	М	94	93	
R	0.041	0.051	N	134	104	
P	0.051	0.051	P	56	58	
N	0.040	0.043	Q	93	84	
Q	0.038	0.041	В	65	83	
F	0.040	0.040	9	120	117	
Y	0.030	0.032		120	107	
M	0.015	0.024	1	37	107	
н	0.034	0.023	V	/4	98	
C M	0.033	0.020	W	18	25	
**	0.010	0.014	Y	41	50	

Some concepts challenged: Are the evolutionary rates uniform over the whole of the protein sequence? (No.)	<u>The</u> BLOSUM	
The BLOSUM matrices: Henikoff & Henikoff (Henikoff, S. & Henikoff J.G. (1992) <i>PNAS</i> 89:10915-10919) .	Matrices	
-Use blocks of sequence fragments from different protein famili which can be aligned without the introduction of gaps. Amino acid pair frequencies can be compiled from these blocks	es	yale.edu
Different evolutionary distances are incorporated into this scheme with a clustering procedure: two sequences that are identical to each other for more than a certain threshold of positions are clustered.	BLOSUM62 is the BLAST default	, bioinfo.mbb.
More sequences are added to the cluster if they are identical to any sequence already in the cluster at the same level.		02, Yale
All sequences within a cluster are then simply averaged.		in, 2(
(A consequence of this clustering is that the contribution of closely related sequences to the frequency table is reduced, if the identity requirement is reduced.)	ne	Mark Gerste
This leads to a series of matrices, analogous to the PAM series matrices. BLOSUM80: derived at the 80% identity level.	of	32 (c) II

	Pro	ogressive	Mul	tiple	e Ali <u>c</u>	<u>nm</u>	en	<u>ts</u>	
AGRI_CHICK AGRI_RAT	154 165	VCPAS	SG FG	Va.ESI Ap.DGT		RSECOL	NKHAC	DK	
FSA HUMAN FSA PIG	116 116	OVCAPDO OVCAPDO	SN SN	ItwKGPV ItwKGPV	CGLDGKTY	RNECAL RNECAL	LKAR LKAR	KE	
FSA_SHEEP IAC1_BOVIN	109 14	VCAPD CVCAPD CKVYTEA	SN TR	ItwKGP EYNPI	CGLDGKTY CGLDGKTY	RNECAL SNECTF	LKARC	KE NEKM.NN	
IAC2_BOVIN IACA_PIG IACS_PIG	7 7 12	CAEFKDPKVY CNVYRSHLFF CDVYRSHLFF	TR TR TR	ESNPH QMDPI EMDPI	ICGSNGBTY ICGTNGKSY ICGTNGKSY	GNKCAF ANPCIF ANPCIF	o	KAVM.KS SEKG.LR SEKL.GR	
IAC_MACFA IOV7_CHICK IOV0_ABUPI	33 94 8	CARYQLPGC SPYLQVVRDGNtMVA SDHPKPA	PR PR LQ	DFNPV ILKPV EQKPI	CGTDMITY CGSDSFTY CGSDNKTY	PNECTL DNECGI DNKCSF	o	MKIR.ES AYNA.EH NAVV.DS	
IOVO_ALECH IPSG_VULVU IPST_ANGAN	6 68 12	SEYPKPA TEYSDM	TL TM	EYRPI DYRPI N. FAPY	LCGSDSKTY LCGSDGKNY /CGTDGNTY	GNKONF SNKOIF	o	NAVV.ES NAVV.RS	
IPST_BOVIN IPST_PIG	9	TNEVNG TSEVSG	PR PK	IYNPV IYNPV	CGIDGVTY	SNECLL SNECVL		MENK.ER SENK.KR	
OATP_HUMAN OATP_RAT	439 439	NVDCN	PsK ST	IWDPV	CGNNGLS	ISACLA MSACLA	G	ET.SI	
PGT_RAT PGT_MOUSE	444 33	RRDCS HDAVAG	PR PR	Sf.FHP IYDP	CGIDGVIS CGDNGVES CGIDGITS	(VSPOHA (ANECVE		LARI.EN SS FENR.KR	
QR1_COTJA SC1_RAT SPRC BOVIN	466 424 93	CICQDPAAC VCQDPETAC VCQDP.TS	PstK PpaK Pap.iG	DYKR ILDQ/ EFEK	CGTDNKTY CGTDNOTY CSNDNKTE	DGTCQL ASSCHL DSSCHF	FGTK FATK FATK	QLEGtKM MLEGtKK TLEGtKK	
SPRC_CAEEL SPRC_MOUSE SPR(edapted)from Sector	74 92 onha gım er	CECISK VCQDP.TS Ctal: (1997); "Pfam," Proteins 24	PeldgD Pap.iG 195-29).vG	PMDK EFEK EFEK	/CANNNOTE /CSNDNKTE /CGTDNKTY	TSLODE DSSOHF DSSOHF	YRER FATKO FATKO	LCKR.KSked TLEGtKK TLEGtKK	ska:

Problems with Progressive Alignments	
 Local Minimum Problem Parameter Choice Problem 	le.edu
1. Local Minimum Problem	Jbb.ya
 It stems from greedy nature of alignment (mistakes made early in alignment cannot be corrected later) 	Yale, bioinfo.n
 A better tree gives a better alignment (UPGMA neighbour-joining tree method) 	tein, 2002,
2. Parameter Choice Problem	Gerst
 It stems from using just one set of parameters (and hoping that they will do for all) 	41 (c) Mark

Profiles	b Human Alpha Hemoglobin HAHU HADG HTOR HBA_CAIMO HBAT_HORSE Hate Myoglobin MYWHP MYWHP	R R R R R R R A A	V V V V V V I I	D D D D D D C C	C C C C C C P P A A	V V A V A P P	A A A A A A A A A	Y Y Y Y Y Y Y	<u>к</u> ккака Ш	100 89 76 73 62	
	MYG_CASFI MYHU MYBAO	R R R	 	С С С	A V V	P C C	A A A	Y Y Y	E D D	85 75 71	edu.
Eise Eise	enberg Profile Freq. A enberg Profile Freq. C	1 0 :	0 0 :	0 4 :	2 3 :	2 2 :	9 0 :	0 0 :	0 0 :	↑ Identity	mbb.yale
Eise Eise	enberg Profile Freq. V enberg Profile Freq. Y	0 0	5 0	0 0	2 0	3 0	0 0	0 9	0 0		bioinfo.
Cor	nsensus = Most Typical A.A.	R	V	D	С	V	А	Υ	Е		e,
Bet	ter Consensus = Freq. Pattern (PCA) š = (A,2V,C,P); μ=(4K,2Q,3E,2D) <u>R</u>))	iv	cd	Š	Š	A	Y	μ		02, Ya
Ent	ropy => Sequence Variability	3	7	7	14	14	0	0	14		ן, 2(
Profile : a pos columns and l alignment)	ition-specific scoring matrix N rows (N=length of sequen	cor ces	npo s in	ose mu	d c Iltip	of 2 ble	1		Co	re	45 (c) Mark Gerstein

<u>Motifs</u>	 several proteins are grouped together by similarity searches they share a conserved motif motif is stringent enough to retrieve the family members 	
Core	from the complete protein database - PROSITE: a collection of motifs (1135 different motifs)	.yale.edu
MMCOL10A1_1.48 Ca1x_Chick S15435 CA18_MOUSE.597 Ca28_Human MM37222_1.98 COLE_LEPMA.264 HP27_TAMAS.72 S19018 C1qb_Mouse C1qb_Human Cerb_Human 2.HS27109_1	3 SGSAIMELTENDQVWLQLPNA-ESNGLYSSEYVHSSFSGFLVAPM SGSAVIDLMENDQVWLQLPNS-ESNGLYSSEYVHSSFSGFLFAQI SGSAVIDLMENDQVWLQLPNS-ESNGLYSSEYVHSSFSGFLFAQI SGSAVILLRPGDRVFLQMPSE-QAAGLYAQQVVHSSFSGTLYPM SGSAVILLRPGDQVVLQNPFE-QAAGLYAQQVVHSSFSGTLYPM SGSAVILLRPGDQVVLQNPFE-QAAGLYAQQVVHSSFSGTLYPM SGSAVILLRPGDQVVQIPSD-QANGLYSTEYIHSSFSGFLLCPT SGSVLLHLEVGDQVVQIPSD-QANGLYSTEYIHSSFSGFLLYPMTN	1 (c) Mark Gerstein, 2002, Yale, bioinfo.mbb

• Ea • Th • Ar pos • Ar ami • Re valu	ach element in a patter ne symbol "x" is used nbiguities are indicate ition, between bracker nbiguities are also inc no acids that are not epetition of an elemen ue or a numerical rang	ern is separated from its neighbor for a position where any amino a ed by listing the acceptable amir its "[]". dicated by listing between a pair accepted at a given position. It of the pattern is indicated by w ge between parentheses following	or by a "-". acid is accepted. to acids for a given of braces "{}" the with a numerical ng that element.
PKC_PHOSPHC E	D_SIT Protein kinase C phosphorylation site	[ST]-x-[RK]	Post-translational modifications
RGD	Cell attachment sequence	R-G-D	Domains
SOD_CU_ZN_1	Copper/Zinc superoxide dismutase	[GA]-[IMFAT]-H-[LIVF]-H- x(2)-[GP]-[SDG]-x-[STAGDE]	Enzymes_Oxidoreduc tases
THIOL_PROTEA ASN	SE_ Eukaryotic thiol (cysteine) proteases active site	[FYCH]-[WI]-[LIVT]-x-[KRQAG]- N-[ST]-W-x(3)-[FYW]-G-x(2)-G- [LFYW]-[LIVMFYG]-x-[LIVMF]	Enzymes_Hydrolases
TNFR_NGFR_1	TNFR/CD27/30/4 0/95 cysteine-rich region	C-x(4,6)-[FYH]-x(5,10)-C-x(0,2)- C-x(2,3)-C-x(7,11)-C-x(4,6)- [DNEQSKP]-x(2)-C	Receptors

MMCOL10A1 1.483	SGMPLVSANHGVTGMPVSAFTVILSKAYPAVGCPHPIYEILYNROOHY	
Calx Chick	ALTGMPVSAFTVILSKAYPGATVPIKFDKILYNRQQHY	
s15435	GGPAYEMPAFTAELTAPFPPVGGPVKFNKLLYNGRQNY	
CA18 MOUSE.597	HAYAGKKGKHGGPAYEMPAFTAELTVPFPPVGAPVKFDKLLYNGRONY	
Ca28 Human	ELSAHATPAFTAVLTSPLPASGMPVKFDRTLYNGHSGY	
MM37222 1.98	GTPGRKGEPGEAAYMYRSAFSVGLETRVTVPNVPIRFTKIFYNQQNHY	
COLE LEPMA.264	RGPKGPPGESVEQIRSAFSVGLFPSRSFPPPSLPVKFDKVFYNGEGHW	
HP27 TAMAS.72	GPPGPPGMTVNCHSKGTSAFAVKANELPPAPSQPVIFKEALHDAQGHF	
s19018	NIRDQPRPAFSAIRQNPMTLGNVVIFDKVLTNQESPY	
Clqb Mouse	DYRATQKVAFSALRTINSPLRPNQVIRFEKVITNANENY	
Clqb Human	DYKATQKIAFSATRTINVPLRRDQTIRFDHVITNMNNNY	
Cerb Human	VRSGSAKVAFSAIRSTNHEPSEMSNRTMIIYFDQVLVNIGNNF	
2.HS27109_1	ENALAPDFSKGSYRYAPMVAFFASHTYGMTIPGPILFNNLDVNYGASY	
_	.* . : :	<u> </u>
		eq
MMCOL10A1_1.483	DPRSGIFTCKIPGIYYFSYHVHVKGTHVWVGLYKNGTP-TMYTYDEYSKGYLDTA	0.0
Calx_Chick	DPRTGIFTCRIPGLYYFSYHVHAKGTNVWVALYKNGSP-VMYTYDEYQKGYLDQA	0
S15435	NPQTGIFTCEVPGVYYFAYHVHCKGGNVWVALFKNNEP-VMYTYDEYKKGFLDQA	, S
CA18_MOUSE.597	NPQTGIFTCEVPGVYYFAYHVHCKGGNVWVALFKNNEP-MMYTYDEYKKGFLDQA	9
Ca28_Human	NPATGIFTCPVGGVYYFAYHVHVKGTNVWVALYKNNVP-ATYTYDEYKKGYLDQA	1 2 1
MM37222_1.98	DGSTGKFYCNIPGLYYFSYHITVYMKDVKVSLFKKDKA-VLFTYDQYQEKNVDQA	9
COLE_LEPMA.264	DPTLNKFNVTYPGVYLFSYHITVRNRPVRAALVVNGVR-KLRTRDSLYGQDIDQA	[윤
HP27_TAMAS.72	DLATGVFTCPVPGLYQFGFHIEAVQRAVKVSLMRNGTQ-VMEREAEAQDG-YEHI	<u>⊇</u> ,
S19018	QNHTGRFICAVPGFYYFNFQVISKWDLCLFIKSSSGGQ-PRDSLSFSNTNNKGLFQVL	
Clqb_Mouse	EPRNGKFTCKVPGLYYFTYHASSRGNLCVNLVRGRDRDSMQKVVTFCDYAQNTFQVT	9
Clqb_Human	EPRSGKFTCKVPGLYYFTYHASSRGNLCVNLMRGRERAQKVVTFCDYAYNTFQVT	é l
Cerb_Human	DSERSTFIAPRKGIYSFNFHVVKVYNRQTIQVSLMLNGWPVISAFAGDQDVTREAA	9
2.HS27109_1	TPRTGKFRIPYLGVYVFKYTIESFSAHISGFLVVDGIDKLAFESEN-INSEIHCDRVL	
	· * * * * ·	Ń
100011031 1 402		8
MMCOLIUAI_1.483	SGAIMELTENDØWLØLPNA-ESNGJISSEIVISSESGELVAPM	5
caix_chick	SGAVIDIMENDQVMLQLPNS-ESNGIISSEIVISSESGELEAQI	- É
C119 MOURE E07		0
Call Human		st
Ca28_Human	SGUAVIQUERIND VIVOTO SHALL SIN INSST SGUIL CHI	5
COLE LEDMA 364		Ğ
HD27 MAMAG 72	SINALLID DUP DUP I DE - DWARTSSED DI FORTUNES DE LUE POINTAIRE AND	<u> </u>
610019		ar
Clab Mouse		Ξ
Clob Human		
Corb Human		0
2 #\$27109 1		
2.102/109_1	···· · · · · · · · · · · · · · · · · ·	65
	•••	

<u>Motifs</u>	 several proteins are grouped together by similarity searches they share a conserved motif motif is stringent enough to retrieve the family members 	
	from the complete protein database	
	 PROSITE: a collection of motifs (1135 different motifs) 	ы
NR(0011011 1 402		.mbb.yale.ec
MMCOLIUAI_1.483	SGSAIMELITENDQVWLQLPNA-ESNGLISSEIVHSSESGFLVAPM	nfo
S15435	SGSAVIDIMENDOVWIDDENS-ESNGLISSEIVISSESGEBERGUI-AQI	bioi
CA18 MOUSE.597	SGSAVIJIJERGDOVETONPEE-OAAGLYAGOYVHSSESGYJJYPM	e,
Ca28 Human	SGGAVLOLRPNDOVWVOIPSD-OANGLYSTEYIHSSFSGFLLCPT	Ya
MM37222 1.98	SGSVLLHLEVGDQVWLQVYGDGDHNGLYADNVNDSTFTGFLLYHDTN	02,
COLE_LEPMA.264	SNLALLHLTDGDQVWLETLRDWNGXYSSSEDDSTFSGFLLYPDTKKPTAM	, 20
HP27_TAMAS.72	SGTAILQLGMEDRVWLENKLSQTDLERG-TVQAVFSGFLIHEN	ein
S19018	AGGTVLQLRRGDEVWIEKDPAKGRIYQGTEADSIFSGFLIFPS	erst
Clqb_Mouse	TGGVVLKLEQEEVVHLQATDKNSLLGIEGANSIFTGFLLFPD	Ğ
Clqb_Human	TGGMVLKLEQGENVFLQATDKNSLLGMEGANSIFSGFLLFPD	lark
Cerb_Human	SNGVLIQMEKGDRAYLKLERGN-LMGG-WKYSTFSGFLVFPL	() N
2.HS27109_1	TGDALLELNYGOEVWURLAKGTIPAKFPPVTTFSGYLLYRT	2
		67

<u>Palast</u> thr thr	rameter eshold, eshold,	s: overall • Automatica inclusion profile and interations searches w • Also PHI-bl	lly builds then ith this ast	
© 1997 Oxford University Press		Nucleic Acids Research, 1997, Vol. 25, No. 17 3389-3402	401	
Gapped BLAST an protein database s Stephen F. Altschul*, Thomas	d PSI-BLA earch pro	AST: a new generation of grams		nbb.yale.edu
Zheng Zhang ² , Webb Miller ² a	Accession	Alignment	E-value	Ifo.n
National Center for Biotechnology Infor Bethesda, MD 20894, USA, ¹ Laborato Institute, National Institutes of Health, E Engineering, Pennsylvania State Unive	P49789	151 108 ;121 147		Yale, bioin
Received June 20, 1997; Revised and Accepted	P49779		8e-27	002,
ABSTRACT	P49775		6e-18	n, 2(
The BLAST programs are widely searching protein and DNA databas	Q11066 -		3e-07	stei
similarities. For protein compariso definitional, algorithmic and statis	Q09344		4e-05	Ger
u	P49378		0.001	ark
	P32084		0.002	(c) M
				94

<u>Practical</u> <u>Issues on</u> <u>DNA</u> <u>Searching</u>	 Examine results with exp. between 0.05 and 10 Reevaluate results of borderline significance using limited query Beware of hits on long sequences Limit query length to 1,000 bases Segment query if more than 1,000 bases 	le.edu
(graphic and some text adapted from D Brutlag)	 Search both strands Protein search is more sensitive, Translate ORFs BLAST for infinite gap penalty 	'ale, bioinfo.mbb.ya
cDNA Query	 Smith-Waterman for cDNA/genome comparisons cDNA =>Zero gap- Transition matrices Consider transition matrices Ensure that expected 	7 (c) Mark Gerstein, 2002, Y
database record	value of score is negative	6

 General Protein Search Principles Choose between local or global search algorithms Use most sensitive search algorithm available Original BLAST for no gaps Smith-Waterman for most sensitivity FASTA with k-tuple 1 is a good compromise PSI-BLAST for families Initially BLOSUM62 and default gap penalties

	Some TM scales:		
F -3.7		I 4.5	
M -3.4	l de la construcción de la constru	V 4.2 T 3.8	
I -3.1	-	F 2.8	n
L -2.8	Coldman Engleman Steitz	C 2.5	ed.
V =2.0		M 1.9	yale
W -1.0	KD – Kyte Dolittle	A 1.8	bb.
A -1.0		G -0.4	
т -1.2		т -0.7	info
G -1.0)	W -0.9	bio
s -0.6		S -0.8	le,
P +0.2	2	Y -1.3	Ya
Y +0.7	7	P =1.0	02,
Н +3.0)	н -3.2 Е -3.5	, 20
Q +4.	Ear instance AC from	0 -3.5	ein
N +4.0		D -3.5	erst
E +0.2 K +8 8	transfer of a Phe	N -3.5	ő
D +9.2	amino acid from water	к -3.9	lark
R +12.	3 to hove a set of the set	R -4.5	() W
	lu nexane		9
			101

Method	URL	Institution	Source code Availability	
ANTHE- PROT	http://www.ibcp.fr/antheprot.html (currently unreachable)	Institute of Biology and Chemistry of Proteins (Lion)	YES	
PSSP	http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.html	Baylor College of Medicine (Houston)	NO	
DSC	http://bonsai.lif.icnet.uk/bmm/dsc/dsc_form_align.html	Imperial Cancer Research Center (London)	YES	
GOR	http://molbiol.soton.ac.uk/compute/GOR.html	University of Southampton	NO	
nnPredict	http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html	University of California (San Francisco)	NO	
Predict- Protein	http://www.embl-heidelberg.de/predictprotein/predictprotein.html	EMBL (Heidelberg)	NO	
PRED- ATOR	http://www.embl-heidelberg.de/argos/predator/predator_form.html	EMBL (Heidelberg)	YES	
PSA	http://bmerc-www.bu.edu/psa/	BioMolecular Engineering Research Center, Boston	NO	
SSPRED	http://www.embl-heidelberg.de/sspred/sspred_info.html	EMBL (Heidelberg)	NO	
GOR and DSC	http://genome.imb-jena.de/cgi-bin/GDEWWW/menu.cgi	IMB (Jena)	NO	
GOR	http://absalpha.dcrt.nih.gov:8008/gor.html	(Washington)	NO	
GOR	ftp://ftp.virginia.edu/pub/fasta	University of Virginia Ludwig Institute for	YES	
Mult- Predict	http://kestrel.ludwig.ucl.ac.uk/zpred.html	Cancer Research (London)	NO	

References

Argos P. (1976) Prediction of the secondary structure of mouse nerve growth factor and its comparison with insulin. Biochemical and Biophysical Research Communications 3:805-811.	
Bairoch A and Apweiler R. (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res 24:21-25.	
Barton GJ. (1995) Protein secondary structure prediction. Curr Opinion Struct Biol 5:372-376.	
Benner SA, Gerloff DL, and Jenny TF. (1994) Predicting protein crystal structures. Science 265:1642-1644.	
Benner SA. (1995) Predicting the conformation of proteins from sequences. Progress and future progress. J Mol Recogn 8:9-28.	
Boyd, D., Schierle, C. & Beckwith, J. (1998). How many membrane proteins are there? Prot. Sci. 7, 201-205.	n
Crawford IP, Niermann T, and Kirschner K. (1987) Prediction of secondary structure by evolutionary comparison: application to the alpha subunit of thryptophan synthase. Proteins: Struct Func Genet 2:118-129.	le.ec
Deleage G and Roux B. (1987) An algorithm for protein secondary structure prediction based on class prediction. Protein Engineering 4:289-294.	ya
Eigenbrot C, Randal M, and Kossiakoff AA. (1992) Structural Effects Induced by Mutagenesis Affected by Crystal Packing Factors: the Structure of a 30-51 Disulfic Mutant of Basic Pancreatic Trypsin Inhibitor. <i>Proteins</i> 14:75.	e qqu
Fasman, G. D. & Gilbert, W. A. (1990). The prediction of transmembrane protein sequences and their conformation: an evaluation. Trends Biochem Sci 15, 89-92.	L F
Frishman D, and Argos P. (1995) Knowledge-Base Protein Secondary Structure Assignment. Proteins: Structure, Function, and Genetics 23:566-79.	fe
Frishman D, and Argos P. (1996) Incorporation of Non-Local Interactions in Protein Secondary Structure Prediction From the Amino Acid Sequence. Protein Engineering 2:in the press.	bioir
Frishman D, and Argos P. (1997) The Future of Protein Secondary Structure Prediction Accuracy. Folding & Design 2:159-62.	۵ ۵
Frishman, D, and P Argos. (1996) 75% Accuracy in Protein Secondary Structure Prediction. Proteins 1997 Mar;27(3):329-335.	a.
Garnier J and Levin JM. (1991) The protein structure code: what is its present status. Comput Appl Biosci 7:133-142.	~
Garnier, J. (1990). Protein structure prediction. Biochimie 72, 513-24.	8
Garnier, J., Gibrat, J. F. & Robson, B. (1996a). GOR method for predicting protein secondary structure from amino acid sequence. Meth. Enz. 266, 540-553.	50
	Gerstein,
	×
	lai
	10
	142
	L

References Garnier, J., Gibrat, J. F. & Robson, B. (1996b). GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266, 540-53. Garnier, J., Osguthorpe, D. & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97-120. Geourjon C, and Deléage G. (1995) SOPMA: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction From Multiple Sequences. Comput Appl Biosci 11:681-84. Gibrat, J., Garnier, J. & Robson, B. (1987). Further developments of protein secondary structure prediction using information theory. J. Mol. Biol. 198, 425-443. Gilbert RJ. (1992) Protein structure prediction from predicted residue prperties utilizing a digital encoding algorithm. J Mol Graph 10:112-119. edu Holley LH, and Karplus M. (1989) Protein Secondary Structure Prediction With a Neural Network. Proc Natl Acad Sci USA 86:152-56 Hunt NG, Gregoret LM, and Cohen FE. (1994) The origins of protein secondary structure. Effects of packing density and hydrogen bonding studied by a fast bioinfo.mbb.yale. conformational search. J Mol Biol 241:214-225. Kabsch W and Sander C. (1984) On the use of sequence homologies to predict protein structure. Identical pentapeptides can have completely different conformation. Proc Natl Acad Sci USA 81:1075-1078. Kabsch W, and Sander C. (1983) Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 22:2577-637. Kendrew JC, Klyne W, Lifson S, Miyazawa T, Nemethy G, Phillips DC, Ramachandran GN, and Sheraga HA. (1970). Biochemistry 9:3471-79. King, R. D. & Sternberg, M. J. E. (1996). Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Pr Sci. 5, 2298-2310. Yale, I King, R. D., Saqi, M., Sayle, R. & Sternberg, M. J. (1997). DSC: public domain protein secondary structure predication. Comput Appl Biosci 13, 473-4. Levin J, Pascarella S, Argos P, and Garnier J. (1993) Quantification of secondary structure prediction improvement using multiple alignments. Protein Engineering 6:849-854 2002, Levin JM, Robson B, and Garnier J. (1986) An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 205:303-308. Levitt M, and Greer J. (1977) Automatic Identification of Secondary Structure in Globular Proteins. J Mol Biol 114:181-239. Lim VI. (1974) Algorithms for prediction of alpha-helical and beta-structural regions in globular proteins. J Mol Biol 88:873-894. Livingstone CD, Barton GJ (1996). Identification of functional residues and secondary structure from protein multiple sequence alignment. Methods Enzymol 266:497-2 Gerst 512 Lupas A, Koster AJ, Walz J, and Baumeister W. (1994) Predicted secondary structure of the 20 S proteasome and model structure of the putative peptide channel. FEBS Lett 354:45-49. Mark Matthews B. (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochem Biophys Acta 405:442-451. Mehta PK, Heringa J, and Argos P. (1995) A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Science 4:2517-2525. $\overline{0}$ 143

References

Muggleton S, King RD, and Sternberg MJE. (1992) Protein Secondary Structure Prediction Using Logic-Based Machine Learning. Protein Engineering 5:647-57.	
Nishikawa K, and Ooi T. (1986) Amino Acid Sequence Homology Applied to the Prediction of Protein Secondary Structures, and Joint Prediction With Existing Methods. Biochimica Et Biophysica Acta 871:45-54.	
Pauling L, Corey RB, and Branson HR. (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U: 37:205-211.	SA
Persson, B. & Argos, P. (1997). Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16, 453-7.	
Presnell SR, Cohen BI, and Cohen FE. (1992) A segment-based approach to protein secondary structure prediction. Biochemistry 31:983-993.	Б
Ptitsyn OB and Finkelstein AV. (1983) Theory of protein secondary structure and algorithm of its prediction. Biopolymers 22:15-25.	ed
Qian N, and Sejnowski TJ. (1988) Predicting the Secondary Structure of Globular Proteins Using Neural Network Models. J Mol Biol 202:865-84.	0
Rackovsky S. (1993) On the nature of the protein folding code. Proc Natl Acad Sci US A 90:644-648.	yal
Ramakrishnan C, and Soman KV. (1982) Identification of Secondary Structures in Globular Proteins - a New Algorithm. Int J Pept Protein Res 20:218-37.	a.
Rao S, Zhu Q-L, Vaida S, and Smith T. (1993) The local information content of the protein structural database. FEBS Lett 2:143-146.	9
Rice CM, Fuchs R, Higgins DG, Stoehr PJ, and Cameron G N. (1993) The EMBL data library. Nucleic Acids Res 21:2967-2971.	1.0
Richards FM, and Kundrot CE. (1988) Identification of Structural Motifs From Protein Coordinate Data: Secondary Structure and First-Level Supersecondary Structure. Proteins: Struct Func Genet 3:71-84.	oinfe
Robson B, and Garnier J. (1993) Protein Structure Prediction. Nature 361:506.	p.i
Rost B, and Sander C. (1993) Prediction of Protein Secondary Structure at Better Than 70% Accuracy. J Mol Biol 232:584-99.	é
Rost B, Sander C, and Schneider R. (1994) Redefining the goals of protein secondary structure prediction. J Mol Biol 235:13-26.	al
Rost B, Sander C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90:7558-7562	02,)
Rost, B., Schneider, R. & Sander, C. (1993). Progress in protein structure prediction? Trends Biochem Sci 18, 120-3.	50
Rumelhart DE, Hinton GE, and Williams R. (1986) Learning representations by back-propagating errors. Nature 323:533-536.	6
Salamov AA, and Solovyev VV. (1995) Prediction of Protein Secondary Structure by Combining Nearest-Meighbour Akgorithms Amd Multiple Sequence Alignmen J Mol Biol 247:11-15.	steir
Salamov AA, and Solovyev VV. (1997) Protein Secondary Structure Prediction Using Local Alignments. Journal of Molecular Biology 268:31-36.	er
Sayle RA, and Milner-White EJ. (1995) RASMOL: Biomolecular Graphics for All. Trends in Biochemical Sciences 20:374-76.	G
	Mark
	0
	-
	44

