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Summary 

 

Background 

 

 The goal of this paper was primarily to identify the genes, regulatory elements, 

and the function of these regulatory elements, of Saccharomyces cerevisiae, by 

comparing its genome to those of related organisms. Their methods are based on the 

premise that variation at the nucleotide level is much lower in genic, rather than 

intergenic regions. Therefore, genes can be identified by those regions that possess a 

much higher degree of conservation across genomes, than expected by chance. The 

accuracy is contingent on how wisely the species are chosen. They must be related 

closely enough, so that synteny is conserved, but distant enough to facilitate recognition 

of functional elements and genes. If the species are too closely related, non-functional 

sites will not have had enough time to undergo enough genetic drift to distinguish 

themselves from functional sites, resulting in many false positives. If the species are too 

distant, however, there will not be enough orthology to establish these regions as 

functional or not, resulting in many false negatives. In this case, they compare the 

genome of S. cerevisiae, as found in the Saccharamyces Genome Database, to those of S. 
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mikatae, S. paradoxus, and S. bayanus, all of which diverged from S. cerevisiae 5-20 

million years ago (Kellis 241).  

Methods 

 They identified genes of S. cerevisiae using the Reading Frame Conservation 

(RFC) test, developed by them to classify S. cerevisiae ORFs as biologically meaningful 

or meaningless, by the proportion of conservation among the species. They first identified 

the ORFs of S. cerevisiae, defined as sequences greater than 50 amino acids long, 

beginning with a start codon, and ending with a stop codon. They then aligned the 

genome of S. cerevisiae separately, to each of the other three species; first globally, to 

find orthologous ORFs, then locally, to align the ORFs. Since the RFC scores followed a 

bimodal distribution, a threshold was defined for each species. Subsequently, each 

species “voted” on whether an ORF was a valid gene, or abstained if it did not contain an 

orthologous region (Kellis 243). 

 They employed two different methods to identify regulatory elements: genome-

wide and category-based. For the first method, they listed all possible mini-motifs of the 

form XYZn(0-21)UVW. They determined which ones were conserved by checking if each 

mini-motif followed at least one of the following conservation criteria: 1) the mini-motif 

shows significantly high conservation rate in intergenic regions, 2) there is significantly 

higher conservation of the mini-motif in intergenic, rather than genic regions, and 3) 

there are significantly different conservation rates of the mini-motif between upstream 

and downstream regions. Conserved mini-motifs are connected to form extended motifs, 

which are clustered if they tend to occur in the same intergenic regions. These motifs are 

assessed by the Motif Conservation Score (MCS), which evaluates the genome-wide 
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conservation rate of the motif in intergenic regions, measured in standard deviations 

above the rate for comparable control motifs. Those with MCS greater or equal to 4 are 

retained (Kellis 248-249). 

 The category-based method was similar, but aimed to discover regulatory 

elements by searching for conservation of the motif within individual gene categories, of 

which there are 318 yeast gene categories, rather than genome-wide. This was 

accomplished by adding one more constraint to the original conservation criteria; 

conserved mini-motifs are those enriched in the intergenic regions of genes in the 

category. Finally, the functions of these regulatory elements were inferred by looking at 

adjacent genes. They were also able to refine their definitions of gene structure, identify 

rapidly and slowly evolving genes, and determine which regulatory elements act by 

combinatorial control in the process (Kellis 252). 
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Commentary 

 The main concept underlying their methods is logical. Their methods also seem 

very powerful. In their test for identification of genes for instance, 96% of the ORFs were 

rejected, indicating high sensitivity, while 3% were not rejected and likely true ORFs. 

The remaining 1% were not rejected and probable false positives, the low number 

indicating high specificity (Kellis 243).  

 Their method also had many weaknesses. Though they triumphed over their many 

rejections, claiming this indicated high sensitivity, these negatives might not all be true. 

They justified them by mentioning there is no experimental evidence for the rejected 

ORFs. However, just because there is no experimental evidence for an ORF, does not 

mean it is not real. It could be that an ORF has simply never been studied. Therefore, 

their sensitivity is probably over-estimated. They even admit that their method does not 

have sufficient power to discriminate between genic and intergenic regions for ORFs 

encoding proteins less than 50 amino acids long, and does not detect rapidly evolving 

genes, such as those located in telomeres (Kellis 245). They did mention, however, that 

the rapidly evolving gene YBR184W passed the RFC test after performing multiple 

alignment instead of separate single alignments (Kellis 247). Further research should be 

done to determine whether multiple alignment is more powerful than single alignments 

overall in these methods.  

They were very vague about how to select the species used in the test, however, 

which is a grave drawback since the choice of species is crucial to the validity of the 

analysis. They mentioned that the branch length between the species they used ranged 

from 0.23 to 0.55, for a total branch length of 0.83, a signal-to-noise ratio of 2, and the 
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probability of nucleotide identity across all 4 species in non-coding regions of 0.49 

(Kellis 253). There was no discussion, however, of whether this choice is optimal, and 

how they arrived at these particular species. Additionally, I am doubtful of whether three 

other species is enough for such analysis. Despite varying degrees of evolutionary 

distance between the species used, they are treated equally in the analysis. It seems that   

conservation between the primary species and a distant species is more significant than 

conservation with more closely related species, and should consequently be more 

emphasized in the test. Therefore, further research should be done to determine the 

optimal number of species needed for the analysis, as well as the optimal range of 

evolutionary distance among the species. A system could also be developed to weight the 

votes of each species according to their evolutionary distance to the primary species. 

Extension 

Problem 

 Despite the importance of species selection in comparative analysis, little research 

has been done on how to optimally choose species. While there is a general consensus 

that the ability to extract useful information from genomes in comparative genomics 

studies depends on a balance between too little and too much divergence from the target 

species, the guidelines that govern this decision still remain subjective. It is apparent that 

Kellis et al. mainly based their decision to use S. mikatae, S. paradoxus, and S. bayanus 

in their study on the guesswork of Cliften et al, who thought S. cerevisiae should be 

compared with at least one species from the different subgroups of the genus 

Saccharomyces: the senso stricto species, which are physiologically similar to S. 

cerevisiae, and the senso lato and petite-negative species, which are quite different from 
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S. cerevisiae, thereby achieving the balance between little and much divergence (Cliften 

1175). This decision process, however, is not based on any concrete rules.  

What has been done so far 

 Though no method has been developed to choose the optimal species for such 

analysis, a few abstract models have at least been proposed. McAuliffe et al. have 

designed a hypothesis test that uses a statistic they call the fully observed symmetric star 

topology (FOSST) likelihood-ratio statistic, based on the error rates for detecting and 

overlooking conservation at a single orthologous site (McAullife 7900). Cooper et al. 

have proposed a mathematical model where analytical strength increases as the total 

neutral branch length of the phylogeny ( )∑i id  , since the probability that a neutral site 

would be misclassified as conserved is approximately 
∑−

i id
e (Eddy 0095). Their model 

assumes that conserved sites are invariant however, which greatly reduces their 

sensitivity. Like McAuliffe et al., Sean R. Eddy has proposed a model which assumes a 

Jukes-Cantor process, in which all types of base substitutions occur at the same rate 

(Eddy 0096). It is much simpler and intuitive, however, while much more general than 

the Cooper model. Its focus is to choose the optimal number of additional species, N, 

with the optimal evolutionary distance, D, from the target species, the branch length 

measured in the number of neutral substitutions per site. This statistical power is 

expressed by the false positive rate, FP, and the false negative rate, FN, and is given by 

the following equations (Eddy 0096): 
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where  

L = the number of nucleotide sites in a sequence in the target genome 

c = the number of changes observed relative to the target feature genome 

C = threshold over which the feature is evolving at the neutral rate, conserved otherwise 

ω = rate at which conserved features evolve relative to neutral features 

 

for short evolutionary distances, we expect about 

c = DNL changes in neutral features 

c = ωDNL changes in conserved features 

 

Though not surprising, the model confirms two general rules about the choice of 

appropriate species; all other things being constant, the required number of comparative 

genomes is inversely proportional to detectable feature size, and at small evolutionary 

distances, required genome number is inversely proportional to the neutral distance 

between the target genome, and each comparative species (Eddy 0101).  

My project 

 Though this is an excellent advance, abstract models stop at actually determining 

the optimal species to use. Consequently, my goal is to create a web tool that tells the 

user which species to use, given a target species, in comparative genomics studies for 

maximum power in discerning genes and regulatory elements, using the Eddy model. I 

would first integrate various genome databases, such as the Saccharomyces Genome 

Database with an aim to include species from every sequenced genre. I would then use 

metropolis sampling with simulated annealing to sample over the space of genomes 

included in my integrated database, in order to find the set which minimizes the false 

positive and false negative rates. I would do this by minimizing the energy function 

E(X)=FP(X) + FN(X) where X is the current set of genomes, and FP and FN are as 
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defined by the Eddy model. I would align the genomes of X using BLAST. The variable 

N would be simply calculated from the set X. The evolutionary distance between the 

target species and the comparative species would be calculated for each genome in the set 

using the PAML software package, v3.13, then averaged to obtain D (Cooper 819). 

Testing could be done to find the optimal values for C, ω, and temperature t. 

Alternatively, these could be left as parameters for the user to decide, as they might be 

case-dependent. L would be input from the user, dependent on what feature they are 

looking for. For instance, L = 50, L = 8, and L = 1 are examples for detecting small 

coding exons, transcription factor binding sites, and single nucleotides, respectively 

(Eddy 0096). Of course, the user would input the target genome. The algorithm would 

begin with a random sample of genomes. The set X would subsequently change by 

randomly adding or removing a single genome from the set. ∆E = E(X+∆X) – E(X) 

would be calculated. The change would be accepted with probability P(∆X) = 1 if ∆E≤0, 

or P(∆X) = e
-∆E/kt

 if ∆E>0.  

 After developing my tool, I would test it on S. cerevisiae, using it to find a 

supposedly optimal set of genomes for the identification of genes and regulatory 

elements. After running it for a wide range of parameters C, ω, and t, to obtain many sets, 

I would test them by using them in the comparative genomics method employed by Kellis 

et al. If any of my sets gave results as good, or better, than those obtained by Kellis et al, 

I would release my web tool for public use, setting the parameters C, ω, and t, 

corresponding to the best performing set as the default parameters.  
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