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Sequence similarity search programs are versatile tools for the molecular biologist,
frequently able to identify possible DNA coding regions and to provide clues to gene and
protein structure and function. While much attention had been paid to the precise
algorithms these programs employ and to their relative speeds, there is a constellation
of associated issues that are equally important to realize the full potential of these
methods. Here, we consider a number of these issues, including the choice of scoring
systems, the statistical significance of alignments, the masking of uninformative or
potentially confounding sequence regions, the nature and extent of sequence
redundancy in the databases and network access to similarity search services.

The advent of rapid DNA sequencing technology in the
mid-1970sled to aninformation explosion thatcontinues
unabated today. Molecular sequence data have become
the common currency of biomedical research and often
provide unexpected links among diverse biological
systems. These connections accelerate research progress
and may even open up entirely new fields of inquiry. One
approach to discovering such connections, database
“homology” searching, has been executed countlesstimes,
often with surprising results and has become an essential
method for the molecular biologist. While the particular
algorithm used is of course important, the effectiveness of
database searches is dependent as well on a large number
ofcorrelative factors, many of which tend tobe overlooked
or dealt with an an inefficient or ad hoc manner. These
include the following: .

Scoring systems. Most database search algorithms rank
alignments by a score, whose calculation is dependent
upon a particular scoring system. Usually thereisa default
system, but it may not be ideal for a user’s particular
problem. For example, haemoglobin subunits used to be
regarded as “typical” proteins and are often still used as
benchmark query sequences for evaluating new database
search techniques and scoring systems. However today it
is more common to encounter much larger and more
complex sequences (see below) and methods developed
and optimized for small, uniformly-conserved, single-
domain proteins are inadequate. Scores that are best for
detecting similarities between greatly diverged sequences
differ from those best for detecting short but nearly
identical segments'®, Optimal strategies for detecting
similarities between DNA protein-coding regions differ
from those for non-coding regions™. Special scoring
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systems for detecting frame-shift errors in the databases
have recently been described®. A database search program
should therefore make avariety of scoring systems available
and users should be aware of which ones are best suited to
their problems.
Alignment statistics. Given a query sequence, most
database search programs will produce an ordered list of
imperfectly matching database similarities, but none of
them need have any biological significance. Animportant
question is how strong a similarity is necessary to be
considered surprising. United by a common theory, a
number of analytic** and empirical results**>"’ are now
available for assessing database search results. However,
onestill sees occasional extravagantclaimsin theliterature,
usually springingeither from misapplication ofthe normal
distribution or from an absence of critical statistical
analysis.
Databases. The use of an up-to-date sequence database is
clearly a vital element of any similarity search. Sequence
relationships critical to important discoveries have on
occasion been missed because old orincomplete databases
wereemployed. However, the variety of databasesavailable,
and theiroverlapping coverage, has the potential to render
similarity searching cumbersome and inefficient. This no
longer need be the case. Timely access to complete and
“nonredundant” sequencedatabases hasbecome relatively
simple and inexpensive.
Database redundancy and sequence repetitiveness.
Surprisingly strong biases existin protein and nucleicacid
sequences and sequence databases. Many of these reflect
fundamental mosaic sequence properties that are of
considerable biological interest in themselves, such as
segmentsoflow compositional complexityorshon-period
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the mean. There-are several scrious ane! frocuently  variation in residue composition among scquences can
urrecognized pitfallsto this procedure. Fir.r, the notimal yield different score distributions. Second, unless a

scores for the comparison ofa query sequne 11, different rigorous optimization algorithm is employed, the true i

Box 1 The extreme value distribution and local sequence similarities

Just as the sum of many independent random variables results naturally in a normal distribution, the maximum of
many independent random variables yields an exireme value distribution™. (For rigour, this statement must be
qualified in many ways, but we wiill omit the technicalities here.) Because the score of an optimal local alignment is,
for practical purposes, the maximum of Many essentially independent alignment scores, the extreme value
distribution plays a central role in the statistics of ocal sequence alignments. This distribution may be described by

two parameters, the characteristic value, v, and the decay constant, A; the probability of observing a score greater
than or equal to x purely by chance is given by the formula - o . .o

1-expl-e”4)

The probability density of the standard extreme value distribution, with u=0 and 2=1, is shown in Fig. 1. For random
sequences, the maximal segment pair scores used by the BLAST algorithms***3' can be shown to obey an extreme
value distribytio_n‘“. While analysis is not available for the scores of alignments with gaps, experiment'®'? and
analogy®4-7%3" strongly suggest that they too should obey this type of distribution. 4 _

In order to use the formula above, one needs to estimate the relevant parameters u and A for a given sequence
comparison. These will, in general, depend upon the composition and length of the sequences being compared, and
upon the particular scoring system used. For alignments with gaps, the parameters may be estimated by random
simulation', or by examining optimal local alignment scores from unrelated sequences®®*, For ungapped
alignments, the parameters may te calculated directly*?. In this case, the parameter u may be written as

In Kmn
U=
A

where m and n are the sequences’ lengths and K and 2. may be calculated from the substitution scores and
sequence compositions®,

We have described how to calculate the prebability, p, that a given local-alignment score would arise from the
comparison of two random sequences. This probability must be adjusted for the multiple comparisons performed in
a database search (see text). The applicable Poisson distribution implies that the probability of observing at least one
alignment with pairwise p-value p from a search of a database containing D sequences may be estimated as .

Pm~l-e® : B ot I
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When P<0.1, it may be well approximated as simply Dp. This approach makes the implicit assumption that all
sequences in the catabase are a priorf equally likely to share some relationship with the query. An altemative view, i
based on the idea that many proteins possess multiple domains, is that all equal-length protein segments in the - 1
Catabase are a priori equally likely to be related to the query. This approach implies a different normalization. Assume
that the alignment of interest involves a database sequence of length n residues, and that the complete database has i
N residues. Then, in the equation above, D should be replaced by N/n. This is the default normalization currently
employed by the BLAST programs. (In the context of DNA as opposed to protein database searches, it is the only
normalization that really makes sense.) Reasons for calculating significance in the context of pairwise protein
comparisons in the first place, rather than sequence-database comparisons, are to allow for multiple high-scoring
alignments and for protein compositional heterogeneity. - - . .. . .. L e s e

The BLAST programs*'* (Table 1) may generate several high-scoring alignments for a given pair of sequences.’
While the significance of these alignments may be assessed individually, It is frequently of value to construct a -
combined assessment. One method uses the fact that the number of segment pairs expected by chance to have
score at least x is approximately Poisson distributed, with parameter %4 (refs 6-8); Thus, if three distinct segment -
pairs with scores 50, 45 and 40 are found In g given pairwise comparison, one may calculate the probability p that at .
least three pairs, all with score at least 40, would appear by chance. This approach has the weakness of depending
upon only the lowest among the r greatest scores. Altemnatively, one may calculate the sum S, of the r highest scores.
The random distribution of such sums has been derived and the appropriate tail probability is available numerically." |
as adouble integral®, .~:.: 00 - T T S TSR LA ~' LR ERLI PG ."

The BLAST programs cumrently use the former, Poisson method, of assessing multiple high-scoring Segr nt pairs, ’
Not all sets of segment pairs, however, warrant a joint assessment. Only when such a set may be combined into a : o
consistent, gapped alignment is it really appropriate to consider the separate segment pairs as parts of a greater .. - .
whole, Accordingly, as a default, the BLAST programs require such consistency before calculating a joint statistical -
assessment, The imposition of such consistancy has the further advantage of sharpening the joint statistics®.: i
" The problem of muttiple tests arises agalin In using either the Poisson or sum p-values described above. For.." . " *
example, while the probability for finding at least three segment pairs with score at least 40 may bé valid, in practice
one has considered as well the single best segment pair in isolation, the two best segment pairs, etc, These multiple .

" tests can result in too optimistic a significance claim for the best overall result, P, Green (personal communication) -,
has suggested a simple solution to this difficulty: dividing the p-valué for a result involving r segment pairs by the
factor (1-a)a”, where a is a constant between 0 and 1, yields a conservative p-value for the multiple tests. The - .
parameter a can be viewed as a "gap penalty,” Choosing a near 0 greatly favours results involving a single segment - -
pair. Ghoosing a near 1 favours results with fewer segment pairs only slightly, but may underestimate significance

_because of the actual non-independence of the multiple tests. The p-values reported by the BLAST programs . -

""-‘ P " ~‘.v.

_implement this multiple test discount procedure, with a default of 2=0.5..» .. AR 4o 000

-
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ten standard deviations from the mean yet fail to be
statistically significant.

Box 1 discusses the extreme value distribution and how
it may be used to calculate the probability that a gap-free
local alignment with a given score would arise from the
comparison of two random sequences. It also describes
howtomodify this probabilityto account for the “multiple
tests” of adatabase search. Suchasearchcanitselfgenerate
data which provide an alternative to the analytic method
(Box 1) for estimating alignment statistical significance'.
Foragiven query, onerecords the best alignment score to
each database sequence. If score Sis observed f(S) times,
then plotting log f(S) versus S tends to produce a straight
line; extrapolation of this line can yield estimates of
statistical significance!?,

One advantage of this approach is that it is applicable
to cases for which no rigorous theory is available, such as
scores from gapped alignments. Thusheuristic programs
suchasFasta®, or parallel implementations of the Smith-
Waterman algorithm' such as Blaze® or Blitz*, can
estimate statistical significance using this method.
Furthermore, because the scores generated derive from
comparisons of real sequences, no “random protein”
model is needed. A disadvantage of the method is the
needtogenerate optimalalignment scores fora substantial
fraction of database sequences in order to calculate
statistical significance. Potential inaccuracy arises from
variation in database sequence size and composition,
which implies that each data point is really drawn from
a separate distribution®'*"?, Also, if many sequences
related to the query are present (see discussion on database
redundancy below), it may be difficult to base the plotted
lineupon only unrelated sequences. Analternative “curve
fitting” approach is to estimate the parameters of the
implicitextreme value distribution for the scoring system
at hand*'®'*13, In one form or another, curve fitting will
generally be necessary to calculate the statistical
significance of scores derived from gapped alignmentsor
other complex scoring systems™1®-13,

The most important “failure” of the local alignment
statistics discussed here is on comparisons of regions with
restricted or unusual amino acid or nucleotide
composition. Such regionsare quite commonin proteins,
but are clearly not well described by the same random

modelused for other sequenceregions (see below). Because
an alignment of such “low complexity” regions has little
real meaning, it is best simply to note their existence, but
exclude them from alignments produced in database
searches (see Figs 2 and 3 for examples).

Scoring matrices and gap costs

Many different amino acid substitution score matrices
have been proposed over the years for use with sequence
comparison and database search programs'***%, and a
variety of rationaleshave been used for their construction.
However, it is possible to show that in the context of
seeking high-scoring segment pairs without gaps, any
such matrix has an implicit amino acid pair frequency
distribution that characterizes the alignments it is
optimized for finding. More precisely, let p, be the
frequency with which amino acid i occurs in proteins
sequences and, within the class of alignments sought, let
q, be the frequency with which amino acids i and j are
aligned. Then the scores that best distinguish these
alignments from chance are given by the formula

9

Pp

The base of the logarithm is arbitrary, affecting only the
scale of the scores. Any set of scores useful for local
alignment can be written in this form, so a choice of
substitution matrix can be viewed as an implicit choice of
“target frequencies” g, (refs 1,6). :

The target frequencies characterizing zlignments of
closely related sequences clearly differ from those for
alignments of sequences that are greatly diverged.
Therefore a single matrix can not be optimal for
recognizing relationships atall evolutionary distances'*',
Ithas been argued that for most practical purposes, three
separate matrices should be adequate for locating all
alignments containing sufficientinformationtoriseabove
background noise'. The question remains how best to
estimate theappropriate correspondingtarget frequencies.

Estimating the frequencies with which the various
amino acids tend to mutate into one another is a
necessarily empirical problem. The first approach to the
question was taken by Dayhoff and coworkers*~*. Their
“PAM" model of molecular evolution allowed target
frequencies and the corresponding score matrices to be

S, =log

«Fig. 2 Significant sequence matches of the human MTGS product: the etlect of low-complexity masking. MTG8 (ref. 84) is the translated
product of a chromosome 8 gene involved in a t(8:21) translocation that results in an AML1-MTG8 fusion transcript in a case of acute
myeloid leukaemia (GenBank accession number D14820). 3, Automated segmentation of low-complexity sequences in MTGS at relatively
high stringency. To be defined as low-complexity in this run of the SEG algorithm (Box 2), a sequence region must contain at least one 12-
residue window with complexity (K, Box 2) less than 0.315. SEG then finds the minimally probable (lowest P,, Box 2) low-complexity
subsequence, of any length, within the overlagping windows of this region. The sequence segments read from left to right and their order in
the polypeptide runs from top to bottom, as shown by the central column of residue numbers. b, The strong match, which emerges clearly
without masking (Poisson p-value 2.5 x 10~), between sections of MTG8 and Droscphila melanogaster transcription factor TFIiD 110-kDa
subunit®**, ¢, MTGS filtered as in (3) but with the low-complexity segments masked by “x" characters, for use as a query sequence in
catabase searches. d, The significant match between a region of MTG8 containing a cysteine cluster and rat apoptosis protein RP-8. RP-8
(ref. 87) is a gene expressed early in the process of programmed cell death (2poptosis) tollowing glucocorticoid induction in rat thymocytes
(GenBank accession number MB80601). This match*, had a Poisson p-value of 0.0036 for a BLASTP search of the NCBI non-redundant
database of 13th September 1993. *, Identical amino acids; I, Conserved Cys or His residues. Also shown is a sample of the class of zinc-
fingers that occur in the DNA binding domain of the steroid receptor family™, indicating a suggestive similarity (which is not statistically
significant by pairwise alignment statistics and would require experimental confirmation) in the positions of most of the Cys or His residues.
Before low-complexity filtering, MTGS generated an output list from the NCBI non-redundant database of greater than 400 Kbytes
containing 599 database sequences scoring above the BLASTP default threshold. The significant match to apoptosis protein was an
inconspicuous 62nd in this list and scored much lower than many spurious low-complexity matches, After masking of MTG8 as in (b), this
match was 6th in a list of 83 sequences. The latter list contained many matches to a “medium complexity” region of MTG8 which is
tentatively predicted to be alpha helical coiled coil {residues 416-476). Further filtering with SEG at lower stringency (K < 0.365 for a 14-
residue window) effectively masked this region, and resulted in a BLASTP output list of only 9 sequences, in which the apoptosis protein
was ranked in score only below the MTGS seif-matches and the match to TFIID 110-kDa subunit.
123
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existence of clusters of closely-related sequences from
multigene families. Also, equivalent gene products have
frequentlybeen sequencedinanumber of different species
or organisms. In release 36.0 of PIR International®, for
example, there were 653 members of the globin
supcrfamily, 349 cytochromes ¢, 583 scquences with
immunoglobulin domains and 274 protein kinases.
Considering only perfectly matching sequences, among
the 52,257 protein sequences in this database, there are
over 3,900 duplicate entries and over 3,800 perfect
substrings of longer entries that together comprise about
10% of the total amino acid residues. Among nucleic acid
sequencestherearethousandsof Alu variantsin GenBank.
And the problem of redundancy is only getting worse: as
a result of projects designed to sample expressed genes
rapidly*-*, tens of thousands of sequence fragments are
being added to the databases*”; many of these sequences
represent small pieces of known genes. Due to the error-
prone nature of these sequence fragments®, identifying
redundancy in these collections is a more difficult task.
As well as decreasing the speed of database searches,
redundancy can obscure novel matches in the output, by
yieldingslewsofsimilar oridentical alignments. Practically,
there are two simple ways to avoid this problem: i)
construct a smaller “nonredundant” database*'; ii)
preprocess the query sequence for the presence of known
domains and mask these prior to searching. (The concept
of query masking is discussed in the next section.)
NCBI* maintains two quasi-nonredundant sequence
collections (NRDB), one for proteins and one for nucleic
acids. For example, the protein NRDB is constructed
iteratively starting with SWISS-PROT®, which is the
smallest and least redundant of the major protein
databases. All of the proteins in PIR International™ are
compared to those in SWISS-PROT, and identical
sequencesare excluded from the former while maintaining
pointers to relevant annotation. Next, all of the protein
translations from GenBank coding sequences(“GenPept”)
are compared to the merged SWISS-PROT plus PIR.
Likewise, protein sequences from the Brookhaven
structure database (PDB) and other sources are
incorporated into NRDB. (The OWL nonredundant
sequencedatabase®' isconstructed from the same sources.)
This simple procedure reduces the size of the combined
databases by 509, yet ensures that all sequences are
represented. More sophisticated methods for creating

derived. composite views of protein and DNA sequence
data promise even further reductions™.
Anotherkeyissueisaccessto thedatabases. Researchers
may perform database similarity searches remotely by
scnding their queries, via clectronic mail, to centralized
“server” computers, where large and frequently updated
databases are maintained, and where fast processors and
sophisticated software are available. E-mail services of
this sort have been available from various sources for
several years. For example, NCBI provides the BLAST e-
mail server (for more information, send a “help™ message
to the Internet address blast@ncbi.nlm.nih.gov), and
EMBL provides Blitz (nethelp@embl-heidelberg.de).
Additionalsitesand servicesare giveninref.64.Inaddition
todatabase searchand retrieval services, suchssites maintain
repositories of public domain software and specialized
datasets that may be accessed via “anonymous ftp” over
the Internet®*. The existence ofhigh-performance networks
is also giving rise to a new generation of “client-server
applications” that make possible direct, real-time user
interactions with remote servers. NCBI's BLAST network
service and Entrez retrieval system are two examples. For
users of the many excellent commercial software packages
for sequenceanalysis, we would anticipate the development
of network client-server capabilities in the near future.

Masking of low-complexity sequences

Interspersed local regions of very simple amino acid
composition are surprisingly abundant in protein
sequences”. Some of these regions are homopolymers or
short-period repeats, butmost are not periodicand appear
as mosaics of predominantly one or a few types of residue.
Their compositional bias is in marked contrast to the
structural domainsand motifs of globular proteins familiar
from crystal and NMR structures. Based on a relatively
stringent definition of low-complexity*’, more than half
of the sequences in the database contain at least one such
region, and 14% of the amino acids occur in clusters of
highly biased local composition. Moreover, a large excess
of “medium-complexity” regions may be defined using a
less stringent definition of complexity: these are found in
many recently-deduced protein sequences that lack true
homologues and do not belong to the class of “ancient
conserved sequences™®. Very litde is known about the
molecular structures, dynamics, interactionsand evolution
of most low- and medium-complexity protein segments.

«Fig. 3 The mouse protein Sos1 functions as a key intermediate in transmitting
Sost (PIR accession S21391) is a member of a family of ras guanine nucleotice

-.v complexity region that binds to an “adapter” protein called Grb2™. a,

signals from receptor tyrosine kinases to ras via protein-protein interactions™%,
-releasing proteins (GNRP) that also includes S. cerevisiae CDC25 and SDC25, S.
“s-te Steb, and the Drosophila Gene, Son of sevenless?'. Mouse Sos1 is a large. mosaic protein with several ditferent domains, including a rasGNRP domain and
Restlts of 2 BLASTP search using an Sos1 query sequence without any masking
.z+2d. In addition to several “self hits" in the output, we see significant matches to some S. cerevisiae proteins, but Ste6 does not appear in the top 25 matches
cespite its presence in the database (PIR Intemational, release 37). Moreover, the true positive matches are interspersed with many false positives, consisting of a

number of functionally unrelated proline-rich proteins. These artifactual maiches are highly significant in the statistical sense, but a glance at some of the local
alignments shows that one is not justified in inferring similar function despite the high scores and low p-values. b, An icentical search, except that in this case the
Sas1 query has been pre-processed using SEG masking with default parameters. Note that the top of the “hit list” is now gopulated only by bona fice members of
the rasGNRP family and that all artifactual matches against proline-rich proteins have disappeared. Furthermore, a match to S. pombe Steb is now obvious; a local
alignment between this protein and Sos1 is shown. Interestingly, Sos1 shows significant local similarities to histone H2A and f-spectrin (see below). ¢, Results of
another search with masking of both low complexity regions {b) and the rasGNRP domain. The top four matches now consist only of those proteins that share
more extensive, or global, similarity with the query beyond the rasGNRP domain. In this example, the additional information gained by this extra masking step is
not striking. But one can imagine the dramatic etfect this would have in shrinking the “hit list® if the query possessed a kinase domain, of which there are hundreds
*f 2xamples in the database. (See ref. 74 for an example involving immunoglobulin domains). d, The Guery sequence, mouse Sosi, annotated with the various
" “ains indentifiable by BLASTP searching. The rasGNRP domain is according to Boguski & McCormick™, The proline-rich carboxy terminal region is known to
“*2razt with Src homology (SH3) domains in Grb2*, With regard to the local similarities between Sos? and histone H2A and -spectrin, it has recently been shown
%t Sos!, B-spectrin and a number of other proteins possess “pleckstrin homology” or PH Comains™, The local atignment procuced by BLASTP (c) corresponds
these PH domains. The similarity between Sos1 and histone H2A has not previously been reported and is difficult to interpret biologically. Nonetheless, the
similarity is as significant as that of the PH domain and may have structural, as opposed to functional, implications™.
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